Пенициллины устойчивые к бета лактамазам. B-лактамные антибиотики. Противопоказания и побочные симптомы карбапенемов

Мишенью действия бета-лактамных антибиотиков в микробной клетке являются транспептидазы и карбоксипептидазы – ферменты, участвующие в синтезе основного компонента наружной мембраны грамположительных и грамотрицательных микроорганизмов – пептидогликана. Благодаря способности связываться с пенициллинами и другими бета-лактамами эти ферменты получили второе название – пенициллинсвязывающие белки (ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки. Они осуществляют образование поперечных сшивок.
Связывание бета-лактамных антибиотиков с ПСБ ведет к инактивации ПСБ, прекращению роста и последующей гибели микробной клетки. Таким образом, активность конкретных бета-лактамных антибиотиков в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.
Однако для взаимодействия с ПСБ антибиотик должен проникнуть через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии бета-лактамов. Практически непреодолим для диффузии бета-лактамов липополисахаридный слой в наружной мембране грамотрицательных бактерий. Единственным путем для диффузии бета-лактамов служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы и становятся основным путем транспорта питательных веществ внутрь бактериальной клетки. Чем больше молекул антибиотика, тем медленнее его диффузия через пориновые каналы.
Доступ бета-лактамных антибиотиков к мишени ограничивают также ферменты бета-лактамазы, гидролизующие антибиотики. В результате межвидового генного переноса бета-лактамазы широко распространены у различных микроорганизмов, в том числе патогенных.

У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, между наружной и внутренней мембранами, а у грамположительных они свободно диффундируют в окружающую среду.
К практически важным свойствам бета-лактамаз относятся:
1. субстратный профиль – способность к преимущественному гидролизу тех или иных бета-лактамов, например, пенициллинов или цефалоспоринов, или карбапенемов, либо тех и других в равной степени.
2. локализация кодирующих генов, плазмидная или хромосомная. Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной – наблюдают распространение резистентного клона;
3. тип экспрессии – конститутивный или индуцибельный. При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном – количество синтезируемого фермента резко возрастает после контакта с антибиотиками (индукция);
4. чувствительность к ингибиторам. К ингибиторам бета-лактамаз относятся вещества бета-лактамной природы с минимальной собственной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование).
В результате при одновременном применении бета-лактамов и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название ингибиторзащищенных бета-лактамов.
В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам, тазобактам. Однако далеко не все известные бета-лактамазы чувствительны к ним.
Можно выделить несколько групп бета-лактамаз, имеющих наибольшее практическое значение.


Таким образом, индивидуальные свойства отдельных бета-лактамов определяются их аффинностью к ПСБ, способностью проникать через внешние структуры микроорганизмов и устойчивостью к гидролизу бета-лактамазами.
Поскольку пептидогликан (мишень действия бета-лактамных антибиотиков) является обязательным компонентом микробной клетки (кроме микоплазм), все микроорганизмы в той или иной степени чувствительны к антибиотикам этого класса. Однако на практике реальная активность бета-лактамов ограничивается их концентрациями в крови или очаге инфекции. Если ПСБ не угнетаются при практически достижимых концентрациях антибиотиков, то говорят о природной устойчивости микроорганизма. Истинной природной резистентностью к бета-лактамам обладают только микоплазмы, так как у них отсутствует пептидогликан.
Кроме природной чувствительности (или резистентности), клиническую эффективность бета-лактамов определяет приобретенная устойчивость. Она формируется при изменениях одного из параметров, определяющих природную чувствительность микроорганизма. Механизмами приобретенной устойчивости могут быть:
1. снижение аффинности ПСБ к антибиотикам;
2. снижение проницаемости внешних структур микроорганизма;
3. появление новых бета-лактамаз или изменение экспрессии имеющихся.
Все эти эффекты становятся результатом различных генетических событий: мутаций в существующих генах или приобретения новых.

  • Всасывание бета-лактамов различно. Некоторые пенициллины (бензилпенициллин, карбокси- и уреидопенициллины) нестабильны в кислой среде, поэтому практически не всасываются при приеме внутрь и применяются только парентерально. Среди цефалоспориновых антибиотиков выделяют ЛС для парентерального (низкое всасывание при приеме внутрь) и перорального применения, причем биодоступность последних существенно различается. В том числе в зависимости от приема пищи. Карбапенемы и монобактамы также имеют крайне низкую биодоступность при приеме внутрь. Показатели биодоступности бета-лактамов, а также другие параметры фармакокинетики представлены в таблице.

    • ЛС
      Доза (мг), способ применения
      F, %
      C max , мг/л
      T 1/2 , ч
      AUC, мг*ч/л
      СВ, %
      ВМ, %
      Влияние пищи на всасывание
      Биотрансформация, %
      Пенициллины
      Азлоциллин
      2000, в/в

      352
      1

      20-40
      60-70

      8-50
      Амоксициллин
      500, внутрь
      80
      16
      1
      29,2
      17
      50
      Нет
      10-20
      Ампициллин
      500, в/м
      500, внутрь
      40
      9
      5,1
      0,8
      0,8
      51,9
      12,1
      20
      20
      50
      50
      Снижение
      10-50
      10-50
      Бензилпенициллин
      500, в/м
      -
      4,5
      0,6
      13,7
      65
      48

      20-50
      Карбенициллин
      1000, в/м

      29,8
      1,5
      94,3
      50-60
      80

      10-30
      Клоксациллин
      500, внутрь
      50
      7,3
      0,8
      14,3
      95
      39
      Снижение
      40-50
      Оксациллин
      500, в/м
      500, внутрь
      30
      6,5
      2
      0,8
      0,6
      8,8
      3,6
      90
      90
      42
      20
      Снижение
      40-50
      40-50
      Пиперациллин
      1000, в/в

      70,7
      1
      36
      20-40
      70-80


      Тикарциллин
      750, в/м

      24,1
      1,2
      71,9
      45
      69,5

      5
      Феноксиметилпенициллин
      500, внутрь
      35
      3-3,6
      0,74
      5,3
      80
      50
      Снижение
      50-70
      Цефалоспорины I поколения
      Цефадроксил
      500, внутрь
      90
      15,4
      1,4
      49,4
      20
      79-84
      Нет
      1
      Цефазолин
      500, в/м

      47,1
      1,8
      18,6
      73-87
      66-74

      1
      Цефалексин
      500, внутрь
      90
      16,9
      0,8
      20,9
      20
      84
      Нет
      2
      Цефалоспорины II поколения
      Цефаклор
      500, внутрь
      50-95
      5,3
      0,8
      7
      25
      70
      Снижение
      5-15
      Цефамандол
      1000, в/м

      20,1
      0,85
      58
      56-78
      65-80

      2
      Цефокситин
      1000, в/в

      125
      0,5-0,8
      56,3
      65-79
      80-90

      5
      Цефуроксим
      500, в/м

      27,4
      1,2-1,5
      54,5
      33-50
      >90

      5
      Цефуроксим аксетил
      250, внутрь
      52
      6,3
      1,2
      18,9
      50
      50
      Увеличение

      Цефалоспорины III поколения
      Цефиксим
      400, внутрь
      50
      3,6
      3,1
      25,7
      65
      22-27
      Нет

      Цефоперазон
      1000, в/в

      125,8
      1,9-2,7
      409
      82-93
      14-27

      75
      Цефотаксим
      500, в/м

      15,4
      1,1
      31,4
      30-51
      55-65

      30-50
      Цефподоксим проксетил
      100, внутрь
      30-50
      1,34
      1,9
      7,8
      40
      44
      Увеличение

      Цефтазидим
      1000, в/в

      77,4
      1,9
      147,3
      89

      5
      Цефтибутен
      200, внутрь
      80
      9,3
      1,8-2
      43,7
      65-77
      78
      Снижение

      Цефтриаксон
      1000, в/в

      161,2
      6-8
      1005
      85-95
      54

      35-40
      Цефалоспорины IV поколения
      Цефепим
      1000, в/в

      74,9
      2
      153,7
      20
      75-90


      Карбапенемы
      Имипенем
      1000, в/в

      54,6
      1
      90,8
      20
      76


      Меропенем
      1000, в/в

      61,6
      1
      90,8
      2
      75


      Эртапенем
      1000, в/в

      160
      4

      60
      >80


      Монобактамы
      Азтреонам
      1000, в/в

      93,5
      1,8
      222
      55-60
      70-80

      30
    В крови бета-лактамы в различной степени связываются с белками плазмы, преимущественно альбуминами. Объем распределения бета-лактамов в среднем составляет около 20 л, что свидетельствует о проникновении ЛС в ткани. Концентрации бета-лактамов в большинстве тканей организма равны 30-70% сывороточных концентраций. Бета-лактамы не проникают внутрь клеток макроорганизма. Период полувыведения большинства бета-лактамов составляет около 2 ч, но имеются исключения: он больше у некоторых цефалоспоринов (цефтриаксон, цефотетан, цефиксим).
    Большинство бета-лактамов выводится с мочой в неизмененном виде, некоторые ЛС частично метаболизируются в печени (изоксозолинпенициллины, уреидопенициллины, цефалотин, цефотаксим, цефтриаксон, азтреонам). Цефоперазон в значительных количествах выводится с желчью.

