Женские стероидные гормоны. Биосинтез гормонов. Биосинтез стероидных гормонов. Механизм действия тиреоидных гормонов

Стероидные гормоны или, попросту, стероиды, представляют собой группу биологически активных веществ регулирующих многие процессы жизнедеятельности человека. Тем кто следит за своим здоровьем и заботится о фигуре, следует подробнее познакомиться с этими ценными веществами и знать о том, за что именно отвечает каждый гормон.

Виды стероидов

К стероидам следует относить следующие виды гормонов:

1. Гормоны коры надпочечников, то есть кортикостероиды. Они подразделяются на глюкокортикоидные гормоны (кортизон, кортизол, кортикостерон), а также на минералкортикоидные гормоны (дезоксикортикостерон, альдостерон).
2. Женские половые гормоны, то есть эстрогены (эстриол, эстрадиол, фолликулин (эстрол), этинилэстрадиол).
3. Мужские половые гормоны, то есть андрогены (андростерон, тестостерон, метилтестостерон, андростендион).

Влияние стероидов

Если рассматривать влияние каждого из перечисленных активных веществ, можно сказать, что:

  • глюкокортикоиды необходимы организму для полноценного обмена углеводов, белков, жиров, а также синтеза нуклеиновых кислот. В задачу этих биологически активных веществ входит снижение веса за счет вывода из организма шлаков и токсинов с мочой;
  • минералкортикоиды не менее важны для здоровья. Они регулируют водно-солевой обмен, а также обмен потовых и слюнных желез;
  • эстрогены, которые вырабатываются в яичниках, отвечают за вынашивание плода и счастливые роды, а также регулируют менструальный цикл женщины. Кроме того, эти активные вещества придают представительницам прекрасного пола женский силуэт, пропорционально распределяя жировые клетки в области ягодиц и бедер. Работа сальных желез, своевременное увлажнение кожи и даже обмен кальция также зависят от нормальной выработки эстрогенов;
  • андрогены являются мужскими гормонами, хотя в малых количествах вырабатываются и у женщин. Во время полового созревания такие гормоны отвечают за формирование половых органов, а также за подмышечное и лобковое оволосение. Кстати, у женщин этот вид стероидов вырабатывается всю жизнь, поддерживая нормальное функционирование яичников и матки.

Чем грозит переизбыток и недостаток стероидов

Опасным может быть и повышенное содержание эстрогенов. В этом случае у женщин может нарушаться менструальный цикл, появиться уплотнение в молочных железах, «скакать» вес и резко меняться настроение. Напротив, нехватка эстрогенов зачастую оборачивается нарушением водообменного процесса в женском организме. В этом случае кожа становится сухой и шелушащейся, появляются морщины, угри и целлюлит. К тому же недостаток этих активных веществ приводит к сухости вагины и недержанию мочи. От такого дефицита страдают кости, которые становятся слабыми и хрупкими.

Но особенно чувствителен женский организм к нарушению выработки андрогенов. Переизбыток этих стероидов подавляет выработку женских половых гормонов, в результате чего у женщины могут появиться мужские половые признаки, к примеру, огрубение голоса, оволосение и прекращение менструации. Если же наблюдается дефицит андрогенов, у представительниц слабого пола снижается либидо, наблюдаются приливы жара, дамы становятся сверхэмоциональны и могут впасть в депрессию.

Как можно заметить, стероидные гормоны крайне важны для женщин, а значит, не помешает периодически проходить обследование и контролировать уровень этих веществ в организме. Здоровья вам и красоты!

Общим предшественником стероидных гормонов является холестерин . Углеродный скелет холестерина включает 27 атомов углерода и состоит из 4 конденсированных колец. Четвёртое кольцо имеет длинную боковую цепь. Существует общепринятая система наименования циклов и нумерации углеродных атомов в молекулах стероидов (см. ).

