История развития антибиотиков. История открытия антибиотиков. К прочим побочным последствиям относят

Московская Медицинская Академия им. И.М. Сеченова

Кафедра Общей хирургии на базе ГКБ№23 (2 гнойное отделение)

«История открытия антибиотиков.»

Исполнитель:

Студентка III-ого курса

Лечебного факультета

4ой группы

Лабутина Юлия Олеговна

Преподаватель: Вавилова Г.С.

Москва 2004

Противомикробные препараты.

Сдерживание или прекращение роста микробов достигается различными методами (комплексами мер): антисептикой, стерилизацией, дезинфекцией, химиотерапией . Соответственно, химические вещества, которые применяются для осуществления этих мер, называются стерелизующими агентами, дезинфектантами, антисептиками и противомикробными химиопрепаратами . Противомикробные химические средства подразделяют на две группы: не обладающие избирательностью действия – губительны в отношении большинства микробов, но при этом токсичны для клеток макроорганизма (антисептики и дезинфектанты), и обладающие избирательностью действия (химиотерапевтические средства).

Химиотерапевтические противомикробные лекарственные средства – это химические препараты, которые применяют при инфекционных заболеваниях для этиотропного лечения (т.е. направленного на микроб как на причину болезни), а также для профилактики инфекций.

К антимикробным химиотерапевтическим средствам относят следующие группы препаратов:

    Антибиотики (действуют только на клеточные формы микроорганизмов; также известны противоопухолевые антибиотики)

    Синтетические химиопрепараты разного химического строения (среди них есть препараты, которые действуют или на клеточные микроорганизмы, или на неклеточные формы микробов)

Антибиотики – это химиотерапевтические препараты из химических соединений биологического происхождения (природные), а также их полусинтетические производные и синтетические аналоги, которые в низких концентрациях оказывают избирательное повреждающее или губительное действие на микроорганизмы и опухоли. Антибиотики, применяемые в медицинской практике, продуцируются актиномицетами (лучистыми грибами), плесневыми грибами, а также некоторыми бактериями. Как уже было сказано, противомикробное действие антибиотиков имеет избирательный характер: на одни организмы они действуют сильнее, на другие – слабее или вообще не действуют. Избирательно и воздействие антибиотиков и на животные клетки, вследствие чего они различаются по степени токсичности и влиянию на кровь и другие биологические жидкости. Некоторые антибиотики представляют значительный интерес для химиотерапии и могут применяться для лечения различных микробных инфекций у человека и животных.

Проблема лечения инфекционных заболеваний имеет такую же долгую историю, как и изучение самих болезней. С точки зрения современного человека, первые попытки в этом направлении были наивны и примитивны, хотя некоторые из них и не были лишены здравого смысла (например, прижигание ран или изоляция больных). Тот факт, что одни микробы могут каким-то образом задерживать рост других, был хорошо известен издавна. В народной медицине для обработки ран и лечения туберкулеза издавна применяли экстракты лишайников. Позднее в состав мазей для обработки поверхностных ран стали включать экстракты бактерий Pseudomonas aeruginosa . Опыт, накопленный тяжёлым путём проб и ошибок, вооружил знахарей знаниями целебных свойств вытяжек из трав и тканей животных, а также различных минералов. Изготовление настоев и отваров из растительного сырья было широко распространено в античном мире, их пропагандировал Клавдий Галён. В средневековье репутацию препаратов из лекарственного сырья значительно уменьшили всевозможные зелья, «изыскания» алхимиков и, конечно, убеждённость в неизлечимости «кар Господних». В этой связи следует упомянуть верование в целительное действие рук «помазанников Божьих», через прикосновение царствующей особы проходили толпы больных. Например, Людовик XIV возложил руки на 10 000 больных, а Карл II Стюарт - на 90 000. По мере понимания врачами правильности концепции лечение болезней принимало всё более «этиотропный» характер. Основателем химиотерапии с полным правом должен считаться Парацельс, названный А. И. Герценым «первым профессором химии от сотворения мира». Парацельс не без успеха применял для лечения инфекций человека и животных различные неорганические вещества (например, соли ртути и мышьяка). После открытия Нового Света стало известно о свойствах коры дерева «кина - кина», использовавшейся индейцами для лечения малярии. Популярности этого средства способствовало чудесное излечение жены вице-короля Америки, графини Цинхон, и в Европу кора прибыла уже под названием «порошок графини», а позднее её имя присвоили и самому хинному дереву. Такую же славу снискало и другое заокеанское средство - ипекакуана, применявшееся индейцами для лечения «кровавых» поносов.

Еще в 1871-1872 гг. российские ученые В.А. Манассеин и А.Г. Полотебнов наблюдали эффект при лечении зараженных ран прикладыванием плесени, хотя почему они помогают, никто не знал, и феномен антибиоза был неизвестен.

Однако некоторые из первых ученых-микробиологов сумели обнаружить и описать антибиоз (угнетение одними организмами роста других). Дело в том, что антагонистические отношения между разными микроорганизмами проявляются при их росте в смешанной культуре. До разработки методов чистого культивирования разные бактерии и плесени выращивались вместе, т.е. в оптимальных для проявления антибиоза условиях. Луи Пастер еще в 1877 при изучении сибирской язвы заметил, что заражение животного смесью возбудителя и других бактерий часто мешает развитию заболевания, что позволило ему предположить, что конкуренция между микробами может блокировать патогенные свойства возбудителя. Он описал антибиоз между бактериями почвы и патогенными бактериями – возбудителями сибирской язвы и даже предположил, что антибиоз может стать основой методов лечения. Наблюдения Л. Пастера (1887) подтвердили, что антагонизм в мире микробов – это распространенное явление, однако природа его была неясна.

Первые антибиотики были выделены еще до того, как стала известной их способность угнетать рост микроорганизмов. Так, в 1860 был получен в кристаллической форме синий пигмент пиоцианин , вырабатываемый небольшими подвижными палочковидными бактериями рода Pseudomonas , но его антибиотические свойства были обнаружены лишь через много лет. В 1899г. – Р. Эммерих и О. Лоу сообщили об антибиотическом соединении, образуемом бактериями Pseudomonas pyocyanea , и назвали его пиоцианазой ; препарат использовался как местный антисептик. В 1896 Б. Гозио из жидкости, содержащей культуру грибка из рода Penicillium (Penicillium brevicompactum ) , удалось кристаллизовать еще одно химическое вещество, получившее название микофеноловая кислота , подавляющая рост бактерий сибирской язвы.

Но ни одно лекарство не спасло столько жизней, сколько пенициллин . С открытием этого вещества началась новая эра в лечении инфекционных болезней – эра антибиотиков. Открытие лекарств антибиотиков, к которым мы уже так привыкли в наше время, сильнейшим образом изменило человеческое общество. Отступили заболевания еще не давно считавшиеся безнадежными. Еще удивительнее история самого открытия.

Выдающийся биолог Александр Флеминг родился 6 августа 1881 г. в Шотландии, в графстве Эршир. Мальчик рос на ферме своих родителей, со всех сторон окружённой вересковыми пустошами. Природа давала юному Александру гораздо больше, чем школа. В возрасте 13 лет юный Александр переехал в столицу Великобритании - Лондон. В то время как его сверстники учились, Флеминг 5 лет проработал в местной пароходной компании, зарабатывая себе на жизнь.

В 1901 г. Флеминг поступил в медицинское училище Святой Марии, сдав сложные экзамены. Ему не помешало то, что прошло уже 5 лет, как он перестал учиться. Более того, он был признан лучшим из поступающих во всём Соединённом королевстве! Флеминг никогда не делал бесполезной работы. Он умел извлечь из учебника только необходимое, пренебрегая остальным.

После завершения учёбы Флеминга пригласили работать в бактериологической лаборатории больницы Св. Марии. Бактериология в то время находилась на переднем крае науки.

Рабочий день Флеминга в первые годы его научной деятельности был едва ли не круглосуточным. По его приходу на работу проверяли часы. И даже в два часа ночи задержавшиеся на работе сотрудники могли зайти к нему побеседовать и выпить кружку пива.