В большей степени пенициллины

Реакции немедленного типа: анафилактический шок, ангионевротический отек, бронхоспазм.
Отсроченные реакции: крапивница, зуд, эритема, артрит, эозинофилия, тромбоцитопения, васкулит
Желудочно-кишечные
Все бета-лактамы, особенно ампициллин, амоксициллин/клавуланат
Тошнота, рвота, диарея
Любые бета-лактамы (редко)
Диарея, вызванная C. difficile, псевдомембранозный колит
Печеночные
Все бета-лактамы
Повышение трансаминаз, щелочной фосфатазы
Оксациллин, азтреонам
Гепатит
Цефтриаксон
Желтуха, холелитиаз
Интерстициальный нефрит
Оксациллин
Гематурия, протеинурия, лихорадка, эозинофилия
Гематологические
Карбоксипенициллины, некоторые цефалоспорины(цефамандол, цефотетан, цефоперазон, цефметазол)
Геморрагический синдром
Неврологические
Все бета-лактамы
Большие дозы пенициллинов
Головная боль, головокружение, тремор
Судороги
Нарушение толерантности к алкоголю
Некоторые цефалоспорины (цефамандол, цефотетан, цефоперазон, цефметазол)
Дисульфирам-подобные реакции: тошнота, рвота, головная боль, головокружение, жар, тахикардия
Суперинфекции
Все бета-лактамы
Вагинальный или оральный кандидоз


Для цитирования: Сидоренко С.В., Яковлев С.В. БЕТА-ЛАКТАМНЫЕ АНТИБИОТИКИ // РМЖ. 1997. №21. С. 2

В статье представлены подробный анализ наиболее многочисленной группы антибактериальных средств - бета-лактамных антибиотиков, их классификация и микробиологическая характеристика. Приведены рекомендации по их применению в клинической практике.

The paper presents a detailed analysis of the most numerous group of antibacterial agents, b-lactam antibiotics, their classification and microbiological characteristics. Recommendations of their clinical use are given

С.В. Сидоренко, кафедра микробиологии и клинической химиотерапии Российской медицинской академии последипломного образования
С.В. Яковлев, кафедра клинической гематологии и интенсивной терапии Московской медицинской академии им. И.М.Сеченова
S.V. Sidorenko, Department of Microbiology and Clinical Chemotherapy, Russian Medical Academy of Postgraduate Training
S.V. Yakovlev, Department of Clinical Hematology and Intensive Care Therapy, I.M. Sechenov Moscow Medical Academy

1. Классификация и микробиологическая характеристика бета-лактамных антибиотиков (БЛА)

БЛА являются основой современной химиотерапии, так как занимают ведущее или важное место в лечении большинства инфекционных болезней. По количеству применяемых в клинике препаратов - это наиболее многочисленная группа среди всех антибактериальных средств. Их многообразие объясняется стремлением получить новые соединения с более широким спектром антибактериальной активности, улучшенными фармакокинетическими характеристиками и устойчивостью к постоянно возникающим новым механизмам резистентности микроорганизмов. Классификация современных БЛА (основанная на их химической структуре) и препараты, зарегистрированные в Российской Федерации, приведены в табл.1.
1.1. Механизмы действия БЛА и устойчивости к ним микроорганизмов

Общим фрагментом в химической структуре БЛА является бета-лактамное кольцо, именно с его наличием связана микробиологическая активность этих препаратов. Схематическое изображение механизмов действия БЛА и устойчивости к ним микроорганизмов приведено на рисунке.

Благодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название - пенициллинсвязывающие белки (ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок.
Связывание БЛА с ПСБ ведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.
Таблица 1. Классификация современных БЛА

I. Пенициллины
1. Природные: бензилпенициллин, феноксиметилпенициллин
2. Полусинтетические
2.1. Пенициллиназостабильные 2.2. Аминопенициллины 2.3.Карбоксипенициллины 2.4. Уреидопенициллины
метициллин ампициллин карбенициллин азлоциллин
оксациллин амоксициллин тикарциллин мезлоциллин
пиперациллин
II.Цефалоспорины
I поколение II поколение III поколение IV поколение
Парентеральные Парентеральные Парентеральные Парентеральные
цефалотин цефуроксим цефотаксим цефпиром
цефалоридин цефамандол цефтриаксон цефипим
цефазолин цефокситин* цефодизим
Оральные цефотетан* цефтизоксим
цефалексин цефметазол* цефоперазон**
цефадроксил Оральные цефпирамид**
цефрадин цефаклор цефтазидим**
цефуроксим-аксетил моксалактам
Оральные
цефиксим
цефподоксим
цефтибутен
III. Комбинированные препараты IV. Карбапенемы V. Монобактамы
ампициллин/сульбактам имипенем азтреонам
амоксициллин/клавуланат меропенем
тикарциллин/клавуланат
пиперациллин/тазобактам
цефоперазон/сульбактам
П р и м е ч а н и е: *препараты, обладющие выраженной антианаэробной активностью (цефамицины);
**препараты, обладающие выраженной активностью в отношении P. aeruginosa и неферментирущих микроорганизмов.

Однако для взаимодействия с ПСБ антибиотику необходимо проникнуть из внешней среды через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии БЛА. Практически непреодолимой преградой для диффузии БЛА является липополисахаридный слой грамотрицательных бактерий. Единственным путем для диффузии БЛА служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы, и являются основным путем транспорта питательных веществ внутрь бактериальной клетки.
Следующим фактором, ограничивающим доступ БЛА к мишени действия, являются ферменты бета-лактамазы, гидролизующие антибиотики. Бета-лактамазы, вероятно, впервые появились у микроорганизмов одновременно со способностью к продукции БЛА как факторы нейтрализующие действие синтезируемых антибиотических веществ. В результате межвидового генного переноса бета-лактамазы получили широкое распространение среди различных микроорганизмов, в том числе и патогенных. У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, у грамположительных они свободно диффундируют в окружающую среду.
К практически важным свойствам бета-лактамаз относятся:
Субстратный профиль (способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени).
Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона.
Тип экспрессии (конститутивный или индуцибельный). При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции).
Чувствительность к ингибиторам. К ингибиторам относятся вещества бета-лактамной природы, обладающие минимальной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование). В результате при одновременном применении БЛА и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название комбинированных, или защищенных, бета-лактамов. В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам и тазобактам. К сожалению, далеко не все известные бета-лактамазы чувствительны к их действию.
Среди многообразия бета-лактамаз необходимо выделить несколько групп, имеющих наибольшее практическое значение
(табл. 2). Более подробную информацию о современной классификации бета-лактамаз и их клиническом значении можно найти в обзорах .

Поскольку пептидогликан (мишень действия БЛА) является обязательным компонентом микробной клетки, все микроорганизмы в той или иной степени чувствительны к антибиотикам этого класса. Однако на практике реальная активность БЛА ограничивается их концентрациями в крови или очаге инфекции. Если ПСБ не угнетаются при концентрациях антибиотиков, реально достижимых в организме человека, то говорят о природной устойчивости микроорганизма. Однако истинной природной резистентностью к БЛА обладают только микоплазмы, так как у них отсутствует пептидогликан - мишень дейтсвия антибиотиков.
Кроме уровня природной чувствительности (или резистентности), клиническую эффективность БЛА определяет наличие у микроорганизмов приобретенной устойчивости. Приобретенная резистентность формируется при изменении одного из параметров, определяющих уровень природной чувствительности микроорганизма. Ее механизмами могут быть:
I. Снижение аффинности ПСБ к антибиотикам.
II. Снижение проницаемости внешних структур микроорганизма.
III. Появление новых бета-лактамаз или изменение характера экспрессии имеющихся.
Перечисленные эффекты являются результатом различных генетических событий: мутаций в существующих генах или приобретением новых.