Холестерин, необходимый для синтеза стероидных гормонов, поступает из разных источников в гормонсинтезирующие клетки желез в составе липопротеинов низкой плотности (ЛНП) (см. ) или синтезируется в клетках из ацетил-СоА (см. ). Избыток холестерина откладывается в липидных каплях в виде эфиров жирных кислот. Запасной холестерин вновь быстро мобилизуется за счёт гидролиза.

Ферментативные реакции . Отдельные стадии биосинтеза стероидных гормонов катализируются высокоспецифичными ферментами. Ферментативные реакции подразделяются на следующие подтипы:

- гидроксилирование (см. ): a, f, g, h, i, k, I, p
- дегидрирование : b, d, m
- изомеризация : c
- гидрирование : o
- расщепление : a, e, n
- ароматизация : q.

На схеме приведён биосинтез трёх стероидов: холестерина (1), прогестерона (2) и андростендиона (3; промежуточного продукта биосинтеза тестостерона), в котором принимают участие ферменты указанных типов ферментативных реакций.

Путь биосинтеза . Биосинтез каждого гормона состоит из множества последовательных ферментативных реакций. В качестве примера рассмотрим биосинтез прогестерона. Биосинтез начинается с расщепления боковой цепи холестерина между C-20 и C-22 (а). Стероидное соединение с укороченной боковой цепью носит название прегненолон. Последующие стадии, окисление гидроксигруппы при C-3 (b) и сдвиг двойной связи от C-5 к C-4 (c) приводят к образованию прогестерона.

Приведённые на схеме стероиды объединены в подгруппы по числу углеродных атомов. Холестерин и кальцитриол являются C 27 -стероидами . Соединения с укороченной на 6 атомов углерода боковой цепью, прогестерон , кортизол и альдостерон , составляют группу C 21 -стероидов . В ходе биосинтеза тестостерон полностью утрачивает боковую цепь и поэтому его относят к C 19 -стероидам . При биосинтезе эстрадиола на стадии образования ароматического цикла теряется ангулярная метильная группа и, следовательно, эстрадиол является C 18 -cтероидом .

В процессе биосинтеза кальцитриол подвергается фотохимической реакции раскрытия кольца B. Поэтому его относят к «секостероидам ». Однако по своим биохимическим свойствам он является типичным стероидным гормоном.

Белковые гормоны. Данные исследования синтеза белковых и меньших по размеру полипептидных гормонов (менее 100 аминокислотных остатков в цепи), полученные за последние годы, показали, что этот процесс включает синтез предшественников, превосходящих размерами окончательно секретируемые молекулы и превращающихся в конечные клеточные продукты путем расщепления в ходе транслокации, протекающей в специализированных субклеточных органеллах секреторных клеток.

Стероидные гормоны. Биосинтез стероидных гормонов включает сложную последовательность контролируемых ферментами этапов. Ближайшим химическим предшественником надпочечниковых стероидов является холестерин, который не только поглощается клетками коры надпочечников из крови, но и образуется внутри этих клеток.

Холестерин, будь то поглощенный из крови или синтезированный в коре надпочечников, накапливается в цитоплазматических липидных каплях. Затем в митохондриях холестерин превращается в прегненолон путем образования вначале 20-оксихолестерола, потом 20, 22-диоксихолестерола и, наконец, расщепления цепи между 20-м и 22-м углеродными атомами с образованием прегненолона. Считается, что превращение холестерина в прегненолон является ограничивающим скорость этапом биосинтеза стероидных гормонов и что именно этот этап контролируется стимуляторами надпочечников: АКТГ, калием и ангиотензином II. В отсутствие стимуляторов надпочечники образуют очень мало прегненолона и стероидных гормонов.

Прегненолон трансформируется в глюко-, минералокортикоиды и половые гормоны тремя разными ферментативными реакциями.