В августе 1914 г. разразилась Первая мировая война. Флеминг получил звание офицера медицинской службы и был послан создавать бактериологическую лабораторию во Францию, в город Булонь.

Каждый день, поднимаясь на чердак госпиталя, где разместилась лаборатория, Флеминг проходил через госпитальные палаты, где лежали раненые. Ежедневно прибывали всё новые и новые их группы. Здесь, в госпитале, они сотнями умирали от инфекции. Переломы, разрывы внутренних тканей... Кусочки земли и одежды, попавшие в раны, довершали работу бомб. Лицо раненого приобретало серый цвет, дыхание затруднялось - начиналось заражение крови. Результат - неизбежная смерть.

Флеминг стал исследовать эту инфекцию. Он рассказывал:

«Мне советовали обязательно накладывать повязки с антисептиками: карболовой, борной кислотами или перекисью водорода. Я видел, что антисептики убивают не все микробы, но мне говорили, что они убивают некоторые из них, и лечение проходит успешнее, чем в том случае, когда не применяют антисептики».

Флеминг решил поставить простой опыт, чтобы проверить, насколько антисептики помогают бороться с инфекцией.

Края большинства ран были неровными, со многими изгибами и извилинами. Микробы скапливались в этих изгибах. Флеминг сделал муляж раны из стекла: раскалил пробирку и изогнул её конец наподобие извилин раны. Затем он наполнил эту пробирку сывороткой, загрязнённой навозом. Это была как бы общая схема обычного боевого ранения. На следующий день сыворотка стала мутной и издавала неприятный запах. В ней размножилось огромное количество микробов. Затем Флеминг вылил сыворотку и наполнил пробирку раствором обычного сильного антисептика, после чего снова заполнил промытую таким образом пробирку чистой, незаражённой сывороткой. И что же? Сколько бы раз Флеминг ни промывал пробирку антисептиками, чистая сыворотка через день становилась такой же зловонной и мутной.

В изгибах пробирки микробы сохранялись, несмотря ни на что. Из этого опыта Флеминг сделал вывод, что обычные антисептики нисколько не помогают при фронтовых ранениях. Его совет военным врачам был следующим: удалять все омертвевшие ткани, где легко могут развиваться микробы, и помогать организму самому бороться с инфекцией посредством выделения белых кровяных телец, из которых образуется гной. Белые кровяные клетки (свежий гной) уничтожают колонии микробов.

Флеминг писал о своих чувствах в те дни:

«Глядя на заражённые раны, на людей, которые мучились и умирали и которым мы не в силах были помочь, я сгорал от желания найти, наконец, какое-нибудь средство, которое способно было бы убить эти микробы, нечто вроде сальварсана...»

В ноябре 1918 г. закончилась война, Флеминг вернулся в Англию, в свою лабораторию.

Флеминга часто высмеивали за беспорядок в лаборатории. Но этот беспорядок, как выяснилось, был плодотворным. Один из его сотрудников рассказывал:

«Флеминг сохранял выделенные им культуры микроорганизмов по две-три недели и, прежде чем уничтожить, внимательно их изучал, чтобы проверить, не произошло ли случайно какого-нибудь неожиданного и интересного явления. Дальнейшая история показала, что, если бы он был таким же аккуратным, как я, он скорее всего не открыл бы ничего нового».

Как-то раз в 1922 г., страдая насморком, Флеминг посеял в лабораторной посуде - чашке Петри - собственную носовую слизь. В той части чашки Петри, куда попала слизь, колонии бактерий погибли. Флеминг стал исследовать это явление и выяснил, что такое же действие оказывают слёзы, обрезки ногтя, слюна, кусочки живой ткани. Когда капля слезы попадала в пробирку с раствором, мутным от множества бактерий, он за несколько секунд становился совершенно прозрачным!

Сотрудникам Флеминга пришлось перенести немало «мучений», добывая слёзы для опытов. Они срезали цедру с лимона, выжимали её себе в глаза и собирали выступавшие слёзы. В больничной газете был даже помещён юмористический рисунок, на котором дети за небольшую плату дают лаборанту себя высечь, а другой лаборант собирает у них слёзы в сосуд с надписью « антисептики ».

Флеминг назвал открытое им вещество «лизоцим » - от греческих слов «растворение» и «закваска» (имелось в виду растворение бактерий). К сожалению, лизоцим убивал далеко не все вредные, болезнетворные бактерии.

Совершить самое важное открытие в его жизни Флемингу также помогли случай и творческий беспорядок в лаборатории. Как-то в 1928 г. Флеминга навестил его коллега Прайс. Флеминг перебирал чашки Петри со старыми культурами. Во многие из них залетела плесень, что бывает довольно часто. Флеминг говорил Прайсу: «Как только вы открываете чашку с культурой, вас ждут неприятности: обязательно что-нибудь попадёт из воздуха...» Вдруг он замолчал и сказал, как всегда, спокойно: «Странно...»

В чашке Петри, которую он держал в руках, тоже выросла плесень, но здесь колонии бактерий вокруг неё погибли, растворились.

С этого момента Флеминг стал исследовать смертоносную для бактерий плесень, а чашку Петри, в которую она залетела, он сохранил до самой смерти.

Александр Флеминг наблюдая антагонизм Penicillium notatum и стафилококка в смешанной культуре открыл штамм плесневого гриба пеницилла (Penicillium notatum ), выделяющего химическое вещество, которое задерживает рост стафилококка. Вещество было названо «пенициллин». Правда, впереди было самое важное испытание: не окажется ли это вещество таким же вредным для человека и животных, как для бактерий? Если бы это было так, пенициллин ничем бы не отличался от множества известных и до того антисептиков. Его нельзя было бы вводить в кровь. К величайшей радости Флеминга и его сотрудников, пенициллиновый бульон, смертоносный для бактерий, был не более опасен для подопытных кроликов и мышей, чем обычный бульон.

Но чтобы применять пенициллин для лечения, его нужно было получить в чистом виде, выделить его из бульона. Бульон, содержащий чужеродные для организма белки, нельзя было вводить в кровь человека.

В феврале 1929 г. Флеминг сделал сообщение о своём открытии в медицинском обществе. Ему не было задано ни одного вопроса! Учёные встретили открытие абсолютно равнодушно, без малейшего интереса. Ещё в 1952 г. Флеминг вспоминал об этой «ужасной минуте».

Так прошло одиннадцать лет! Те немногие химики, которые заинтересовались пенициллином, так и не смогли выделить его в чистом виде. Флеминг, впрочем, не терял надежды и верил, что у открытого им вещества большое будущее.

В 1940 г. неожиданно произошло одно из самых счастливых событий в жизни Флеминга. Из медицинского журнала он узнал, что оксфордским учёным Флори и Чейну удалось получить стабильный препарат пенициллин в очищенном виде. Флеминг ничем не выдал своей радости и только позже заметил, что о работе с такими химиками он и мечтал уже 11 лет.

История открытия пенициллина поистине удивительна. Кто бы мог подумать, что талантливый еврейский мальчик-музыкант, отец которого был выходцем из России, а мать немкой, в конечном итоге бросит стезю профессионального пианиста и найдет совершенно иной путь к всемирной славе. Речь идет об Эрнесте Каине, которого мы знаем под его англицированным именем Чейн. Трудно сказать, правы ли те, кто видит судьбу человека в его имени, но в данном случае имя Эрнест, которое переводится как «искренний, правдивый», полностью соответствовало характеру и моральным достоинствам его носителя.

Отец Эрнеста был талантливым химиком, организовавшим в Берлине собственное производство. И хотя сын окончил гимназию и университет, родители видели его за роялем. Он стал талантливым концертирующим пианистом, а также музыкальным критиком берлинской газеты, однако любовь к науке пересилила. В промежутках между концертами и репетициями молодой человек пропадал в лаборатории химической патологии известнейшей берлинской клиники «Шарите» - «Милосердие».