1.2. Характеристика микробиологической активности БЛА и область их применения

Грамположительные микроорганизмы

Подавляющее большинство БЛА обладает высокой активностью в отношении грамположительных микроорганизмов, единственным исключением является группа монобактамов.
Streptococcus spp. отличаются высоким уровнем чувствительности к БЛА. При этом наиболее активны природные пенициллины, что дает основание признать их средствами выбора при лечении стрептококковых инфекций. Между отдельными представителями полусинтетических пенициллинов и цефалоспоринов отмечают определенные различия в уровне активности, однако оснований считать их клинически значимыми нет.
Среди S. pyogenes до сих пор не обнаружено ни одного штамма, устойчивого к пенициллину и соотвественно к другим БЛА. Среди других стрептококков частота резистентности подвержена значительным вариациям. Во всех случаях она связана с модификацией ПСБ, продукции бета-лактамаз у стрептококков не выявлено. Наибольшее практическое значение имеет распространение пенициллинрезистентных пневмококков в отдельных географических регионах (Испания, Франция, Венгрия), частота различной степени устойчивости достигает 60% . Масштабных, методологически корректных исследований о распространении устойчивости к пенициллину среди пневмококков на территории РФ не проводилось, однако ограниченные данные не дают оснований рассматривать в настоящее время этот феномен как серьезную проблему. Это не означает
, что ситуация не может измениться в худшую сторону уже в ближайшее время. В некоторых сообщениях отмечается тенденция к повышению частоты резистентности к пенициллину среди стрептококков групп В и Viridans , однако в целом находки таких штаммов остаются весьма редкими.
Таблица 2. Характеристика основных бета-лактамаз

Ферменты Характеристика
Стафилококковые бета-лактамазы, плазмидные, класс А Гидролизуют природные и полусинтетические пенициллины, кроме метициллина и оксациллина.
Чувствительны к ингибиторам.
Плазмидные бета-лактамазы грамоотрицательных бактерий широкого спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения.
Чувствительны к ингибиторам.
Плазмидные бета-лактамазы грамоотрицательных бактерий расширенного спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - IV поколений.
Чувствительны к ингибиторам.
Хромосомные бета-лактамазы грамоотрицательных бактерий, класс С Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - III поколений.
Не чувствительны к ингибиторам.
Хромосомные бета-лактамазы грамоотрицательных бактерий, класс А Гидролизуют природные и полусинтетические пенициллины цефалоспорины I - II поколений. Чувствительны к ингибиторам.
Хромосомные бета-лактамазы грамоотрицательных бактерий, класс В Эффективно гидролизуют практически все бета-лактамы, включая карбапенемы. Не чувствительны к ингибиторам.

Предсказать чувствительность или устойчивость пенициллинрезистентных стрептококков к другим БЛА достаточно сложно. Часто активность сохраняют цефалоспорины III поколения, карбапенемы активны практически всегда. Полусинтетические пенициллины и цефалоспорины I - II поколений чаще всего неактивны . Поскольку резистентность у стрептококков не связана с продукцией бата-лактамаз, защищенные препараты преимуществ не имеют. Наиболее полно вопросы перекрестной резистентности к БЛА изучены для пневмококков . В настоящее время признано целесообразным при обнаружении штамма пневмококков, устойчивого к пенициллину, оценивать его чувствительность к другим БЛА методом серийных разведений.
Enterococcus spp. отличаются значительно меньшей чувствительностью к БЛА, чем другие грамположительные микроорганизмы, что связано с пониженной аффинностью их ПСБ к этим антибиотикам . Для энтерококков характерны выраженные межвидовые различия в чувствительности к БЛА, наибольшая чувствительность свойственна E. faecalis. E. faecium и другие редкие виды энтерококков следует считать природно устойчивыми, они синтезируют значительное количество ПСБ , отличающегося низкой аффинностью к БЛА .
Из всех БЛА клинически значимой антиэнтерококковой активностью (в отношении E. faecalis) обладают природные, амино-, уреидопенициллины, частично цефалоспорины IV поколения и карбапенемы. Цефалоспорины I - III поколений реальной активностью не обладают. Препаратами выбора для лечения энтерококковых (E. faecalis) инфекций являются аминопенициллины. Важно отметить, что БЛА в отношении энтерококков проявляют
только бактериостатическую активность, бактерицидное действие проявляется только при комбинации с аминогликозидами.
Staphylococcus spp. (как S. aureus, так и коагулазонегативные) проявляют высокий уровень природной чувствительности к БЛА, наименьшими величинами минимальной подавляющей концентрации (МПК) отличаются природные и аминопенициллины. В ряду цефалоспоринов от I к III поколению наблюдается некоторое снижение активности, однако клинического значения это не имеет. Исключением являются оральные цефалоспорины цефиксим и цефтибутен, они практически лишены антистафилококковой активности.
Стафилококки оказались первыми микроорганизмами, распространение приобретенной резистентности среди которых привело к резкому снижению эффективности традиционной терапии.

Механизм действия бета-лактамных антибиотиков. Обязательным компонентом наружной мембраны прокариотических микроорганизмов (кроме микоплазм) является пептидогликан, представляющий собой биологический полимер, состоящий из параллельных полисахаридных цепей. Пептидогликановый каркас приобретает жесткость при образовании между полисахаридными цепями поперечных сшивок. Поперечные сшивки образуются через аминокислотные мостики, замыкание сшивок осуществляют ферменты карбокси- и транспептидазы (ПСБ). Бета-лактамные антибиотики способны связываться с активным центром фермента и подавлять его функцию. Специфическая активность антибиотиков определяется наличием бета-лактамного кольца. Боковые радикалы определяют фармакокинетические особенности, устойчивость к действию бета-лактамаз и другие второстепенные свойства.

После внедрения в 40-х годах в медицинскую практику пенициллина менее чем через 10 лет частота резистентности к этому антибиотику в отдельных стационарах достигла 50%, а в настоящее время практически повсеместно, в том числе и в РФ, превышает 60 - 70% . Устойчивость оказалась связанной с продукцией плазмидных бета-лактамаз, ее удалось сравнительно легко преодолеть путем создания полусинтетических пенициллинов (метициллина и оксациллина), а также цефалоспориновых антибиотиков, устойчивых к ферментативному гидролизу. Амино-, карбокси- и уреидопенициллины разрушаются этими ферментами так же эффективно, как и природные пенициллины, иногда наблюдают частичный гидролиз цефалоспоринов III поколения. Стафилококковые бета-лактамазы эффективно подавляются ингибиторами, что обеспечивает высокую активность защищенных пенициллинов.
Однако уже в 1961 г. появились первые сообщения о выделении метициллинрезистентных стафилококков (МРС), как Staphylococcus aureus, так и коагулазонегативных . Резистентность оказалась связанной с появлением у микроорганизма нового ПСБ (ПСБ2а, или ПСБ2"), отсутствующего у чувствительных штаммов и обладающего пониженной аффинностью ко всем БЛА. Поскольку на практике для детекции метициллинрезистентности обычно используют оксациллин (он более стабилен при хранении), то появился термин-синоним "оксациллинрезистентность".
Таблица 3. Характеристика природной активности бета-лактамных антибиотиков и частоты приобретенной резистентности основных клинически значимых микроорганизмов

Микроорганизмы Природные пеницил лины Пеницил линазо стабиль ные пени циллины Амино пеницил лины Карбок сипени циллины Уреидо пенициллины Защищен ные пени циллины Цефа лоспори ны I поко ления Цефа лоспори ны II поко ления Цефа лоспори ны III поко ления Цефа лоспори ны IV поко ления Моно бактамы Карба пенемы
Streptococcus
-pyogenes
-pneumoniae
-agalactiae
-viridans group
Enterococcus faecalis
Enterococcus faecium
Staphylococcus spp. (MS)
Staphylococcus spp. (MR)
Neisseria spp.
Moraxella spp.
E.coli, Shigella spp.
Salmonella spp., Proteus mirabilis
Haemophilus spp.
Enterobacter spp., Citrobacter freudii, Serratia spp., Morganella morganii, Providencia stuartii , P.rettgeri.
Pseudomonas spp.
Bacteroides fragilis
П р и м е ч а н и е: ++ - высокая активность; + - реальная активность; +/- - слабая активность; - - отсутствие активности; r - частота приобретенной резистентности от единичных штаммов до 5 - 10%; R - частота приобретенной резистентности от 10 до 50%; r-R - частота приобретенной резистентности между отдельными видами в группе существенно варьирует, существенная вариабельность в географическом распространении резистентности; MS - метициллинчувствительные стафилококки; MR - метициллинрезистентные стафилококки; 1) - реальной антианаэробной активностью обладают цефотетан, цефокситин, цефметазол; 2) - реальной антипсевдомонадной активностью обладают цефтазидим, цефоперазон, цефпирамид.

При исследованиях in vitro в отношении некоторых штаммов МРС цефалоспорины и карбапенемы проявляют достаточно высокую активность. Формально по величине МПК или диаметру зоны ингибиции роста такие штаммы следует оценивать как чувствительные. Однако клинические исследования показали, что при наличии метициллинрезистентности эффективность всех БЛА значительно снижается независимо от их активности in vitro . Учитывая эти наблюдения, общепринятой точкой зрения по интерпретации результатов оценки антибиотикочувствительности стафилококков является следующая:
при детекции у стафилококков устойчивости к оксациллину ни один из БЛА (независимо от их активности in vitro) не может быть рекомендован для лечения.
Оценка чувствительности к оксациллину является ключевым моментом в планировании лечения стафилококковых инфекций.
Таким образом:

  1. При инфекциях, вызванных штаммами, чувствительными к оксациллину и не продуцирующими бета-лактамазы (что в настоящее время наблюдается редко), препаратами выбора являются природные пенициллины.
  2. Если этиологический агент продуцирует бета-лактамазы, но сохраняет чувствительность к оксациллину, последний антибиотик является препаратом выбора. Практически равную эффективность будут проявлять защищенные пенициллины, цефалоспорины и карбапенемы.
  3. При выявлении оксациллинрезистентных штаммов применение БЛА должно быть исключено. В связи с высокой частотой ассоциированной устойчивости таких штаммов к антибиотикам других групп (макролидам, фторхинолонам, аминогликозидам и др.) перечень альтернативных препаратов ограничен. В части случаев активность могут сохранять рифампин и фузидиевая кислота, за крайне редкими исключениями (известны единичные устойчивые штаммы S. haemoliticus) активны гликопептидные антибиотики.