Глюкокортикоиды. Основной путь, наблюдаемый в пучковой зоне, включает дегидрирование 3-гидроксильной группы прегненолона с образованием прег-5-ен-3,20-диона, который затем подвергается изомеризации в прогестерон. В результате серии гидроксилирований прогестерон превращается в 17-оксипрогестерон под влиянием системы 17-гидроксилазы, а затем в 17,21-диоксипрогестерон (17а-оксидезоксикортикостерон, 11-дезокси кортизол, соединение 5) и, наконец, в кортизол в ходе 11-гидроксилирования (соединение Р).

У крыс главным кортикостероидом, синтезируемым в коре надпочечников, является кортикостерон; небольшое количество кортикостерона продуцируется и в коре надпочечников человека. Путь синтеза кортикостерона идентичен таковому кортизола, за исключением лишь отсутствия этапа 17-гидроксилирования.

Минералокортикоиды. Альдостерон образуется из прегненолона в клетках клубочковой зоны. Она содержит 17-гидроксилазы и поэтому лишена способности синтезировать кортизол. Вместо него образуется кортикостерон, часть которого под действием 18-гидроксилазы превращается в 18-оксикор-тикостерон и затем под действием 18-оксистероиддегидрогеназы - в альдостерон. Поскольку 18-оксистероиддегидрогеназа обнаружена только в клубочковой зоне, считается, что синтез альдостерона ограничен этой зоной.

Половые гормоны. Хотя главными физиологически значимыми стеро-идными гормонами, продуцируемыми корой надпочечников, являются кортизол и альдостерон, эта железа образует и небольшие количества андроге-нов (мужские половые гормоны) и эстрогенов (женские половые гормоны). 17,20-десмолаза превращает 17-оксипрогненолон в дегидроэпиандростерон и 17-оксипрогестерон в дегидроэпиандростерон и 1)4-андростендиол - это слабые андрогены (мужские половые гормоны). Небольшие количества этих андрогенов превращаются в андросг-4-ен-3,17-дион и тестостерон. По всей вероятности, из тестостерона образуются также небольшие количества эстрогена 17-эстрадиола.

Тиреоидные гормоны. Главными веществами, используемыми в синтезе тиреоидных гормонов, являются йод и тирозин. Щитовидная железа отличается высокоэффективным механизмом захвата йода из крови, а в

В качестве источника тирозина она синтезирует и использует крупный гли-копротеин тиреоглобулин.

Если тирозин в организме содержится в большом количестве и поступает как из пищевых продуктов, так и из распадающихся эндогенных белков, то йод присутствует лишь в ограниченном количестве и поступает только из пищевых продуктов. В кишечнике в процессе переваривания пищи йод отщепляется, всасывается в виде йодида и в этой форме циркулирует в крови в свободном (несвязанном) состоянии.

Йодид, захватываемый из крови тиреоидными (фолликулярными) клетками, и тиреоглобулин, синтезируемый в этих клетках, секретируются (путем эндоцитоза) во внеклеточное пространство внутри железы, называемое просветом фолликула или коллоидным пространством, окруженное фолликулярными клетками. Но йодид не соединяется с аминокислотами. В просвете фолликула или (что более вероятно) на апикальной поверхности клеток, обращенной в просвет, йодид под влиянием пероксидазы, цитохромоксидазы и флавин-фермента окисляется в атомарный йод и другие окисленные продукты и ковалентно связывается фенольными кольцами тирозино-вых остатков, содержащихся в полипептидном каркасе тиреоглобулина. Окисление йода может происходить и неферментативным путем при наличии ионов меди и железа и тирозина, который в дальнейшем акцептирует элементарный йод. Связывание йода с фенольным кольцом происходит только в 3-м положении, либо как в 3-м, так и в 5-м положениях, в результате образуются монойодтирозин (МИТ) и дийодтирозин (ДИТ) соотвественно. Этот процесс йодирования тирозиновых остатков тиреоглобулина известен под названием этапа оргинификации в биосинтезе тиреоидных гормонов. Соотношение в щитовидной железе монойодтирозина и дийодтирозина составляет 1:3 или 2:3. Йодирование тирозина не требует наличия неповрежденной клеточной структуры железы и может происходить в бесклеточных препаратах железы при помощи фермента тирозинйодиназы, содержащей медь. Фермент локализован в митохондриях и микросомах.