В апреле 1933 г. Э. Чейн был вынужден покинуть Германию, чтобы больше никогда не возвращаться на родину. Его друг, знаменитый английский биолог Дж. Холдейн, устроил его в Кембридж, где в ходе своей работы над диссертацией Э. Чейн доказал, что нейротоксин змеиного яда является пищеварительным ферментом. Работа сделала ему имя, поэтому в 1935 г. он был приглашен профессором патологии Г. Флори в Оксфорд, чтобы развернуть работу по лизоциму - антибактериальному ферменту. Э. Чейн предлагает Г. Флори сконцентрироваться на более обещающем пенициллине, открытом А. Флемингом. Энтузиазм Э. Чейна заразил Г. Флори, который не мог дождаться проверки действия антибиотика на микробах. Именно Флори достал первые 35 фунтов правительственных фондов для финансирования работы, поддержанной Э. Мелланби из Совета медицинских исследований.

25 мая 1940 г. под грохот бомб, падающих на улицы Лондона, был завершен решающий опыт на 50 белых мышах. Каждой из них ввели смертельную дозу микроба стрептококка. Половина мышей не получала никакого лечения, остальным каждые три часа в течение двух суток вводили пенициллин. Через 16 ч 25 подопытных животных погибли, а 24 мыши, получавшие лечение, выжили. Погибла только одна. Затем наступил биохимический триумф Э. Чейна, показавшего, что пенициллин имеет структуру беталактама. Оставалось только наладить производство нового чудо - лекарства.

Его чудодейственные свойства были доказаны в том же Оксфорде, в одну из клиник которого 15 октября того же года поступил местный полицейский, жаловавшийся на непроходящую «заеду» в углу рта (ранка была инфицирована золотистым стафилококком и нагноилась). К середине января инфекция захватила лицо мужчины, шею и перекинулась на руку и легкое. И тогда врачи отважились вколоть бедняге неслыханный до сего момента пенициллин. В течение месяца больной чувствовал себя неплохо: но драгоценные кристаллы, полученные из Оксфорда, кончились, и 15 марта 1941 г. полицейский скончался. Но не смотря на неудачный опят Г. Флори стал собираться в Америку в поисках коммерческой помощи в налаживании массового производства продукта. Известная фармацевтическая компания «Мерк» из города Рауэй штат Нью-Джерси, спонсировала работы С. Ваксмана из университета Руттерса, который, начиная с 1939 г, вел работы по изучению «антибиозиса» стрептомицетов. Его первая работа была опубликована 24 августа 1940 г. в авторитетнейшем «Ланцете», выходящем в Лондоне. Поэтому приезд Г. Флори с готовыми наработками был подобен манне небесной. «Американцы украли пенициллин у британцев!» Это верно лишь отчасти, поскольку Англия вследствие военного истощения ресурсов, не смогла бы быстро наладить промышленное производство антибиотиков, с помощью которых лечили и британских солдат. Недаром же на вручении Нобелевской премии по медицине за 1945 г. говорили, что «Флеминг сделал для победы над фашизмом больше, чем 25 дивизий».

Первое применение пенициллина в США произошло в феврале 1942 г. Внезапно заболела Анна Миллер, молодая 33-летняя жена администратора Йельского университета, мать троих детей. Будучи медсестрой по образованию, она сама лечила четырехлетнего сына от стрептококковой ангины. Мальчик выздоровел, но вот у его мамы внезапно случился выкидыш, осложнившийся лихорадкой с высокой температурой. Женщина была доставлена в главный госпиталь Нью-Хейвена в том же штате Нью-Джерси с диагнозом стрептококковый сепсис: в миллилитре ее крови бактериологи насчитали 25 колоний микроба! Но что могли сделать в те дни врачи против грозного сепсиса? Если бы не чудо в лице Дж. Фултона, друга Флори, лежавшего в другой палате, который подхватил какую-то легочную инфекцию, обследуя солдат в Калифорнии. 12 марта лечащий врач рассказал Дж.Фултону о приближающейся кончине Анны, у которой температура 41° держалась уже в течение 11 дней! «А нельзя ли получить лекарство у Флори», - высказал он робкую надежду. Дж. Фултон считал, что он вправе обратиться к другу. В конце концов именно он помогал ему в 1939 г. получить грант фонда Рокфеллера на 5 тысяч долларов. (Деньги отпускались на исследование бактерицидного действия пенициллина).

Дж. Фултон позвонил в «Мерк», разрешение было получено, и первые дозы пенициллина были посланы в госпиталь Нью-Хейвена. Бесценный груз сопровождала полиция. В 3 часа пополудни Анне сделали первый укол. К 9 часам следующего утра ее температура стала нормальной! В ноябре 1942 г. «Мерк» провела уже массовые испытания пенициллина на людях, когда получателями антибиотика стали полтысячи людей, пострадавших на пожаре в ночном клубе Бостона.

A в мае 1942 г. Анна Миллер, потерявшая в весе 16 кг, но счастливая и здоровая, выписалась из больницы. В августе свою «крестницу» посетил А. Флеминг. В 1990 г. ее, 82-летнюю, чествовали в Смитсонианском музее естественных наук в Вашингтоне.

В 1942 г. Флемингу также пришлось ещё раз проверить действие пенициллина на своём близком друге, заболевшем воспалением мозга. В течение месяца Флемингу удалось полностью вылечить безнадёжного больного.

В 1941-1942 гг. в Америке и Англии налаживалось промышленное производство пенициллина.

Крошечная спора, случайно занесённая ветром в лабораторию Флеминга, теперь творила настоящие чудеса. Она спасала жизнь сотням и тысячам больных и раненных на фронтах людей. Она положила начало целой отрасли фармацевтической промышленности - производству антибиотиков. Позднее как-то раз, говоря об этой споре, Флеминг привёл поговорку: «Могучие дубы вырастают из малых желудей». Война придала открытию Флеминга особое значение.

Имя учёного было окружено славой, которая всё возрастала. Его, как и его лекарство, знал теперь весь мир. Действие нового лекарства превзошло самые смелые ожидания. Многим тяжелым больным он приносил полное исцеление. С этого момента началось триумфальное шествие пенициллина по всем странам мира. Его называли «чудесная плесень», «желтая магия» и т. п. Он излечивал заражение крови, воспаление легких, всевозможные нагноения и другие тяжелые недуги. Раньше от заражения крови (сепсиса) погибало 50-80 человек из каждых 100 заболевших людей. Это была одна из самых опасных болезней, перед которой медицина чаще всего оказывалась бессильной. Сейчас пенициллин спасает почти всех больных сепсисом. Смерть от заражения крови теперь уже чрезвычайное происшествие. От воспаления легких погибало много людей, особенно детей и стариков, теперь от этой болезни умирают редко. Нужно только вовремя применить пенициллин.

Английский король возвёл учёного в дворянское достоинство. А в 1945 году А. Флеминг, Х. Флори и Э. Чейн были удостоены Нобелевской премии по медицине за открытие пенициллина.

Александр Флеминг скоропостижно скончался 11 марта 1955 г. Его смерть заставила скорбеть едва ли не весь мир. В испанском городе Барселоне, который посещал Флеминг, цветочницы высыпали все цветы из корзин к мемориальной доске с его именем. В Греции, где тоже бывал учёный, объявили траур. Флеминг был погребён в лондонском соборе Св. Павла.

Хотя существуют сведения что в 1985 г. в архивах Лионского университета была найдена диссертация рано скончавшегося студента-медика (Эрнест Августин Дюшене), за сорок лет до Флеминга подробно характеризующая открытый им препарат из плесени Р. notatum , активный против многих патогенных бактерий.

В 1937 г. – М. Вельш описал первый антибиотик стрептомицетного происхождения – актиномицетин . В 1939 г. – Н.А. Красильников и А.И. Кореняко получили мицетин ;

Среди первых исследователей, занявшихся целенаправленным поиском антибиотиков, был Р.Дюбо. Проведенные им и его сотрудниками эксперименты привели к открытию антибиотиков, вырабатываемых некоторыми почвенными бактериями, их выделению в чистом виде и использованию в клинической практике. В 1939 Дюбо получил тиротрицин – комплекс антибиотиков, состоящий из грамицидина и тироцидина; это явилось стимулом для других ученых, которые обнаружили еще более важные для клиники антибиотики.

Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин ).

Так начиналась эра антибиотиков. В нашей стране большой вклад в учение об антибиотиках внесли З. В Ермольева и Г.Ф. Гаузе. Зинаида Виссарионовна Ермольева (1898 – 1974) – автор первого советского пенициллина (крустозин ), полученного из P . Crustosum

Сам термин «антибиотики » (от греч. Anti, bios – против жизни) был предложен С. Ваксманом в 1942 году для обозначения природных веществ, продуцируемых микроорганизмами и в низких концентрациях антагонистичных к росту других бактерий. З.Ваксман со своими студентами в Университете Ратджерса, США, занимался актиномицетами (такими, как Streptomyces) и в 1944 открыл стрептомицин, эффективное средство лечения туберкулеза и других заболеваний. Сильнее всего действует стрептомицин при туберкулезном поражении оболочек мозга - менингите, при туберкулезе гортани, кожи. Раннее почти все заболевшие туберкулезным менингитом погибали, а теперь с помощью стрептомицина большинство больных выздоравливают. На туберкулез легких стрептомицин действует слабее. И все-таки он до сих пор остается одним из лучших средств лечения этой болезни. Стрептомицин помогает также при коклюше, воспалении легких, заражении крови.

В последующем число антибиотиков быстро росло. После 1940 было получено множество клинически важных антибиотиков, в их числе бацитрацин, хлорамфеникол (левомицетин), хлортетрациклин, окситетрациклин, амфотерицин В, циклосерин, эритромицин, гризеофульвин, канамицин, неомицин, нистатин, полимиксин, ванкомицин, виомицин, цефалоспорины, ампициллин, карбенициллин, аминогликозиды, стрептомицин, гентамицин.

История открытия антибиотиков

Открытие антибиотиков, без преувеличения, можно назвать одним из величайших достижений медицины прошлого века. Первооткрывателем антибиотиков является английский ученый Флеминг, который в 1929 году описал бактерицидное действие колоний грибка Пенициллина на колонии бактерий, разраставшихся по соседству с грибком. Как и многие другие великие открытия в медицине, открытие антибиотиков было сделано случайно. Оказывается, ученый Флеминг не очень любил чистоту, и потому нередко пробирки на полках в его лаборатории зарастали плесенью. Однажды после недолгого отсутствия Флеминг заметил, что разросшаяся колония плесневого грибка пенициллина полностью подавила рост соседней колонии бактерий (обе колонии росли в одной пробирке). Здесь нужно отдать должное гениальности великого ученого сумевшего заметить этот замечательный факт, который послужил основой предположения того, что грибы победили бактерий при помощи специального вещества безвредного для них самих и смертоносного для бактерий. Это вещество и есть природный антибиотик - химическое оружие микромира. Действительно, выработка антибиотиков является одним из наиболее совершенных методов соперничества между микроорганизмами в природе. В чистом виде вещество, о существовании, которого догадался Флеминг, было получено во время второй мировой войны. Это вещество получило название пенициллин (от названия вида грибка, из колоний которого был получен этот антибиотик). Во время войны это чудесное лекарство спасло тысячи больных обреченных на смерть от гнойных осложнений. Но это было лишь начало эры антибиотиков. После войны исследования в этой области продолжились, и последователи Флеминга открыли множество веществ со свойствами пенициллина. Оказалось, что кроме грибков вещества и подобными свойствами вырабатываются и некоторыми бактериями, растениями, животными. Параллельные исследования в области микробиологии, биохимии и фармакологии, наконец, привели к изобретению целого ряда антибиотиков пригодных для лечения самых разнообразных инфекций вызванных бактериями. При этом оказалось, что некоторые антибиотики могут быть использованы для лечения грибковых инфекций или для разрушения злокачественных опухолей. Термин «антибиотик» происходит от греческих слов anti, что означает против и bios - жизнь, и буквально переводится, как «лекарство против жизни». Несмотря на это антибиотики спасают, и будут спасать миллионы жизней людей.

Основные группы известных на сегодняшний день антибиотиков

Бета-лактамные антибиотики.Группа бета-лактамных антибиотиков включает две большие подгруппы известнейших антибиотиков: пенициллины и цефалоспорины, имеющих схожую химическую структуру.Группа пенициллинов. Пенициллины получаются из колоний плесневого грибка Penicillium, откуда и происходит название этой группы антибиотиков. Основное действие пенициллинов, связано с их способностью угнетать образование клеточной стенки бактерий и тем самым подавлять их рост и размножение. В период активного размножения многие виды бактерий очень чувствительны по отношению к пенициллину и потому действие пенициллинов бактерицидное.

Важным и полезным свойством пенициллинов является их способность проникать внутрь клеток нашего организма. Это свойство пенициллинов позволяет лечить инфекционные болезни, возбудитель которых «прячется» внутри клеток нашего организма (например, гонорея). Антибиотики из группы пенициллина обладают повышенной избирательностью и потому практически не влияют на организм человека, принимающего лечение. К недостаткам пенициллинов можно отнести их быстрое выведение из организма и развитие резистентности бактерий по отношению к этому классу антибиотиков. Биосинтетические пенициллины получают напрямую из колоний плесневых грибков. Наиболее известными биосинтетическими пенициллинами являются бензилпенициллин и феноксиметилпенициллин. Эти антибиотики используют для лечения ангины, скарлатины, пневмонии, раневых инфекций, гонореи, сифилиса.

Полусинтетические пенициллины получаются на основе биосинтетических пенициллинов путей присоединения различных химических групп. На данный момент существует большое количество полусинтетический пенициллинов: амоксициллин, ампициллин, карбенициллин, азлоциллин. Важным преимуществом некоторых антибиотиков из группы полусинтетических пенициллинов является их активность по отношению к пенициллинустойстойчивым бактериям (бактерии, разрушающие биосинтетические пенициллины). Благодаря этому полусинтетические пенициллины обладают более широким спектром действия и потому могут использоваться в лечении самых разнообразных бактериальных инфекций. Основные побочные реакции, связанные с применением пенициллинов носят аллергический характер и иногда являются причиной отказа от использования этих препаратов.

Группа цефалоспоринов. Цефалоспорины также относятся к группе бета-лактамных антибиотиков и обладают структурой, схожей со структурой пенициллинов. По этой причине некоторые побочные эффекты их двух групп антибиотиков совпадают.

Цефалоспорины обладают высокой активностью по отношению к широкому спектру различных микробов и потому используются в лечении многих инфекционных болезней. Важным преимуществом антибиотиков из группы цефалоспоринов является их активность по отношению к микробам устойчивым к действию пенициллинов (пенициллиноустойчивые бактерий). Существует несколько поколений цефалоспоринов.

Микроорганизмы есть везде, можно сказать - всегда. На данный момент подсчитано, что возраст Земли насчитывает около 4,6 миллиарда лет. Океаны появились около 4,4 миллиарда лет назад. Затем на Земле появились первые бактериальные клетки. Чтобы представить себе, как это долго - только в последние 500 миллионов лет развивалась жизнь в форме, напоминающей нынешние формы.

Таким образом, микроорганизмы составляют многочисленную группу организмов, без которых не обошлось открытие антибиотиков - и дальнейшее совершенствование их форм не было бы возможно. Открытие и введение этих веществ естественного происхождения для лечения инфекционных заболеваний человека, положило начало новой эпохе - спасения жизни и здоровья миллионов людей по всему миру.

История исследований

В научных исследованиях можно найти информацию о том, что микроорганизмы окружающей среды - имеют антибиотические свойства. Уже в древности интуитивно считалось, что существуют в природе вещества, которые помогают в лечении многих заболеваний, в частности инфекций. Есть также доказательства, что люди, еще тогда, пытались использовать антибиотики природного происхождения для лечения различных заболеваний. Следы тетрациклина - для примера, были найдены в останках костей человека в районе Нуби (исторической земли расположенной в настоящее время на территории южного Египта и северного Судана), датируется началом нашей эры (350 - 550).