Грамотрицательные микроорганизмы

Грамотрицательные кокки

Neisseria (meningitidis, gonorrhoeae) и Moraxella обладают высокой природной чувствительностью к БЛА. Их внешняя мембрана проницаема не только для цефалоспоринов и полусинтетических пенициллинов, но и для природных (по этому признаку перечисленные микроорганизмы отличаются от других грамотрицательных). Традиционно препаратами выбора при лечении вызванных этими микроорганизмами инфекций считаются природные пенициллины, однако цефалоспорины (прежде всего III поколения) по уровню микробиологической активности им не уступают. Достаточно активны полусинтетические пенициллины, кроме оксациллина и метициллина.
В частоте распространения приобретенной резистентности, связанной с продукцией плазмидных бета-лактамаз класса А, среди грамотрицательных кокков наблюдают выраженные различия. Чаще всего продукцию плазмидных бета-лактамаз широкого спектра выявляют у Moraxella cattarhalis (до 60 - 80% штаммов), ферменты гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения . Остальные БЛА (цефалоспорины II - III поколений, защищенные пенициллины, карбапенемы и монобактамы) сохраняют высокую активность.
Отмечается нарастание частоты продукции бета-лактамаз c аналогичными описанным ранее свойствами у N. gonorrhoeae, что снижает роль пенициллина как средства выбора при лечении гонореи и выдвигает на первое место цефалоспорины III поколения .
В отличие от сказанного выше у N. meningitidis продукцию бета-лактамаз выявляют крайне редко, описаны штаммы со сниженной чувствительностью к пенициллину, обусловленной модификацией ПСБ и снижением проницаемости наружной мембраны. Значение пенициллина как средства выбора при лечении менингококковой инфекции сохраняется .

Грамотрицательные бациллы

Характеризуя природную активность БЛА в отношении грамотрицательных палочек (Enterobacteriaceae, Pseudomonas и др.), необходимо остановиться на некоторых особенностях этих микроорганизмов. Прежде всего, так как их наружная мембрана малопроницаема для природных пенициллинов, то в лечении соответствующих инфекций указанные антибиотики значения не имеют.
Вторым принципиально важным свойством грамотрицательных палочек является наличие в составе их хромосом генов, кодирующих бета-лактамазы класса А или С. Хромосомные бета-лактамазы не выявлены у микроорганизмов рода Salmonella.
Именно способностью к синтезу хромосомных бета-лактамаз и его характером (конститутивным или индуцибельным) определяется уровень природной чувствительности грамотрицательных бацилл к БЛА. В зависимости от типа экспрессии хромосомных бета-лактамаз микроорганизмы можно разделить на несколько групп.
E.coli, Shigella spp., Salmonella spp., Proteus mirabilis, Haemophilus spp. относятся к первой группе, у них продукция хромосомных бета-лактамаз класса С или не определяется, или выявляется в минимальном количестве (конститутивно низкий уровень продукции). Они обладают природной чувствительностью ко всем БЛА, кроме природных и полусинтетических пенициллиназостабильных пенициллинов, чувствительность к цефалоспоринам I поколения варьирует. Haemophilus spp. к цефалоспоринам I поколения не чувствительны.
Однако реальная активность амино-, карбокси-, уреидопенициллинов и цефалоспоринов I поколения ограничена распространением приобретенной резистентности, связанной с продукцией бета-лактамаз широкого спектра. Частота их выявления у E.coli. Proteus mirabilis на территории РФ в некоторых случаях (особенно при госпитальных инфекциях) достигает 50%. Защищенные пенициллины сохраняют активность в отношении таких штаммов. Таким образом, в зависимости от тяжести и характера инфекции (госпитальная или внебольничная) средствами выбора для эмпирического лечения инфекций, вызванных микроорганизмами этой группы, могут быть защищенные пенициллины или цефалоспорины II - III поколений.
Следует отметить, что при шигеллезе и кишечном сальмоонеллезе реальное клиническое значение из бета-лактамов имеют только аминопенициллины, однако их роль в связи с распространением бета-лактамаз широкого спектра снижается, реальной альтернативой являются фторхинолоны. Средствами выбора для лечения генерализованного сальмонеллеза из БЛА следует считать цефалоспорины III поколения (бета-лактамазы расширенного спектра, гидролизующие эти антибиотики, до сих пор встречаются редко
).
Klebsiella spp., Proteus vulgaris, Citrobacter diversus также конститутивно продуцируют незначительное количество хромосомных бета-лактамаз, относящихся к классу А. Несмотря на низкий уровень продукции, эти ферменты гидролизуют амино-, карбокси- и частично уреидопенициллины, а также цефалоспорины I поколения. Бета-лактамазы P. vulgaris эффективно гидролизуют цефалоспорины II поколения. Таким образом, реальной природной чувствительностью перечисленные микроорганизмы обладают к цефалоспоринам III - IV поколений, защищенным пенициллинам, монобактамам и карбапенемам.
Основным механизмом приобретенной резистентности является продукция плазмидных бета-лактамаз широкого и расширенного спектра. Последние ограничивают активность не только полусинтетических пенициллинов, но и цефалоспоринов III - IV поколений. Достаточно часто возникают вспышки госпитальных инфекций, вызванных штаммами Klebsiella spp. и другими микроорганизмами, продуцирующими указанные бета-лактамазы, при этом наблюдают интенсивное межвидовое распространение детерминант резистентности . Лечение таких инфекций осложняется тем, что стандартные методы оценки антибиотикочувствительности в значительной части случаев (до 30%) не выявляют этот механизм резистентности . В настоящее время вопрос о том, насколько защищенные пенициллины эффективны в отношении инфекций, вызываемых штаммами, продуцирующими бета-лактамазы расширенного спектра, не решен.
В общем, при внебольничных инфекциях, вызываемых данной группой микроорганизмов, цефалоспорины III поколения являются высокоэффективными средствами, прогнозирование же их эффективности при госпитальных инфекциях без лабораторных исследований весьма затруднительно. Ситуация осложняется и тем, что у клебсиелл уже описана устойчивость к карбапенемам
.
Enterobacter spp., Citrobacter freudii, Serratia spp., Morganella morganii, Providencia stuartii и P.rettgeri (типичные госпитальные патогены) являются одной из наиболее сложных групп для лечения БЛА. У этих микроорганизмов выявляется индуцибельная продукция хромосомных бета-лактамаз класса С. Поскольку большинство БЛА разрушаются указанными ферментами, уровень природной чувствительности бактерий определяется способностью антибиотиков индуцировать синтез. Так как аминопенициллины, цефалоспорины I поколения относятся к сильным индукторам, то микроорганизмы к ним устойчивы. Цефалоспорины II поколения в меньшей степени индуцируют хромосомные бета-лактамазы класса С, уровень их активности близок к промежуточному, но считать их средствами выбора для лечения инфекций, вызываемых рассматриваемой группой микроорганизмов, нельзя. Цефалоспорины III - IV поколений, монобактамы, карбокси- и уреидопенициллины в незначительной степени индуцируют синтез хромосомных бета-лактамаз и, следовательно, проявляют высокую активность. Карбапенемы относятся к сильным индукторам, но обладают устойчивостью к действию ферментов, что проявляется в их высокой природной активности.
Из механизмов приобретенной резистентности в рассматриваемой группе микроорганизмов основное значение имеют плазмидные бета-лактамазы широкого и расширенного спектра, а также гиперпродукция хромосомных бета-лактамаз. Феномен гиперпродукции связан с мутациями в регуляторных областях генома, приводящих к дерепрессии синтеза фермента. Особое значение этого механизма устойчивости объясняется тем, что он с достаточно высокой частотой формируется в процессе лечения цефалоспоринами III поколения пациентов с тяжелыми госпитальными пневмониями или бактериемией, вызываемой Enterobacter spp. и Serratia marcescens (селекция мутантов-гиперпродуцентов на фоне элиминации чувствительных микроорганизмов) . Единственными БЛА, сохраняющими активность в отношении штаммов-гиперпродуцентов, являются цефалоспорины IV поколения и карбапенемы.
Многообразие возможных механизмов резистентности у рассматриваемой группы патогенов и возможность их сочетаний крайне затрудняют планирование эмпирической терапии. На сегодняшний день даже карбапенемы невозможно рассматривать как препараты, обладающие абсолютной активностью (описаны единичные штаммы S. marcescens и Enterobacter, обладающие устойчивостью к карбапенемам в результате продукции карбапенемаз ).