Следует заметить, что лишь 1/3 поглощенного йода используется для синтеза тирозина, а 2/3 удаляется с мочой.

Следующим этапом является конденсация йодтирозинов с образованием йодтиронинов. Все еще оставаясь в структуре тиреоглобулина, молекулы МИТ и ДИТ (МИТ+ДИТ) конденсируются, образуя трийодтиронин (Т 3), и подобно этому две молекулы ДИТ (ДИТ+ДИТ) конденсируются, образуя молекулу L-тироксина (Т 4). В таком виде, т.е. связанные с тиреоглобулином, йодтиронины, равно как и неконденсированные йодтирозины, хранятся в тиреоидном фолликуле. Этот комплекс йодированного тиреоглобулина часто называют коллоидом. Таким образом, тиреоглобулин, составляющий 10% от влажной массы щитовидной железы, служит белком носителем, или предшественником накапливающихся гормонов. Соотношение тироксина и трийодтиронина равно 7:1.

Таким образом, в норме тироксин продуцируется в значительно большем количестве, чем трийодтиронин. Но последний обладает более высокой специфической активностью, чем Т 4 (превосходя его в 5-10 раз по влиянию на метаболизм). Выработка Т 3 усиливается в, условиях умеренной недостаточности или ограничений снабжения щитовидной железы йодом. Секреция тиреоидных гормонов - процесс, происходящий в ответ на метаболические потребности и опосредуемый действием тиреотропного гормона (ТТГ) на тиреоидные клетки - предполагает высвобождение гормонов из тиреоглобулина. Этот процесс происходит в апикальной мембране путем поглощения коллоида, содержащею тиреоглобулин (процесс, известный под названием эндоцитоза).

Тиреоглобулин затем гидролизустся в клетке под влиянием протеаз, а высвобождаемые таким образом тиреоидные гормоны выделяются в циркулирующую кровь.

Подводя итог вышесказанному, можно процесс биосинтеза и секреции тиреоидных гормонов подразделить на следующие этапы: 1 - биосинтез тиреоглобулина, 2 - захват йодида, 3 - органификация йодида, 4 - конденсация, 5 - поглощение клетками и протеолиз коллоида, 6 - секреция.

Биосинтез тироксина и трийодтирозина ускоряется под влиянием тиреотропного гормона гипофиза. Этот же гормон активирует протеолиз тиреоглобулина и поступление тиреоидных гормонов в кровь. В этом же направлении влияет возбуждение центральной нервной системы.

В крови 90-95% тироксина и в меньшей степени Т 3 обратимо связываются с сывороточными белками, главным образом, с 1- и -2-глобулинами. Поэтому концентрация белковосвязанного йода в крови (БСЙ) отражает количество йодированных тиреоидных гормонов, поступающих в циркуляцию, и позволяет объективно судить о степени функциональной активности щитовидной железы.

Тироксин и трийодтиронин, связанные с белками, циркулируют в крови в качестве транспортной формы тиреоидных гормонов. Но в клетках эффекторных органов и тканей йодтиронины претерпевают дезаминирование, декарбоксилирование и дейодирование. В результате дезаминирования из Т 4 и Т 3 , получаются тетрайодтиреопропионовая и тетрайодтиреоуксусная (а также, соотвественно, трийодтиреопропионовая и трийодтиреоуксусная) кислоты.

Продукты распада йодтиронинов полностью инактивируются и разрушаются в печени. Отщепившийся йод с желчью поступает в кишечник, оттуда вновь всасывается в кровь и реутилизируегся щитовидной железой для биосинтеза новых количеств тиреоидных гормонов. В связи с реутилизацией потеря йода с калом и мочой ограничивается всего лишь 10%. Значение печени и кишечника в реутилизации йода делает понятным, почему стойкие нарушения деятельности пищеварительного тракта могут повлечь за собой состояние относительной недостаточности йода в организме и оказаться одной из этиологических причин спорадической зобной болезни.