Другим примером применения антибиотиков в древние времена, является утверждение их присутствия при анализе гистологических образцов, взятых из тела бедренной кости скелета времен Римской Империи, в Ливийской пустыне в Египте. В исследуемых образцах было выявлено наличие тетрациклина. Тот факт, что эти вещества попали в кости, доказывает, что в рационе древних цивилизаций находились вещества богатые на антибиотики природного происхождения. Есть также упоминания, что более 2000 лет назад заплесневелый хлеб в Китае, Греции, Сербии, Египте использовался для лечения некоторых патологических состояний, в частности, при плохо заживающих и инфицированных ранах. Тогда действия природных антибиотиков воспринимались как влияние духов или богов, ответственных за болезни и страдания.

В России существовали подобные применения. Медики давали больным пациентам пиво, смешанное с оболочками черепов и кожей змеи, а вавилонские врачи вылечили больному глаза, используя смесь желчи лягушки и кислого молока. В XVII веке, промывали раны смесью на базе пшеничного хлеба с плесенью. Однако научные размышления над специфическими свойствами микроорганизмов начались лишь в конце XIX века.

В 1870 году в Англии Сэр Джон Скотт Бурдон-Сандерсон начал наблюдения над свойствами плесени. Год спустя, Джозеф Листер экспериментировал с влиянием того, что он назвал Penicillium glaucium на ткани человека. Последовательно, в 1875 году Джон Тинделл пояснил антибактериальное действие гриба Penicillium на страницах Royal Society. Во Франции в 1877 году Луи Пастер провел тезис о том, что бактерии могут убивать другие бактерии. 20 лет спустя, в 1897 году Эрнест Дюшен, на защите диссертации "Антагонизм между плесенью и микроорганизмами", констатировал факт наличия веществ, которые могут привести к подавлению размножения некоторых патогенных бактерий. Дальнейшие исследования плесени и микробов были прерваны в связи со смертью, вызванной туберкулезом ученого.

В 1899 году Рудольф Эммерих и Оскар Лев описали в статье результаты своей работы с микроорганизмами. Они доказали, что бактерии, которые являются источниками одной болезни, могут быть выходом и лечением для другой болезни. Они вели примитивное исследование, применяя зараженные бактериями (Bacillus pyocyaneus - в настоящее время Pseudomonas aeruginosa) бинты. Образцы из этих используемых штаммов бактерий были в состоянии устранить другие штаммы. Из этих экспериментов Эммерих и Лев создали препарат, основанный на штаммах бактерий B. pyocyaneus, который назвали pyocyanase. Это был первый антибиотик для применения в больницах. К сожалению, его эффективность была низкой. Кроме того, наличие большого количества акридизина (вещество токсичное для человека), повлияло на факт прекращения применения данного препарата.

Изобретатель антибиотиков

Важной вехой и, одновременно, началом настоящей эры антибиотиков был 1928 год. Тогда изобретатель антибиотиков Александр Флеминг - шотландский бактериолог, исследователь (1922) - открыл белок со свойствами антисептика, после возвращения из отпуска, случайно обратил внимание на странные аномалии, которые произошли на чашке с колониями Золотистого стафилококка, предназначенной для утилизации. Его внимание привлекла голубая плесень (Penicillium notatum) и связанное с этим интересное наблюдение, что фрагмент на питательной среде колоний бактерий, рос в пространстве, что окружает мицелий, подвергаясь дезинтеграции. Тогда он начал разведение плесени, одновременно начал проводить исследования для того, чтобы использовать плесень в борьбе с патогенами. Исследования продолжались достаточно долго. Спустя 10 лет уже в 1939 году Говард Флори, Эрнст Чейн и Норман Хитл внедрили в производство пенициллин.

Сначала пенициллин производили на нескольких чашках, но со временем они внедрили масштабную промышленность данного вещества. Да, именно антибиотик под названием пенициллин вошел в клиническую практику в 1940 году. Пенициллин начали использовать во время боевых действий в Северной Африке, в 1943 году. Доступен он был в форме кальциевой соли (CaPn) в виде порошка, который представлял собой смесь CaPn и сульфонамиды. Применяли его для засыпки ран, в виде мазей, а также в чистом виде, предназначенном для приготовления растворов для промывания полостей тела и ран, а также в виде таблеток натриевой соли (NaPn), которые после преобразования в волокнистую солевую массу предназначались для инъекций. Вначале на фронт попадали ограниченные ресурсы данного антибиотика, кроме того, детально документировалось каждое его использование. Применяли его, в частности, для лечения газовой гангрены, тяжелых ран грудной клетки с повреждением внутренних органов, ран головы и сложных, открытых ран, при повреждениях суставов. Его использовали также для лечения тяжелых форм воспаления легких, менингита и септицемии - после предварительной проверки на чувствительность бактерий которые вызвали эти инфекции, к пенициллину. В более поздний период, когда на фронт попадало больше препарата, его использовали также для лечения гонореи.

Развитие и проведение дальнейших анализов

Еще один ученый, который навсегда вошел в историю как первооткрыватель антибиотиков, полученных из микроорганизмов - Сельман Ваксман. Это он первым употребил название "антибиотик" (anti - против и biotikos - жизненный) - химическое вещество, вырабатываемое бактериями, обладает способностью убивать или задерживать рост других микроорганизмов. Ваксман, еще, будучи студентом, систематически брал пробы грунта с территории своего учебного заведения и занимался наблюдением роста различных микроорганизмов. Во время своих долго продолжающихся исследований отметил возникновение колоний микробов, количество которых зависит от типа почвы, рн, глубины добычи и назначения грунта. Эти открытия повлияли на тот факт, что этот человек на постоянной основе занялся разведением грамм-положительных бактерий. Следствием долгих исследований Ваксмана, в дальнейшем стало открытие стрептомицина, его учеником - Альбертом Шатцом.

Он отметил, что Streptomyces griseus (S. griseus) производит связь активности в отношении грамотрицательных бактерий и микобактерий туберкулеза. Стрептомицин был самым важным открытием с момента открытия пенициллина. Благодаря этому началась эффективная борьба с туберкулезом. Открытия первых антибиотиков дало толчок для проведения дальнейших анализов и изготовления многих новых веществ. В связи с этим, период между 1950 и 1970 годом стал поистине «золотой эрой» открытий новых классов антибиотиков. Из числа многочисленных препаратов, в которых предшественниками были вещества, вырабатываемые микроорганизмами, следует отметить, в частности, те, что относятся к классам b-лактамов, аминогликозидов или тетрациклинов.

Заключение

Как видно из приведенных выше кратких сведений, микроорганизмы дали начало великим открытиям, но с момента введения массового производства антибиотиков, их применение в медицине и в других областях, к сожалению, показало сопротивление организма на несколько классов антибиотиков. Однако фактом является то, что в настоящее время это глобальная проблема и огромная опасность современной медицины.

Несмотря на большой прогресс, который наблюдается в области генетики, микробиологии или молекулярной биологии, еще нет достаточных знаний о механизмах, ответственных за устойчивость к антибиотикам. Не определенно, какие факторы отвечают за устойчивость к антибиотикам и не известно, какие барьеры ограничивают передачу таких генов другим видам микроорганизмов.

С того момента, когда Александр Флеминг открыл антибиотик, прошло почти 100 лет. Этот период можно назвать временем большого развития фармацевтической промышленности, богатого на новые лекарственные препараты для лечения многих болезней, которые совсем недавно считались неизлечимыми. Не было бы всего этого без маленьких микроорганизмов, которые стали великими союзниками человечества.

Большинство доступных сегодня препаратов было обнаружено во время так называемой «золотой эры» антибиотиков. Еще недавно казалось, что с концом этого периода возможности поиска новых бактерий прошли уже все возможные способы. Ничего более далекого от истины - в настоящее время уже известно, что существуют еще большие залежи непроверенных микроорганизмов. Есть много "фабрик", где возможно есть потенциал альтернативных веществ в терапии различных заболеваний. До сих пор продолжаются активные поиски новых мест обитания микроорганизмов, а также новых методов, способов и возможностей их привлечения и разведения. Подсчитано, что к настоящему времени удалось выделить и охарактеризовать только 1% всех антимикробных соединений, которые вырабатываются в природе, и только 10%, естественно, производимых антибиотиков.