Неферментирующие микроорганизмы

К микроорганизмам, обладающим природной устойчивостью ко многим БЛА, относятся Pseudomonas spp. (прежде всего P. aeruginosa), Acinetobacter spp. и другие неферментирующие бактерии, что связано с низкой проницаемостью их внешних структур и продукцией хромосомных бета-лактамаз класса С. Активностью в отношении P. aeruginosa обладают карбокси- и уреидопенициллины, некоторые из цефалоспоринов III поколения (цефтазидим, цефоперазон, цефпирамид), монобактамы и карбапенемы (меропенем несколько превосходит имипенем). Приобретенная резистентность этих микроорганизмов может быть связана со многими механизмами: продукцией плазмидных бета-лактамаз широкого и расширенного спектров, металлоэнзимов, гиперпродукцией хромосомных бета-лактамаз и снижением проницаемости, часто наблюдают сочетание нескольких механизмов. На практике это приводит к появлению и распространению штаммов, устойчивых ко всем БЛА. Среди псевдомонад возможно формирование изолированной устойчивости к имипенему , связанной с нарушением структуры порина D2, являющегося уникальным путем для транспорта этого антибиотика; такие штаммы часто сохраняют чувствительность к меропенему.
В определенных условиях (чаще в отделениях интенсивной терапии и реанимации) на фоне применения карбапенемов, обладающих максимально широким спектром действия, в результате элиминации чувствительных микроорганизмов возможна селекция видов, продуцирующих бета-лактамазы класса В (металлоэнзимы) и, как следствие, проявляющих природную устойчивость к этим антибиотикам. К таким микроорганизмам относятся Stenotphomonas maltophillia, некоторые виды Flavobacterium.

Анаэробные микроорганизмы

Bacteroides fragilis и родственные микроорганизмы проявляют достаточно высокую природную устойчивость к БЛА. Большинство других анаэробов высокочувствительны к БЛА, в том числе и к природным пенициллинам. Clostridium difficile устойчивы ко всем БЛА.
Устойчивость B. fragilis в основном определяется продукцией этими микроорганизмами хромосомных бета-лактамаз класса А. Благодаря устойчивости к гидролизу цефамициновые антибиотики (цефотетан, цефокситин и цефметазол) обладают клинически значимой антианаэробной активностью. Высокоактивны также защищенные бета-лактамы и карбапенемы, случаи приобретенной устойчивости к ним крайне редки.
Перед рассмотрением клинического применения БЛА необходимо отметить, что если для внебольничных инфекций уровень и механизмы приобретенной резистентности этиологических агентов могут быть достаточно точно предсказаны для обширных географических регионов на основании специальных исследований, то при госпитальных инфекциях эти показатели могут быть уникальными для отдельных стационаров даже в пределах одного города. Следовательно, если при внебольничных инфекциях обоснование эффективной эмпирической терапии представляется вполне реальной задачей, то при госпитальных инфекциях вероятность эффективности эмпирической терапии резко снижается и соответственно возрастает значение лабораторных исследований.

2. Клиническое применение БЛА

Природные пенициллины

Являются препаратами выбора при лечении стрептококковой, пневмококковой, менингококковой и гонококковой инфекций. В последние годы отмечается увеличение частоты резистентных штаммов пневмококков и гонококков к бензилпенициллину, в связи с чем при эмпирической терапии заболеваний, вызванных этими микроорганизмами, рекомендуется использовать другие препараты (цефалоспорины III поколения, макролиды); бензилпенициллин может применяться при установленной к нему чувствительности S. pneumoniae и N. gonorrhoeae.
Бензилпенициллин выпускается в виде натриевой и калиевой солей для парентерального введения (антибиотик при приеме внутрь разрушается кислотой желудочного сока). Калиевая соль бензилпенициллина содержит большое количество калия (1,7 мэкв в 1 млн ЕД), в связи с чем большие дозы этой лекарственной формы пенициллина нежелательны у больных с почечной недостаточностью. Бензилпенициллин быстро выводится из организма, поэтому требуется частое введение препарата (от 4 до 6 раз в сутки в зависимости от тяжести инфекции и дозы). Большие дозы бензилпенициллина (20 - 30 млн ЕД в сутки) применяются для лечения тяжелых инфекций, вызванных чувствительными к нему микроорганизмами: менингита, инфекционного эндокардита, газовой гангрены. Средние дозы препарата (10 - 18 млн ЕД в сутки) применяются при лечении аспирационной пневмонии или абсцесса легких, вызванного стрептококкоками группы А или анаэробными кокками, а также в комбинации с аминогликозидами при лечении энтерококковой инфекции (эндокардит). Малые дозы бензилпенициллина (4 - 8 млн ЕД в сутки) применяются при лечении пневмококковой пневмонии.
Бензилпенициллин в больших дозах может также назначаться при инфекции, вызванной Listeria, однако в этом случае предпочтительнее использовать ампициллин. Не рекомендуется применять бензилпенициллин в суточных дозах свыше 30 млн ЕД из-за риска развития токсических проявлений со стороны центральной нервной системы (судороги).
Пролонгированные препараты пенициллина (бензатинпенициллин или бициллин) применяются для профилактики ревматизма и лечения сифилиса.
Феноксиметилпенициллин не разрушается соляной кислотой желудка, его назначают внутрь. По сравнению с бензилпенициллинами менее активен при гонорее. Применяют в амбулаторной практике, как правило, у детей при лечении легких инфекций верхних дыхательных путей (тонзиллит, фарингит), полости рта, пневмококковой пневмонии.

Пенициллиназостабильные пенициллины

Спектр противомикробного действия этих препаратов сходен с природными пенициллинами, однако они уступают им в антимикробной активности. Единственным преимуществом является стабильность в отношении стафилококковых бета-лактамаз, в связи с чем эти полусинтетические пенициллины считаются препаратами выбора при лечении доказанной или предполагаемой стафилококковой инфекции (кожи и мягких тканей, костей и суставов, при эндокардите и абсцессе мозга). Метициллин в настоящее время не рекомендуется к использованию в клинической практике, так как у 2 - 10% больных приводит к развитию интерстициального нефрита. Оксациллин, не уступая в противомикробной активности метициллину, лучше переносится. При приеме оксациллина внутрь в крови создаются не очень высокие концентрации, поэтому его следует применять только парентерально, а для перорального применения предпочтительнее использовать клоксациллин или диклоксациллин. Прием пищи уменьшает всасывание этих препаратов, поэтому их предпочтительно принимать до еды. Оксациллин, клоксациллин и диклоксациллин выводятся с мочой и желчью, поэтому у больных с почечной недостаточностью не наблюдается существенного замедления выведения этих препаратов и их можно назначать в неизмененных дозах.

Аминопенициллины

Ампициллин и амоксициллин характеризуются одинаковым спектром антимикробной активности. Ампициллин применяется парентерально и внутрь, амоксициллин - только внутрь. Ампициллин плохо всасывается при приеме внутрь (биодоступность составляет 20 - 40%), в связи с чем в крови и тканях создаются не очень высокие концентрации; кроме того, прием пищи существенно уменьшает всасывание ампициллина. Амоксициллин значительно лучше всасывается (биодоступность составляет 80 - 70%) независимо от приема пищи, в крови и тканях создаются более высокие и стабильные концентрации.
Амоксициллин медленнее выводится из организма, поэтому требует более редкого дозирования (каждые 8 ч) по сравнению с ампициллином (каждые 6 ч). Кроме того, амоксициллин реже вызывает кишечный дисбактериоз и диарею. В связи с указанными преимуществами при назначении препарата внутрь для лечения нетяжелых инфекций предпочтительнее использовать амоксициллин.
Ампициллин применяется в основном парентерально при лечении острых неосложненных внебольничных инфекций дыхательных и мочевыводящих путей, в комбинации с аминогликозидами - при лечении серьезных инфекций, вызванных энтерококками (эндокардит, сепсис), менингококками, гемофильной палочкой и листериями (менингит). Внутрь ампициллин назначается при лечении бактериальной дизентерии.
Амоксициллин считается препаратом первого ряда в амбулаторной практике при лечении острых инфекций ЛОР-органов (синусит, средний отит), нижних дыхательных путей (острый бактериальный бронхит, внебольничная бактериальная пневмония), мочевыводящих путей (острый цистит, острый пиелонефрит, бессимптомная бактериурия), некоторых кишечных инфекций (брюшной тиф, сальмонеллез), а также при стоматологических вмешательствах в качестве профилактики бактериального эндокардита.
Аминопенициллины нецелесообразно назначать для лечения хронических или госпитальных инфекций дыхательных или мочевыводящих путей, так как отмечается увеличение частоты устойчивых штаммов микробов к этим препаратам. В этом случае предпочтительнее использовать комбинированные препараты аминопенициллинов с ингибиторами бета-лактамаз - ко-амоксиклав (амоксициллин + клавулановая кислота) или ампициллин + сульбактам.