Катехоламины. Катехоламины представляют собой дигидроксилированные фенольные амины и включают дофамин, адреналин и норадреналин. Эти соединения продуцируются только в нервной ткани и в тканях, происходящих из нервной цепочки, таких как мозговой слой надпочечников и органы Цукеркандля. Норадреналин обнаруживается главным образом в симпатических нейронах периферической и центральной нервной системы и действует местно как нейротрансмиттер на эффекторные клетки гладких мышц сосудов, мозга и печени. Адреналин продуцируется в основном мозговым слоем надпочечников, откуда поступает в кровоток и действует как гормон на отдаленные органы-мишени. Дофамин выполняет две функции: он служит биосинтетическим предшественником адреналина и норадреналина и действует как местный нейротрансмиттер в определенных областях головного мозга, имеющих отношение к регуляции моторных функций.

Исходным субстратом для их биосинтеза служит аминокислота тирозин. В отличие от того, что наблюдается при биосинтезе тиреоидных гормонов, когда тирозин, также являющийся биосинтетическим предшественником, ковалентно соединен пептидной связью с крупным белком (тиреоглобулином), в синтезе катехоламинов тирозин используется в виде свободной аминокислоты. Тирозин поступает в организм, главным образом, с пищевыми продуктами, но в некоторой степени образуется и в печени путем гидроксилирования незаменимой аминокислоты фенилаланина.

Этапом, ограничивающим скорость синтеза катехоламинов, является превращение тирозина в ДОФА под действием тирозингидроксилазы. ДОФА подвергается декарбоксилированию (фермент - декарбоксилаза) с образованием дофамина. Дофамин активно транспортируется АТФ-зависимым механизмом в цитоплазматические пузырьки или гранулы, содержащие фермент дофамингидроксилазу. Внутри гранул путем гидроксилирования дофамин превращается в норадреналин, который под влиянием фенилэтаноламин-М-метилтрансферазы мозгового слоя надпочечников превращается в адреналин.

Секреция идет путем экзоцитоза.

Вообще говоря, эндокринные железы секретируют гормоны в такой форме, которая проявляет активность в тканях-мишенях. Однако в некоторых случаях к окончательному образованию активной формы гормона приводят его метаболические превращения в периферической ткани. Например, тестостерон - главный продукт яичек - в периферических тканях превращается в дигидротестостерон. Именно этот стероид определяет многие (но не все) андрогенные эффекты. Основным активным тиреоидным гормоном является трийодтиронин, однако щитовидная железа продуцирует лишь некоторое его количество, но основное количество гормона образуется в результате монодейодирования тироксина в трийодтиронин в периферических тканях.

Во многих случаях определенная часть циркулирующих в крови гормонов связана с белками плазмы. Достаточно хорошо изучены специфические белки, связывающие в плазме крови инсулин, тироксин, гормон роста, прогестерон, гидрокортизон, кортикостерон и другие гормоны. Гормоны и протеины связаны нековалентной связью, обладающей сравнительно низкой энергией, поэтому эти комплексы легко разрушаются, освобождая гормоны. Комплексирование гормонов с белками:

1) дает возможность сохранять часть гормона в неактивной форме,

2) защищает гормоны от химических и энзиматических факторов,

3) представляет собой одну из транспортных форм гормона,

4) позволяет резервировать гормон.

Наибольшее число стероидных гормонов синтезируется в коре надпочечников, их называют кортикостероидами . Наиболее важными из них являются гидрокортизон, кортикостерон и альдостерон. В половых железах синтезируются мужские и женские половые гормоны, относящиеся к стероидам. (Небольшое количество половых гормонов образуется также в коре надпочечников.) В семенниках образуются мужские половые гормоны - андрогены , важнейшим из которых является тестостерон. В яичниках образуются женские половые гормоны - эстрогены и прогестины . Основным представителем эстрогенов является эстрадиол.