Александра Флеминга считают изобретателем первого из антибиотиков - пенициллина. При этом ни он сам, ни другие люди, так или иначе участвовавшие в создании антибиотиков, не претендуют на авторство, искренне считая, что открытие, спасающее жизни, не может быть источником дохода.

Мы привыкли ко многим вещам, изобретение которых когда-то потрясло мир и перевернуло быт. Мы не удивляемся стиральным машинам, компьютерам, настольным лампам. Нам даже трудно представить, как жили люди без электричества, освещая дома керосиновыми лампами или лучинами. Предметы окружают нас, и мы привыкли не замечать их ценности.

Наш сегодняшний рассказ посвящен не предметам быта. Это рассказ о средствах, к которым мы тоже привыкли и уже не ценим того, что они спасают самое ценное — жизнь. Нам кажется, что антибиотики существовали всегда, но это не так: еще во время Первой мировой войны солдаты умирали тысячами, потому что мир не знал пенициллина, и врачи не могли сделать спасительные уколы.

Воспаление легких, сепсис, дизентерия, туберкулез, тиф — все эти болезни считались либо неизлечимыми, либо почти неизлечимыми. В 30-ых годах ХХ (двадцатого!) века больные очень часто умирали от послеоперационных осложнений, главными из которых было воспаление ран и дальнейшее заражение крови. И это при том, что мысль об антибиотиках была высказана еще в XIX веке Луи Пастером (1822-1895).

Этот французский микробиолог открыл, что бактерии сибирской язвы погибают под действием некоторых других микробов. Однако его открытие не дало готового ответа или рецепта, скорее, поставило перед учеными множество новых вопросов: какие микробы «воюют», чем один побеждает другого... Конечно, чтобы выяснить это, пришлось бы проделать огромную работу. Видимо, такой пласт работы был неподъемным для ученых того времени. Однако ответ был совсем близко, с самого начала жизни на Земле...

Плесень. Такая знакомая и привычная плесень, тысячи лет живущая рядом с человеком, оказалась его защитником. Этот грибок, витающий в воздухе в виде спор, стал предметом спора между двумя русскими врачами в 1860-ых годах.

Незамеченное открытие

Алексей Полотебнов и Вячеслав Манассеин не сошлись во взглядах на природу плесени. Полотебнов считал, что от плесени пошли все микробы, то есть плесень есть прародитель микроорганизмов. Манассеин возражал ему. С целью доказать свою правоту последний начал исследование зеленой плесени (по-латыни penicillium glaucum). Спустя какое-то время врач имел счастье наблюдать интересный эффект: там, где был плесневой грибок, не было бактерий. Вывод следовал только один: каким-то образом плесень не позволяет развиваться микроорганизмам. Оппонент Манассеина Полотебнов тоже пришел к такому выводу: по его наблюдениям, жидкость, в которой образовывалась плесень, оставалась чистой, прозрачной, что свидетельствовало только об одном — бактерий в ней нет.

К чести проигравшего в научном споре Полотебнова, он продолжил свое исследование уже в новом русле, использовав плесень в качестве бактерицидного средства. Он создал эмульсию с плесневым грибком и спрыскивал ею язвы больных кожными заболеваниями. Результат: обработанные язвы заживали раньше, чем если бы остались без лечения. Конечно, как врач Полотебнов не мог оставить открытие втайне и рекомендовал такой способ лечения в 1872 году в одной из своих статей. К сожалению, его наблюдения наука обошла вниманием, и врачи всего мира продолжали лечить больных средствами времен мракобесия: кровопусканием, порошками из высушенных животных и насекомых и прочей бессмыслицей. Эти «средства» считались лечебными и использовались даже в начале прогрессивного ХХ века, когда братья Райт испытывали свои первые самолеты, а Эйнштейн работал над теорией относительности.

Убрать на столе - похоронить открытие

Статья Полотебнова осталась без внимания, и целых полвека никто из ученых не предпринимал новых попыток изучения плесневого грибка. Исследования Полотебнова и их результаты «воскресли» уже в начале ХХ века благодаря счастливой случайности и микробиологу, который не любил убирать на своем столе…

Шотландец Александр Флеминг, которого считают создателем пенициллина, с самой юности мечтал найти средство, уничтожающее болезнетворные бактерии. Он упорно занимался микробиологией (в частности - изучал стафилококки) в своей лаборатории, которая располагалась в одном из госпиталей Лондона и представляла собой тесную комнатушку. Помимо упорства и самоотверженности в работе, не раз отмеченные его коллегами, Флеминг обладал еще одним качеством: он не любил наводить порядок на своем столе. Склянки с препаратами иногда стояли на столе микробиолога неделями. Благодаря этой своей привычке Флемингу и удалось буквально наткнуться на великое открытие.

Однажды ученый оставил колонию стафилококков без внимания на несколько дней. А когда решил их убрать, то обнаружил, что препараты покрылись плесенью, споры которой, по-видимому, проникли в лабораторию через открытое окно. Флеминг не только не выбросил испортившийся материал, но и изучил его под микроскопом. Ученый был поражен: от болезнетворных бактерий не осталось и следа - только плесень и капли прозрачной жидкости. Флеминг решил проверить, действительно ли плесень способна убивать опасные микроорганизмы.

Микробиолог вырастил грибок в питательной среде, «подселил» к нему другие бактерии и поместил чашку с препаратами в термостат. Результат был поразительным: между плесенью и бактериями образовались пятна, светлые и прозрачные. Плесень «огораживала» себя от «соседей» и не давала им размножаться.

Что же это за жидкость, которая образуется возле плесени? Этот вопрос не давал покоя Флемингу. Ученый приступил к новому эксперименту: вырастил плесень в большой колбе и стал наблюдать за ее развитием. Цвет плесени менялся 3 раза: из белого в зеленый, а затем она стала черной. Питательный бульон тоже менялся - из прозрачного он стал желтым. Вывод напрашивался сам собой: плесень выделяет в окружающую среду какие-то вещества. Осталось проверить, обладают ли они столь же «убийственной» силой.

Эврика!

Жидкость, в которой жила плесень, оказалась еще более мощным средством массового поражения бактерий. Даже разведенная водой в 20 раз, она не оставляла бактериям никакого шанса. Флеминг забросил свои прошлые исследования, посвятив все мысли только этому открытию. Он выяснял, на какой день роста, на какой питательной среде, при какой температуре грибок проявляет наибольшее антибактериальное воздействие. Он выяснил, что жидкость, выделенная грибком, воздействует только на бактерии и безвредна для животных. Он назвал эту жидкость пенициллином.

В 1929 году Флеминг рассказал о найденном лекарстве в Лондонском медицинском научно-исследовательском клубе. Его сообщение осталось без внимания - так же, как когда-то статья Полотебнова. Однако шотландец оказался более упрямым, чем русский врач. На всех конференциях, выступлениях, собраниях врачей Флеминг так или иначе упоминал открытое им средство для борьбы с бактериями. Однако была еще одна проблема - нужно было как-то выделить чистый пенициллин из бульона, при этом не разрушив его.

Труды и награды

Выделить пенициллин - эта задача решалась не один год. Флеминг со товарищи предприняли не один десяток попыток, однако в чужой среде пенициллин разрушался. Врачи-микробиологи не могли решить эту задачу, здесь требовалась помощь химиков.

Информация от новом лекарстве постепенно достигла Америки. Спустя 10 лет после первого заявления Флеминга о пенициллине, этим открытием заинтересовались двое английских ученых, которых судьба и война забросила в Америку. В 1939 году Говард Флери, профессор патологии одного из оксфордских институтов, и Эрнст Чейн, биохимик, бежавший из Германии, искали тему для совместной работы. Их заинтересовал пенициллин, точнее, задача его выделения. Она и стала темой их работы.

