Принципы организации тканей общая гистология - введение, понятие ткани

Ткань – это возникшая в процессе эволюции система клеток и неклеточных структур, объединённых общностью строения и выполняемых функций (желательно определение знать наизусть и понимать значение: 1) ткань возникла в процессе эволюции, 2) это система клеток и неклеточных структур, 3) имеется общность строения, 4) система клеток и неклеточных структур, которые входят в состав данной ткани, имеют общие функции).

Структурно-функциональные элементы тканей подразделяются на: гистологические элементы клеточного (1) и неклеточного типа (2) . Структурно-функциональные элементы тканей человеческого организма можно сравнить с разными нитками, из которых состоят ткани текстильные.

Гистологический препарат «Гиалиновый хрящ»: 1 — клетки хондроциты, 2 — межклеточное вещество (гистологический элемент неклеточного типа)

1. Гистологические элементы клеточного типа обычно являются живыми структурами с собственным метаболизмом, ограниченные плазматической мембраной, и представляют собой клетки и их производные, возникшие в результате специализации. К ним относятся:

а) Клетки – главные элементы тканей, определяющие их основные свойства;

б) Постклеточные структуры , в которых утеряны важнейшие для клеток признаки (ядро, органоиды), например: эритроциты, роговые чешуйки эпидермиса, а также тромбоциты, которые являются частями клеток;

в) Симпласты – структуры, образованные в результате слияния отдельных клеток в единую цитоплазматическую массу с множеством ядер и общей плазмолеммой, например: волокно скелетной мышечной ткани, остеокласт;

г) Синцитии – структуры, состоящие из клеток, объединенных в единую сеть цитоплазматическими мостиками вследствие неполного разделения, например: сперматогенные клетки на стадиях размножения, роста и созревания.

2. Гистологические элементы неклеточного типа представлены веществами и структурами, которые вырабатываются клетками и выделяются за пределы плазмолеммы, объединенными под общим названием «межклеточное вещество» (тканевой матрикс). Межклеточное вещество обычно включает в себя следующие разновидности:

а) Аморфное (основное) вещество представлено бесструктурным скоплением органических (гликопротеины, гликозоаминогликаны, протеогликаны) и неорганических (соли) веществ, находящихся между клетками ткани в жидком, гелеобразном или твердом, иногда кристаллизованном состоянии (основное вещество костной ткани);

б) Волокна состоят из фибриллярных белков (эластин, различные виды коллагена), часто образующих в аморфном веществе пучки разной толщины. Среди них различают: 1) коллагеновые, 2) ретикулярные и 3) эластические волокна . Фибриллярные белки участвуют также в формировании капсул клеток (хрящи, кости) и базальных мембран (эпителии).

На фотографии — гистологический препарат «Рыхлая волокнистая соединительная ткань»: хорошо видны клетки, между которыми межклеточное вещество (волокна — полоски, аморфное вещество — светлые участки между клетками).

2. Классификация тканей . В соответствии с морфофункциональной классификацией тканей различают: 1) эпителиальные ткани, 2) ткани внутренней среды: соединительные и кроветворные, 3) мышечные и 4) нервную ткань.

3. Развитие тканей. Теория дивергентного развития тканей по Н.Г. Хлопину предполагает, что ткани возникли в результате дивергенции — расхождения признаков в связи с приспособлением структурных компонентов к новым условиям функционирования. Теория параллельных рядов по А.А. Заварзину описывает причины эволюции тканей, согласно которой ткани, выполняющие сходные функции, имеют сходное строение. В ходе филогенеза одинаковые ткани возникали параллельно в разных эволюционных ветвях животного мира, т.е. совершенно разные филогенетические типы первоначальных тканей, попадая в сходные условия существования внешней или внутренней среды, давали сходные морфофункциональные типы тканей. Эти типы возникают в филогенезе независимо друг от друга, т.е. параллельно, у абсолютно разных групп животных при стечении одинаковых обстоятельств эволюции. Эти две взаимодополняющие друг друга теории объединены в единую эволюционнную концепцию тканей (А.А. Браун и П.П. Михайлов), согласно которой сходные тканевые структуры в различных ветвях филогенетического древа возникали параллельно в ходе дивергентного развития.