В отличие от пептидных гормонов рецепторы стероидных гормонов расположены не в внешней клеточной мембране, а в цитоплазме клеток-мишеней. Это отличие определяется тем, что стероидные гормоны способны проходить через внешнюю липидную мембрану клеток, а пептидные гормоны - нет. При взаимодействии гормона со специфическим рецептором образуется гормон-рецепторный комплекс, который транспортируется в ядро клетки. В ядре этот комплекс связывается со специфическим участком ДНК, активируя его транскрипцию, что приводит к синтезу определенных мРНК, а затем и соответствующих белков, ответственных за необходимый биологический эффект (рис. 12).

Рис. 12. Схема взаимодействия стероидного гормона с клеткой. 1 – гормон, 2 – рецептор, 3 – клетка, 4 – ядро, 5- комплекс «гормон-рецептор», 6 – клеточная мембрана

Данные о стероидных гормонах, используемых для оценки функционального состояния спортсменов, представлены в таблице 5.

Физические нагрузки оказывают влияние на уровень стероидных гомонов, который зависит от степени тренированности организма и мощности выполняемой работы. У нетренированных мужчин кратковременные физические упражнения вызывают увеличение содержания тестостерона в крови, а длительные нагрузки - его снижение. У хорошо тренированных спортсменов снижение концентрации тестостерона не происходит даже при длительной физической работе, например, при беге на 21 км. Изучение синтеза эстрогенов у мужчин при физических нагрузках позволило выявить его снижение у тренированных лиц и увеличение у нетренированных. У женщин при напряженной работе отмечается увеличение в крови концентрации эстрогенов.

Таблица 5

Стероидные гормоны, используемые для оценки функционального

состояния спортсменов

Концентрация в

1 мл крови в норме

Место синтеза

Биологическое действие

Альдостерон

Кора надпочечников

Регулирует водно-солевой обмен

Гидрокортизон

Кора надпочечников

Кортикостерон

Кора надпочечников

Регулирует гликогенез и распад белков в скелетных мышцах

Тестостерон

Семенники и кора надпочечников

Регулирует сперматогенез и имеет общее анаболическое действие

Стероидные гормоны, обладающие анаболическим действием, т.е. стимулирующие процессы биосинтеза, применяются в качестве биологических стимуляторов. Впервые эти соединения стали применяться в медицине для лечения некоторых заболеваний и восстановления в послеоперационный период, для повышения скорости анаболических процессов, в частности восстановления тканей.

В спорте анаболические стероиды стали широко применяться в 50-е годы. Сначала их стали применять тяжелоатлеты и культуристы, а затем - метатели и толкатели. Регулярное применение анаболических стероидов оказалось довольно эффективным и приводило к существенному улучшению спортивных показателей.

Все стероиды обладают андрогенным действием, поэтому анаболические стероиды при регулярном применении оказывают в той или иной степени угнетающее влияние на деятельность мужских половых железа по механизму обратной связи (чем больше андрогена вводится в организм, тем меньше его синтезируется в самом организме). Таким образом, регулярное применение анаболических стероидов влечет за собой нарушение нормальной половой жизни. Естественным образом женщины более чувствительны к таким препаратам. Показано, что введение тестостерона новорожденным самкам крысы вызывает у них в дальнейшем мужской тип поведения и бесплодие.

Анаболические стероиды влияют на активность целого ряда ферментов, усиливая их синтез и изменяя метаболизм в целом, что может приводить к серьезным нарушениям обмена веществ. Кроме того, ряд стероидных гормонов вызывает существенное угнетение иммунных реакций. В литературе накоплены обширные данные о негативном влиянии анаболических стероидов на организм спортсменов.

Широкое применение анаболических стероидов в большом спорте привело к включению этих препаратов в список допингов, так как их применение, с одной стороны, не совместимо с этическими принципами спорта, а с другой - оказывает явное отрицательное влияние на организм спортсменов.