Антисинегнойные пенициллины

В зависимости от химической структуры выделяют карбоксипенициллины (карбенициллин, тикарциллин) и уреидопенициллины (пиперациллин, азлоциллин, мезлоциллин). Антимикробная активность карбоксипенициллинов и уреидопенициллинов одинакова, за исключением Klebsiella spp. (более активны последние). Отличительной характеристикой антимикробного спектра этих пенициллинов является активность в отношении P. aeruginosa. По действию на синегнойную палочку эти препараты располагаются в следующем порядке:
азлоциллин = пиперациллин > мезлоциллин = тикарциллин > карбенициллин.

Основными показаниями для назначения карбоксипенициллинов и уреидопенициллинов являются тяжелые госпитальные инфекции различной локализации (дыхательных путей, мочевыводящих путей, интраабдоминальные, гинекологические), вызванные чувствительными микроорганизмами. Наиболее часто эти препараты (в комби


Введение

2. Бактериальные осложнения при ВИЧ-инфекции и их лечение

Заключение

Список литературы

Введение

Антибиотики (антибиотические вещества) - это продукты обмена микроорганизмов, избирательно подавляющие рост и развитие бактерий, микроскопических грибов, опухолевых клеток. Образование антибиотиков - одна из форм проявления антагонизма.

В научную литературу термин веден в 1942 г. Ваксманом, - "антибиотик - против жизни". По Н.С. Егорову: "Антибиотики - специфические продукты жизнедеятельности организмов, их модификации, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов (бактериям, грибам, водорослям, протозоа), вирусам или к злокачественным опухолям, задерживая их рост или полностью подавляя развитие".

Специфичность антибиотиков по сравнению с другими продуктами обмена (спиртами, органическими кислотами), также подавляющими рост отдельных микробных видов, заключается в чрезвычайно высокой биологической активности.

Существует несколько подходов в классификации антибиотиков: по типу продуцента, строению, характеру действия. По химическому строению различают антибиотики ациклического, алициклического строения, хиноны, полипептиды и др. По спектру биологического действия антибиотики можно подразделить на несколько групп:

антибактериальные, обладающие сравнительно узким спектром действия, подавляющие развитие грамположительных микроорганизмов и широкого спектра действия, подавляющие развитие как грамположительных, так и грамотрицительных микроорганизмов;

противогрибковые, группа полиеновых антибиотиков, действующие на микроскопические грибы;

противоопухолевые, действующие на опухолевые клетки человека и животных, а также на микроорганизмы.

В настоящее время описано свыше 6000 антибиотиков, но на практике применяется только около 150, так как многие обладают высокой токсичностью для человека, другие - инактивируются в организме и пр.

Бета-лактамные антибиотики (β-лактамные антибиотики, β-лактамы) - группа антибиотиков, которые объединяет наличие в структуре β-лактамного кольца.

К бета-лактамам относятся подгруппы пенициллинов, цефалоспоринов, карбапенемов и монобактамов. Сходство химической структуры предопределяет одинаковый механизм действия всех β-лактамов (нарушение синтеза клеточной стенки бактерий), а также перекрёстную аллергию к ним у некоторых пациентов.

Пенициллины, цефалоспорины и монобактамы чувствительны к гидролизующему действию особых ферментов - β-лактамаз, вырабатываемых рядом бактерий. Карбапенемы характеризуются значительно более высокой устойчивостью к β-лактамазам.

С учётом высокой клинической эффективности и низкой токсичности β-лактамные антибиотики составляют основу антимикробной химиотерапии на современном этапе, занимая ведущее место при лечении большинства инфекций.

Бета-лактамные антибиотики, обладающие пространственным сходством с субстратом реакции D-аланил-D-аланином, образуют ковалентную ацильную связь с активным центром транспептидазы и необратимо ингибируют ее. Поэтому транспептидазы и подобные им ферменты, участвующие в транспептидировании, называют также пенициллинсвязывающими белками.

Почти все антибиотики, подавляющие синтез клеточной стенки бактерий, бактерицидны - они вызывают гибель бактерий в результате осмотического лизиса. В присутствии таких антибиотиков аутолиз клеточной стенки не уравновешивается процессами восстановления, и стенка разрушается эндогенными пептидогликангидролазами (аутолизинами), обеспечивающими ее перестройку в процессе нормального роста бактерий.

1. Отличительные свойства новых бета-лактамных антибиотиков

Бета-лактамные антибиотики (БЛА) являются основой современной химиотерапии, так как занимают ведущее или важное место в лечении большинства инфекционных болезней. По количеству применяемых в клинике препаратов - это наиболее многочисленная группа среди всех антибактериальных средств. Их многообразие объясняется стремлением получить новые соединения с более широким спектром антибактериальной активности, улучшенными фармакокинетическими характеристиками и устойчивостью к постоянно возникающим новым механизмам резистентности микроорганизмов

Благодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название - пенициллинсвязывающие белки (PBPs). Молекулы PBPsжестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок.

Связывание БЛА с PBPsведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к PBPs. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.

К практически важным свойствам бета-лактамаз относятся:

субстратный профиль (способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени);

локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри - и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона;

тип экспрессии (конститутивный или индуцибельный). При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции);

чувствительность к ингибиторам. К ингибиторам относятся вещества бета-лактамной природы, обладающие минимальной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование).

В результате при одновременном применении БЛА и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название комбинированных, или защищенных, бета-лактамов. В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам и тазобактам.

Таким образом, индивидуальные свойства отдельных БЛА определяются их аффинностью к ПСБ, способностью проникать через внешние структуры микроорганизмов и устойчивостью к гидролизу бета-лактамазами.

У некоторых встречающихся в клинике резистентных к беталактамам штаммов бактерий резистентность проявляется на уровне PBPs, то есть мишени уменьшают сродство к "старым" беталактамам. Поэтому новые природные и полусинтетические беталактамы проверяются на степень сродства к PBPs этих штаммов. Высокое сродство означает перспективность новых бета-лактамных структур.

При оценке новых беталактамных структур проверяется их устойчивость к действию разных беталактамаз - ренициллаз и цефалоспориназ плазмидного и хромосомного происхождения, выделенных из разных бактерий. Если большинство используемых беталактамаз не инактивируют новую беталактамную структуру, то она признается перспективной для клиники.

Химиками были созданы нечувствительные к распространенным у стафилококков пенициллиназам полусинтетические пенициллины: метициллин, оксациллин и нечувствительный к ферменту из синегнойной палочки карбенициллин. Получить эти полусинтетические пенициллины удалось после того, как из бензилпенициллина была выведена 6АПК (6-аминопенициллиновая кислота). Путем ее ацилирования были получены указанные антибиотики.

Многие беталактазы теряют способность к гидролизу беталактамного кольца таких антибиотиков, как у цефамицина С при наличии метоксигруппы или других заместителей в 6ά-положении у пенициллинов и в 7ά-положении у цефалоспоринов.

Эффективность беталактамов против граммоотрицательных бактерий зависит и от такого фактора, как скорость прохождения через пориновые пороги. Преимущества имеют компактные молекулы, которые могут проникать через катионоселективные и анионоселективные каналы, такие, как имипенем. К его ценным свойствам относится также и устойчивость к ряду беталактамаз.

Беталактамы, у которых вводимые в ядро молекулы-заместители создают катионный центр, высокоактивны против многих кишечных бактерий по причине катионоселективности пориновых каналов у бактерий, обитающих в кишечном тракте, например, лекарственный препарат цефтазидим.

Часто модификации затрагивают структуру сконденсированного с беталактамом пяти - или шестичленного кольца. Если сера замещена в нем на кислород или углерод, то такие соединения называют "неклассическими" беталактамами (например, имипенем). К "неклассическим" также относятся такие беталактамы, у которых беталактамное кольцо не сконденсировано с другим кольцом. Они получили название "монобактамы". Наиболее известный препарат из "монобактамов" - азтреонам.

Большой интерес представляют природные соединения, обладающие высокой антибактериальной активностью и широким спектром действия. При контакте с мишенью их гаммалактамное кольцо расщепляется и происходит ацилирование одного из аминокислотных остатков в активном центре транспептиназ. Беталактамы могут инактивировать и гаммалактамы, но большая стабильность пятичленного гаммалактамного кольца расширяет возможности химического синтеза, то есть получение синтетических гаммалактамов с пространственной защитой гаммалактамного кольца от беталактамаз.

Ряды беталактамных синтетических антибиотиков быстро растут и используются для лечения самых разнообразных инфекций.

Бета-лактамные антибиотики – это противомикробные средства, которые объединяют 4 группы антибиотиков различных по происхождению и спектру противомикробной активности, но объединённые по одному общему признаку – содержание бета-лактамного кольца в молекулярной формуле.

К группе бета-лактамов относятся пенициллиновые антибиотики, цефалоспорины, карбапенемы и мнобактамы.