В Оксфорде оказался штамм (культура микробов), который когда-то прислал Флеминг, поэтому у ученых был материал для работы. В результате долгих, трудных исследований и опытов Чейну удалось получить кристаллы калийной соли пенициллина, которые он затем превратил в слизистую массу, а потом - в коричневый порошок. Гранулы пенициллина были очень мощными: разведенные в пропорции один на миллион, они убивали бактерии через несколько минут, однако были безвредны для мышей. Опыты проводились на мышах: их заражали убойными дозами стрептококков и стафилококков, а затем спасали жизнь половине из них, вводя пенициллин. Опыты Чейна привлекли еще нескольких ученых. Было установлено, что пенициллин также убивает и возбудителей гангрены.

На человеке пенициллин был опробован в 1942 году и спас жизнь умирающему от менингита. Этот случай произвел большое впечатление на общество и врачей. В Англии наладить производство пенициллина не удалось из-за войны, поэтому в 1943 году производство открылось в Америке. В том же году американское правительство сделало заказ на 120 млн. единиц препарата. В 1945 году Флери и Чейн получили Нобелевскую премию за выдающееся открытие. Сам же Флеминг удостаивался различных званий и наград десятки раз: был удостоен рыцарского звания, 25 почетных степеней, 26 медалей, 18 премий, 13 наград и почетного членства в 89 академиях наук и научных обществах. На могиле ученого - скромная надпись: «Александр Флеминг - изобретатель пенициллина».

Изобретение, принадлежащее человечеству

Поисками средства для борьбы с бактериями ученые всего мира искали с тех самых пор, как узнали об их существовании и смогли разглядеть в микроскоп. С началом Второй мировой войны необходимость в этом средстве назрела как никогда. Неудивительно, что в Советском Союзе тоже работали над этим вопросом.

В 1942 году профессор Зинаида Ермольева получила пенициллин из плесени пенициллиум крустозум, взятой со стены одного из бомбоубежищ Москвы. В 1944 году Ермольева, после долгих наблюдений и исследований, решила испытать свой препарат на раненых. Ее пенициллин стал чудом для полевых врачей и спасительным шансом для многих раненых бойцов. В том же году в СССР было налажено производство пенициллина.

Антибиотики - это большая «семья» средств, а не только пенициллин. Некоторые из его «сородичей» были открыты в военные годы. Так, в 1942 году Гаузе получил грамицидин, а в 1944-ом - американец украинского происхождения Ваксман выделил стрептомицин.

Полотебнов, Флеминг, Чейн, Флери, Ермольева, Гаузе, Ваксман - эти люди своими трудами подарили человечеству эпоху антибиотиков. Эпоху, когда менингит или воспаление легких не становятся приговором. Пенициллин так и остался незапатентованным: никто из его создателей не претендовал на авторство средства, спасающего жизни.

Способность одних микроорганизмов подавлять жизнь других (антибиоз ) была впервые установлена И. И. Мечниковым , который предложил использовать это свойство для лечебных целей: в частности, он применил для подавления жизнедеятельности вредных гнилостных бактерий кишечника молочнокислую палочку, которую предлагал вводить с простоквашей.

В 1868—1871 гг. В. А. Манассеин и А. Г. Полотебнов указали на способность зеленой плесени подавлять рост различных патогенных бактерий и с успехом применили ее для лечения инфицированных ран и язв.

Большое значение в учении об антибиотиках имели исследования Н. А. Красильникова, А. И. Кореняко, М. И. Нахимовской и Д. М. Новогрудского, которые установили Широкое распространение в Почве грибов, вырабатывающих различные антибиотические вещества.

В 1940 г. были разработаны методы излечения и получения из культуральной жидкости антибиотических веществ в чистом виде. Многие из этих антибиотических веществ оказались весьма эффективными при лечении ряда инфекционных болезней.

Наибольшее значение в медицинской практике получили следующие антибиотики:

Пенициллин,

Стрептомицин,

Левомицетин,

Синтомицин,

Тетрациклины,

Альбомицин,

Грамицидин С,

Мицерин и др.

В настоящее время известна химическая природа многих антибиотиков, что позволяет получать эти антибиотики не только из естественных продуктов, но и синтетическим путем.

Антибиотики, обладая способностью подавлять развитие патогенных микробов в организме, в то же время являются малотоксичными для организма человека. Задерживая развитие в организме патогенных микробов, они тем самым способствуют усилению защитных свойств организма и быстрейшему выздоровлению больного. Вот почему требуется правильный выбор антибиотика для лечения различных инфекционных заболеваний. В отдельных случаях можно пользоваться комбинацией антибиотиков или проводить комплексное лечение антибиотиками, сульфаниламидами и другими препаратами.

Пеницилин

Пенициллин — вещество, вырабатываемое плесенью Penicillium при росте ее на жидких питательных средах. Впервые оно было получено английским ученым А. Флемингом в 1928 г. В СССР пенициллин был получен 3. В. Ермольевой в 1942 г. Для получения пенициллина плесень засевают в специальную питательную среду, где по мере ее размножения накапливается пенициллин. Оптимальная температура роста Penicillium 24—26°. Максимальное накопление пенициллина происходит через 5—6 дней, а при интенсивном доступе кислорода (аэрации) — более быстро. Питательную жидкость фильтруют и подвергают специальной обработке и химической очистке. В результате получается очищенный препарат в виде кристаллического порошка. В жидком виде пенициллин нестоек, в порошке более устойчив, особенно при температуре 4—10°. Порошок быстро и полностью растворяется в дистиллированной воде или физиологическом растворе поваренной соли.

Пенициллин обладает способностью задерживать размножение в организме многих патогенных микробов— стафилококков, стрептококков, гонококков, анаэробных бацилл, спирохет сифилиса. Не действует пенициллин на палочки брюшного тифа, дизентерии, бруцеллы, туберкулезную палочку. Пенициллин широко применяют для лечения нагноительных «процессов, септических заболеваний, воспаления легких, гонореи, цереброспинального менингита, сифилиса, анаэробных инфекций.

В отличие от большинства синтетических химических препаратов пенициллин мало токсичен для человека и его можно вводить в больших дозах. Вводят пенициллин обычно внутримышечно, так как при введении через рот он быстро разрушается желудочным и кишечным соком.

В организме пенициллин быстро выводится почками, поэтому его назначают в виде внутримышечных инъекций через каждые 3—4 часа. Количество вводимого пенициллина исчисляется в единицах действия (ЕД). За единицу пенициллина принимают то количество его, которое полностью задерживает рост золотистого стафилококка в 50 мл бульона. Выпускаемые отечественной промышленностью препараты пенициллина содержат в одном флаконе от 200 000 до 500 000 ЕД пенициллина.

Для удлинения срока действия пенициллина в организме изготовлен ряд новых препаратов, содержащих пенициллин в комплексе с другими веществами, которые способствуют медленному всасыванию пенициллина и еще более медленному выделению его из организма почками (новоциллин, экмопенициллин, бициллин 1, 2, 3 и Др.). Некоторые из этих препаратов можно принимать внутрь, так как они не разрушаются под действием желудочного и кишечного сока. К числу таких препаратов относится, например, феноксиметилпенициллин; последний выпускается в виде таблеток для приема перорально.

В настоящее время получена большая группа новых препаратов пенициллина — полусинтетических пенициллинов. В основе этих препаратов лежит 6-амино-пеницил-линовая кислота, составляющая ядро пенициллина, к которой химическим путем присоединяются различные радикалы. Новые пенициллины (метициллин, оксациллин и др.) действуют на микроорганизмы, устойчивые к бензилпенициллину.

Наибольшее число антибиотиков вырабатывается лучистыми грибами — актиномицетами. Из этих антибиотиков широкое применение получили стрептомицин, хлоромицетин (левомицетин), биомицин (ауреомицин), террамицин, тетрациклин, колимиции, мицерин и др.

Стрептомицин

Стрептомицин — вещество, вырабатываемое лучистым грибом Actinomyces globisporus streptomycini. Он обладает способностью подавлять рост многих грамотрицательных и грамположительных бактерий, а также туберкулезной палочки. Недостатком стрептомицина является то, что микробы быстро к нему привыкают и становятся устойчивыми к его действию. Активность действия стрептомицина проверяют на кишечной палочке (Bact. coli). Практическое применение стрептомицин получил для лечения некоторых форм туберкулеза, особенно туберкулезного менингита, туляремии, а также в хирургической практике.