Схожая химическая структура определяет общий механизм антибактериального действия, который заключается в нарушении процесса синтеза мурена – основного строительного компонента мембраны прокариот.

Не исключается развитие перекрёстной аллергии или приобретенной устойчивости у бактерий из-за общего структурного компонента.

Отмечено, что лактамное кольцо обладает высокой чувствительностью к разрушительному воздействию белков бета-лактамазы. Каждый из представителей 4 классов характеризуется своей степенью устойчивости и может существенно отличаться у природных и полусинтетических представителей.

В настоящее время лактамные антибиотики являются одной наиболее часто применяемых групп антибиотиков и используются повсеместно для медикаментозной терапии обширного перечня заболеваний.

Общая классификация бета-лактамных антибиотиков:

  1. Пенициллины:
  2. Цефалоспорины, 5 поколений.
  3. Карбапенемы.
  4. Монобактамы.

Полный перечень

Пенициллины

Природные бензилпенициллин ®
Феноксиметилпенициллин ®
Бензатин феноксиметилпенициллин ®
Полусинтетические Антистаилококковые оксациллин ®
Аминопенициллины

(расширенного спектра)

ампициллин ®
амоксициллин ®
Карбоксипенициллины

(антисинегнойные)

карбенициллин ®
тикарциллин ®
Уреидопенициллины азлоциллин ®
мезлоциллин ®
пиперациллин ®
Ингибиторозащищенные
Комбинированные

Цефалоспорины

1 поколение Инъекционные цефалотин ®
цефалоридин ®
цефазолин ®
Пероральные цефалексин ®
цефадроксил ®
цефрадин ®
2 поколение Инъекционные цефуроксим ®
цефамандол ®
цефокситин ®
цефотетан ®
цефметазол ®
Пероральные цефаклор ®
цефуроксим-аксетил ®
3 поколение Инъекционнные цефотаксим ®
цефтриаксон ®
цефодизим ®
цефтизоксим ®
цефоперазон ®
цефпирамид ®
цефтазидим ®
цефоперазон/сульбактам ®
Пероральные цефиксим ®
цефдиторен
цефподоксим ®
цефтибутен ®
4 поколение Инъекционные цефпиром ®
цефепим ®
5 поколение Инъекционные цефтобипрол ®
цефтаролин ®
цефтолозан ®

Карбапенемы

Инфузии и внутримышечно имипенем ®
меропенем ®

Монобактамы

Инфузии азтреонам ®

Инструкции на большинство данных препаратов есть на сайте в разделе « «.

Пенициллины

Пенициллины – первые противомикробные вещества, которые были случайно открыты Александром Флемингом и произвели революцию в мире медицины. Природным продуцентом являются грибы Пенициллы. При достижении минимально ингибирующей концентрации бета-лактамные антибиотики обладают бактерицидной активностью (уничтожают патогенные микроорганизмы). Пенициллин малотоксичен для млекопитающих, так как у них отсутствует основная мишень для воздействия – пептидогликан (муреин ®). Однако возможна индивидуальная непереносимость к препарату и развитие аллергической реакции.

Из-за частого применения пенициллинов микроорганизмы выработали системы защиты от антибактериального воздействия бета-лактамов:

  • активный синтез бета-лактамаз;
  • перестройка белков пептидогликана.

Поэтому учёные модифицировали химическую формулу вещества и в XXI веке большое распространение приобрели полусинтетические пенициллины, губительные для большого числа грамположительных и грамотрицательных бактерий.

История открытия

Британский бактериолог А. Флеминг, как он сам позже признался, не планировал совершать революцию в медицине открытием антибиотиков. Однако ему это удалось, причём совершенно случайно. Но, как известно – удача одаривает только подготовленные умы, которым он и являлся. К 1928 году он уже успел зарекомендовать себя как грамотный микробиолог и проводил всестороннее изучение бактерий семейства Staphylococcaceae. Однако пристрастием к идеальному порядку А. Флеминг не отличался.

Подготовив к убою чашки Петри с культурами стафилококков, он оставил их на своём столе в лаборатории и уехал на месяц в отпуск. По возвращению он обратил внимание, что в месте, где на чашку с потолка упала плесень, отсутствовал бактериальный рост. 28 сентября 1928 года было сделано величайшее открытие в истории медицины. Получить вещество в чистом виде удалось к 1940 году, совместными усилиями Флеминга, Флори и Чейна, за что они были удостоены Нобелевской премии.

Показания к применению пенициллинов

Пенициллины назначаются при широком спектре заболеваний:

  • гнойный ;
  • синуситы;
  • отиты;
  • лечение хеликобактерной инфекции (амоксициллин);
  • сепсис;
  • менингококковые инфекции;
  • остеомиелит;
  • воспалительные процессы ;
  • дифтерия;
  • инфекции, передающиеся половым путем (сифилис, гонорея);
  • пиодермии;
  • инфекции органов малого таза (простатиты, аднекситы и т.д.);
  • и ( , скарлатина и т.д.);
  • злокачественный карбункул.

Противопоказания и побочные симптомы пенициллинов

Основным противопоказанием к применению пенициллинов является индивидуальная непереносимость и аллергии ко всем препаратам лактамным антимикробным лекарствам. Запрещается вводить в просвет между оболочкой спинного мозга и надкостницы людям с диагнозом – эпилепсия.

К побочным симптомам относят расстройства ЖКТ ( ) и ЦНС (слабость, сонливость, раздражительность), и полости рта, а также , возможны отёки.

Отмечено, что при соблюдении дозировки и продолжительности лечения побочные эффекты проявляются редко.

Важные особенности пенициллинов

Больным с патологиями функционирования почек и печени назначается исключительно, если польза от антибиотика значительно превышает возможные риски. При отсутствии облегчения симптомов заболевания спустя 48-72 часа после начала лечения рекомендуется назначение препаратов альтернативной группы.

Запрещается самолечение лактамными лекарствами из-за быстрых темпов развития устойчивости патогенных штаммов к ним.

Цефалоспорины

Наиболее обширная группа бета-лактамов, лидирующая по количеству медикаментозных средств. К настоящему моменту разработано 5 поколений лекарств. Каждое последующее поколение отличается большей резистентностью к лактамазам и расширенным списком противомикробной активности.

Особый интерес представляет 5 поколение, но многие из открытых препаратов ещё находятся на стадии предклинических и клинических испытаний. Предполагается, что они будут активны в отношении штамма золотистого стафилококка, устойчивого ко всем известным противомикробным средствам.

История открытия цефалоспоринов

Они открыты в 1948 году итальянским учёным Д. Бротзу, занимавшимся исследованием тифа. Он отметил, что в присутствии C. acremonium не наблюдается рост культуры S. typhi на чашке Петри. Позже вещество было получено в чистом виде и активно применяется во многих областях медицины и совершенствуется микробиологами и фармакологическими компаниями.

Показания к применению цефалоспоринов

Препараты назначаются врачом после выделения, идентификации возбудителя воспаления и определения чувствительности к антибиотикам. Недопустимо самолечение, это может привести к тяжёлым последствиям для организма человека и распространению неконтролируемой устойчивости бактерий. Цефалоспорины эффективны против стафилококковых и стрептококковых инфекциях дермы, костной ткани и суставов, в том числе MRSA (5 поколение цефалоспоринов), инфекциях респираторного тракта, менингитах, синуситах, тонзиллитах, отитах, интраабдоминальных инфекциях, инфекциях половых органов, ЗППП (заболеваниях, передающихся половым путем) и т.д.

Противопоказания и побочные симптомы цефалоспоринов

Противопоказания аналогичны пенициллинам. При этом частота проявления побочных эффектов ниже, чем в предыдущей группе. Отметки в анамнезе пациента об аллергии к пенициллинам служат предостережением для применения.

Перед применением инъекционных антибиотиков выполняют тест на аллергические реакции (аллергопробы).

Важные особенности

Ни одно из лекарств цефалоспоринов не совместимо с алкоголем. Нарушение этого правила может привести к острой и тяжелой интоксикации, поражению печени и нервной системы.

Не установлено корреляции между приёмом пищи и принятием препарата. Принимая лактамные антибиотики внутрь, рекомендуется запивать его большим количеством воды. Несмотря на то, что специальных исследований, направленных на установление безопасности цефалоспоринов для беременных не проводилось, тем не менее, его с успехом применяют для женщин в положении. При этом не отмечено каких-либо осложнений течения беременности и патологий у плода. Однако без назначения врача применять антибиотики запрещено.

Кормление грудью во время лечения прекращают, так как вещество проникает в грудное молоко.

Карбапенемы

Лидеры по степени невосприимчивости к действию лактамаз. Данный факт объясняет огромный список патогенных бактерий, для которых карбапенемы губительны. Исключение составляет фермент NDM-1, выявленный у культур E. coli и K. pneumoniae. Проявляют бактерицидность к представителям семейств Enterohacteriaceae и Staphylococcaceae, синегнойной палочке и многим анаэробным бактериям.

Токсичность не превышает допустимые нормы, а их фармокинетические параметры довольно высокие. Эффективность антимикробного вещества была установлена и подтверждена в ходе независимых исследований при терапии воспалений разной степени тяжести и места локализации. Механизм их действия, как у всех лактамов, направлен на ингибирование биосинтеза клеточной стенки бактерий.

История открытия карбапенемов

Спустя 40 лет с начала «эры пенициллина» учёные забили тревогу о растущих уровнях резистентности и активно начали работу по поиску новых антимикробных средств, одним из результатов которой стало открытие группы карбапенемов. Сначала открыли имипенем, который отвечал всем требованиям, предъявляемым к бактерицидным веществам. С момента его открытия в 1985 году уже более 26 млн пациентов им излечись. Карбапенемы не утратили своего значения и в настоящее время и нет такой области медицины, где они не применялись бы.

Показания

Средство показано для госпитализированных больных с инфекциями различных систем органов, при:

  • больничной пневмонии;
  • сепсисе;
  • менингитах;
  • лихорадке;
  • воспалениях оболочки сердца и мягких тканей;
  • инфекциях абдоминальной области;
  • остеомиелите.

Противопоказания и побочные симптомы карбапенемов

Безопасность вещества подтверждена многочисленными исследованиями. Частота проявления негативных симптомов (тошнота, рвота, сыпь, судорожные припадки, сонливость, боли в височной области, расстройство стула) менее 1,8 % от общего числа больных. Отрицательные явления купируются сразу же при отмене приёма лекарства. Известны единичные сообщения о снижении концентрации нейтрофилов в крови на фоне лечения карбапенемами.

Важные особенности карбапенемов

Антибиотики бета-лактамного ряда успешно применяются для эффективной терапии уже более 70 лет, тем не менее, необходимо строго соблюдать назначения врача и инструкцию по применению. Карбапенемы не совместимы с алкоголем и стоит ограничить его приём на 2 недели после медикаментозного лечения. Выявлена полная несовместимость с ганцикловиром. При сочетанном применении этих средств наблюдаются судороги.

Беременным и женщинам на грудном вскармливании назначается при патологиях, угрожающих жизни.

Монобактамы

Отличительная черта – отсутствие ароматического кольца, связанного с бета-лактамным кольцом. Подобное строение гарантирует им полную невосприимчивость к лактамазам. Обладают бактерицидной активностью по большей степени в отношении грамнегативных аэробных бактерий. Данный факт объясняется особенностями строения их клеточной стенки, которая заключается в более тонком слое пептидогликана при сопоставлении с грампозитивными микробами.

Важная особенность монобактамов – не вызывают перекрестной аллергии к другим лактамным антибиотикам. Поэтому их применение допустимо при индивидуальной непереносимости к другим лактамным антибиотикам.

Единственное лекарство, которое введено в медицинскую практику – азтреонам с ограниченным спектром активности. Азтреонам считается «молодым» антибиотиком, он был одобрен в 1986 году Министерством по санитарному надзору за качеством пищевых продуктов и медикаментов.

Показания монобактамов

Характеризуется узким спектром действия и относится к группе антибиотических препаратов, применяемых при воспалительных процессах, вызванными грамнегативными патогенными бактериями:

  • сепсис;
  • госпитальная и внебольничная пневмония;
  • инфекции мочевыводящих протоков, органов брюшной полости, дермы и мягких тканей.

С целью достижения максимального результата рекомендована сочетанная терапия с лекарствами, уничтожающими грампозитивные микробные клетки. Исключительно парентеральное введение.

Противопоказания и побочные симптомы монобактамов

Ограничением к назначению азтреонама является только индивидуальная непереносимость и аллергия.

Возможны нежелательные реакции со стороны организма, проявляющиеся в виде желтухи, дискомфорта абдоминальной области, спутанности сознания, нарушения сна, сыпи и тошноты. Как правило, все они исчезают при прекращении терапии. Любые, даже самые незначительные негативные реакции со стороны организма – это повод незамедлительно обратиться к врачу и скорректировать лечение.

Важные особенности монобактамов

Нежелательно назначение беременным, потому что безопасность монобактамов не исследовалась для данной категории людей. Известно, что вещество может диффундировать сквозь плаценту в кровоток плода. Допустима терапия женщинами на ГВ, уровень бактерицидного вещества в грудном молоке не превышает 1%.

Детям назначают в случаях, если другие лекарства не проявили своих терапевтических свойств. Побочные симптомы аналогичны таковым у взрослых. Обязательно нужно проводить коррекцию дозы со снижением активного компонента. Коррекция также необходима пожилым пациентам, так как работа почек у них уже замедлена и вещество в значительно меньшей степени выводится из организма.

С осторожностью и исключительно в случаях угрожающих жизни больного назначаются при патологии печени и почек.

На нашем сайте Вы можете познакомиться с большинством групп антибиотиков, полными списками входящих в них препаратов, классификациями, историей и прочей важной информацией. Для этого создан раздел « » в верхнем меню сайта.

β-лактамные антибиотики (пенициллины, цефалоспорины, монобактамы и карбапенемы ) эффективны в отношении практически всех важнейших возбудителей инфекционных заболеваний, причем эффект наступает в первые сутки. Поэтому они чаще используются при тяжелых внутрибольничных инфекциях и инфекциях с еще неизвестными возбудителями, сепсисе.

Таблица 2.
Классификация пенициллинов

Природные
Полусинтетические
Бензилпенициллин (пенициллин), натриевая и калиевая соли

Бензилпенициллин прокаин (новокаиновая соль пенициллина)

Бензатин бензилпенициллин (бициллин-1, -3, -5, ретарпен)

Феноксиметилпеницил-
лин

Изоксазолилпеницил-
лины

Оксациллин
Ингибиторозащи-
щенные пенициллины

Амоксициллин/клавуланат (аугментин, амоксиклав, клавоцин)
Ампициллин/сульбактам (уназин, амписульбин)
Тикарциллин/клавуланат (тиментин)
Пиперациллин/тазобактам (тазоцин, зосин)
Аминопенициллины
Ампициллин
Амоксициллин (флемоксин солютаб, амоксил, раноксил)
Карбоксипенициллины
Карбенициллин (геоциллин)
Тикарциллин (тикар)
Уреидопенициллины
Азлоциллин
Пиперациллин (пипрацил)

Таблица 3.
Классификация цефалоспоринов

I поколение II поколение III поколение IV поколение
Парентеральные
Цефазолин (кефзол, рефлин, цефазолин-КМП, тотацеф) Цефуроксим (кимацеф, кетоцеф, аксетин, зинацеф) Цефотаксим (клафоран, цефотаксим-КМП, тарцефоксим, цефабол)
Цефепим (максипим)
Цефамандол (мандол) Цефтриаксон (лендацин, офрамакс, роцефин, цефтриабол)
Цефокситин (бонцетин, мефоксин) Цефтазидим (мироцет, тазицеф)
Цефпирон (кейтен)
Цефоперазон (медоцеф, цефоперазон-КМП, цефобид)
Цефоперазон/сульбактам
Пероральные
Цефалексин (орацеф, цефабене, цефалекс) Цефуроксим аксетил (кимацеф, аксетин, зинацеф, кетоцеф) Цефиксим (супракс)
Цефадроксил (биодроксил, дурацеф)
Цефаклор (альфацеф, тарацеф, цеклор)
Цефподоксима проксетил (вантин)
Цефрадин (сефрил)

Бактерицидность β-лактамов зависит от времени действия препарата, и, как было сказано выше, следует стремиться к поддержанию постоянных концентраций, превышающих минимальную подавляющую концентрацию в 2-5 раз . Для этого оптимальны дозирующие инфузионные устройства. При прерывистом введении (внутрь, внутримышечно или внутривенно) следует четко соблюдать необходимую кратность назначения , в противном случае следует ожидать снижения эффективности терапии. Именно с позиций фармакодинамики β-лактамов во многих клинических ситуациях не стоит применять их максимальные дозы . Так, появились доказательные исследования, демонстрирующие одинаковую клиническую эффективность средних (1,5-2 г/сут) и максимальных (3-4 г/сут) доз имипенема при тяжелых инфекциях. Исключение должно быть сделано при терапии антисинегнойными пенициллинами (карбенициллин, пиперацин, азлоциллин ) из-за более высоких минимальных подавляющих концентраций для P. aeruginosa .

Применение β-лактамов при беременности разрешено в II-III триместрах .

_________________
Вы читаете тему: Антибиотикотерапия в акушерстве и гинекологии (Шостак В. А., Малевич Ю. К., Колгушкина Т. Н., Корсак Е. Н. 5-я клиническая больница г. Минска, РНПЦ «Мать и дитя». "Медицинская панорама" № 4, апрель 2006)

  1. Классификация антибиотиков, применяемых в акушерстве и гинекологии .
  2. Бета-лактамные антибиотики. Классификация пенициллинов и цефалоспоринов.