Хлоромицетин

Хлоромицетин получен в 1947 г. из культуральной жидкости актиномицетов. В 1949 г. учеными был синтезирован аналогичный препарат под названием левомицетина. Левомицетин представляет собой кристаллизированный порошок, очень устойчивый как в сухом состоянии, так и в растворах. Растворы левомицетина выдерживают кипячение в течение 5 часов. Левомицетин активен по отношению ко многим грамположительным и грамотрицательным бактериям, а также к риккетсиям. Принимают левомицетин через рот. Левомицетин рекомендуют применять для лечения следующих заболеваний: брюшного тифа и паратифов, сыпного тифа, бруцеллеза, коклюша, дизентерии и хирургических инфекций, вызванных грамотрицательными бактериями.

Наряду с левомицетином широко применяется другой синтетический препарат — синтомицин, представляющий собой неочищенный левомицетин. По своему действию синтомицин аналогичен левомицетину; он назначается в дозе в 2 раза большей, чем левомицетин.

Тетрациклины

К ним относится хлортетрациклин (ауреомицин, биомицин), окситетрациклин (терра-мицин) и тетрациклин. Хлортетрациклин получен из культуральной жидкости гриба Actinomyces aureofaciens, он обладает широким спектром действия против большинства грамположительных и грамотрицательных бактерий, простейших, риккетсий и некоторых крупных вирусов (орнитоза), хорошо всасывается при приеме перорально и диффундирует в ткани. Применяется для лечения дизентерии, бруцеллеза, риккетсиозов, сифилиса, орнитоза и других инфекционных заболеваний. Окситетрациклин и тетрациклин по своим свойствам напоминают хлортетрациклин и близкие к нему по механизму действия на микроб.

Неомицины

Неомицины — группа антибиотиков, полученных из культуральной жидкости актиномицетов, активны в отношении многих грамотрицательных и грамположительных бактерий, в том числе микобактерий. Их активность не снижается в присутствии белков крови или ферментов. Препараты плохо всасываются в желудочно-кишечном тракте, относительно мало токсичны. Применяются главным образом для местного лечения хирургических и кожных инфекций, вызванных стафилококками, устойчивыми к другим антибиотикам.

К группе неомицинов относятся советские препараты мицерин и колимицин, которые нашли широкое применение для лечения колиэнтеритов у детей, вызванных кишечными палочками или стафилококками, устойчивыми к другим антибиотикам.

Нистастин

Нистатин — антибиотик, эффективный не против бактерий, а против грибов. Он плохо растворяется в воде, поэтому его нельзя применять парентерально, а надо вводить внутрь в виде таблеток или местно в виде мазей.

Нистатин часто входит в состав таблеток вместе с другим антибиотиком — тетрациклином — с целью предотвращения кандидоза как осложнения при длительном применении тетрациклина.

Из антибиотиков бактериального происхождения пан большее значение имеет грамицидин.

Грамицидин

Грамицидин — вещество, полученное из культуры почвенной споровой палочки В. brevis. Название свое препарат получил в связи с тем, что он подавляет рост преимущественно грамположительных бактерий. В 1942 г. в СССР ученые открыли антибиотик, получивший название грамицидин С (советский грамицидин). Он обладает широким диапазоном действия, подавляя рост бактерий. Грамицидин С применяют в виде водно-спиртовых, спиртовых и масляных растворов только для местного лечения нагноительных и язвенных процессов.

Большой интерес представляют также антибиотики животного происхождения.

В 1887 г. Н. Ф. Гамалея указал на антибактериальное действие тканей животного организма. Затем в 1893 г. О. О. Успенский доказал бактерицидное действие экстрактов печени в отношении палочек сибирской язвы, сапа, стафилококков и других микробов.

Из антибиотиков животного происхождения получили применение следующие.

1. Лизоцим — вещество, продуцируемое клетками животных и человека. Впервые обнаружен П. Н. Лащенковым в 1909 г. в белке куриного яйца. Лизоцим содержится в слезах, секретах слизистых, в печени, селезенке, почках, сыворотке. Обладает способностью растворять как живых, так и мертвых микробов. Лизоцим в очищенном виде был применен 3. В. Ермольевой и И. С. Буяновской в клинической, промышленной и сельскохозяйственной практике. Наблюдается эффект от применения лизоцима при заболеваниях уха, горла, носа и глаз, при после гриппозных осложнениях.

2. Экмолин получен из рыбной ткани, биологически активен по отношению к тифозным и дизентерийным палочкам, стафилококкам и стрептококкам, действует также па вирус гриппа. Экмолин усиливает действие пенициллина и стрептомицина. Сообщают о положительных результатах комплексного применения экмолина со стрептомицином для лечения острой и хронической дизентерии и экмолина с пенициллином — для лечения и профилактики кокковых инфекций.

3. Фитонциды — вещества, выделяемые растениями. Открыты советским исследователем Б. П. Токиным в 1928 г. Эти вещества оказывают антимикробное действие на многих микроорганизмов, в том числе и на простейших. Наиболее активные фитонциды вырабатывают лук и чеснок. Если пожевать в течение нескольких минут лук, полость рта быстро очищается от микробов. Фитонциды применяют для местного лечения инфицированных ран. Антибиотики получили чрезвычайно широкое применение в медицинской практике и способствовали резкому уменьшению числа смертельных исходов при различных инфекционных заболеваниях (нагноительные процессы, менингиты, анаэробная инфекция, брюшной и сыпной тиф, туберкулез, детские инфекции и др.).

Однако следует указать и некоторое побочное и нежелательное их влияние.

При неправильном применении антибиотиков (маленькие дозы, кратковременное лечение) могут появиться устойчивые к данному антибиотику формы микробов-возбудителей. Вследствие этого для медицинской практики имеет большое значение определение чувствительности возбудителя инфекционного заболевания к тому или другому антибиотику.

Имеются 2 способа определения чувствительности выделяемых микробов к антибиотикам

1) метод серийных разведений

2) метод диффузии.

Первый метод более сложный и заключается в следующем: в ряд пробирок с 2 мл бульона наливают кратные разведения антибиотика, затем в каждую пробирку засевают 0,2 мл (выдержанной 18-ти часовой) бульонной культуры испытуемого микроба; пробирки помещают в термостат на 16—18 часов. Последняя пробирка, где отсутствует рост микробов, и определяет степень чувствительности микроба к данному антибиотику.

Более простым методом является метод диффузии . Для этой цели в лабораториях имеется набор специальных дисков из фильтровальной бумаги, пропитанных растворами разных антибиотиков. Делают посев выделенной культуры на чашку Петри, с мясопептонным агаром. Накладывают эти диски на засеянную поверхность.

Чашки помещают в термостат на 24—48 часов, после чего отмечают результат.

К другим осложнениям при применении антибиотиков относится снижение иммунологической реактивности. В этом случае иногда наступают рецидивы заболевания, например при брюшном тифе.

При слишком длительном приеме антибиотиков и в больших дозах часто наблюдаются токсические явления. У некоторых больных прием того или другого антибиотика вызывает аллергическую реакцию в виде высыпаний на коже, рвоты и т. д.

В отдельных случаях в результате длительного применения биомицина, левомицетина, синтомицина возможно угнетение нормальной микрофлоры человека, что ведет за собой активизацию условно патогенных микробов, обитающих на слизистых оболочках полости рта или кишечника: энтерококка, дрожжеподобных микроорганизмов и др. Эта флора в ослабленном организме может вызвать различного характера заболевания (кандидозы и др.). Все это свидетельствует о том, что медицинские работники должны применять антибиотики, строго руководствуясь существующими указаниями и инструкциями, наблюдая тщательно за состоянием больного, ив случае необходимости прекратить лечение его антибиотиками или заменить данный препарат другим.

Перечисленные осложнения не снижают ценности антибиотиков как лечебных препаратов. Благодаря антибиотикам медицинские работники в настоящее время имеют специфические лекарственные средства для лечения большинства инфекционных заболеваний.