Как из одной клетки — зиготы образуется такое разнообразие структур? За это отвечают такие процессы как ДЕТЕРМИНАЦИЯ, КОММИТИРОВАНИЕ, ДИФФЕРЕНЦИРОВКА. Попробуем разобраться с этими терминами.

Детерминация – это процесс, определяющий направление развития клеток, тканей из эмбриональных зачатков. В ходе детерминации клетки получают возможность развиваться в определённом направлении. Уже на ранних стадиях развития, когда происходит дробление, появляются два вида бластомеров: светлые и тёмные. Из светлых бластомеров не смогут впоследствии образоваться, например, кардиомиоциты, нейроны, поскольку они детерминированы и их направление развития — эпителий хориона. У этих клеток сильно ограничены возможности (потенции) развиваться.

Ступенчатое, согласованное с программой развития организма, ограничение возможных путей развития вследствие детерминации называется коммитированием . Например, если из клеток первичной эктодермы в двуслойном зародыше ещё могут развиться клетки почечной паренхимы, то при дальнейшем развитии и образовании трёхслойного зародыша (экто-, мезо- и энтодерма) из вторичной эктодермы — только нервная ткань, эпидермис кожи и некоторое другое.

Детерминация клеток и тканей в организме, как правило, необратима: клетки мезодермы, которые выселились из первичной полоски для образования почечной паренхимы обратно превратиться в клетки первичной эктодермы не смогут.

Дифференцировка направлена на создание в многоклеточном организме нескольких структурно-функциональных типов клеток. У человека таких типов клеток более 120. В ходе дифференцировки происходит постепенное формирование морфологических и функциональных признаков специализации клеток тканей (образование клеточных типов).

Дифферон – это гистогенетический ряд клеток одного типа, находящихся на разных этапах дифференцировки. Как люди в автобусе — дети, молодёжь, взрослые, пожилые. Если в автобусе будут перевозить кошку с котятами, то можно сказать, что в автобусе «два дифферона — людей и кошек».

В составе дифферона по степени дифференцировки различают следующие клеточные популяции: а) стволовые клетки - наименее дифференцированные клетки данной ткани, способные делиться и являющиеся источником развития других её клеток; б) полустволовые клетки - предшественники имеют ограничения в способности формировать различные типы клеток, вследствие коммитирования, но способны к активному размножению; в) клетки — бласты , вступившие в дифференцировку но сохраняющие способность к делению; г) созревающие клетки — заканчивающие дифференцировку; д) зрелые (дифференцированные) клетки, которые заканчивают гистогенетический ряд, способность к делению у них, как правило, исчезает, в ткани они активно функционируют; е) старые клетки — закончившие активное функционирование.

Уровень специализации клеток в популяциях дифферона возрастает от стволовых до зрелых клеток. При этом происходят изменения состава и активности ферментов, органоидов клеток. Для гистогенетических рядов дифферона характерен принцип необратимости дифференцировки , т.е. в нормальных условиях переход от более дифференцированного состояния к менее дифференцированному невозможен. Это свойство дифферона часто нарушается при патологических состояниях (злокачественные опухоли).

Пример дифференцировки структур с образованием мышечного волокна (последовательные стадии развития).

Зигота — бластоциста — внутренняя клеточная масса (эмбриобласт) — эпибласт — мезодерма — несегментированная мезодерма — сомит — клетки миотома сомита — миобласты митотические — миобласты постмитотические — мышечная трубочка — мышечное волокно.

В приведённой схеме от этапа к этапу ограничивается количество потенциальных направлений дифференцировки. Клетки несегментированной мезодермы имеют возможности (потенции) к дифференцировке в различных направлениях и образованию миогенного, хондрогенного, остеогенного и других направлений дифференцировки. Клетки миотома сомитов детерминированы к развитию только в одном направлении, а именно к образованию миогенного клеточного типа (поперечнополосатая мышца скелетного типа).

Клеточные популяции – это совокупность клеток организма или ткани, сходных между собой по какому-либо признаку. По способности к самообновлению путём деления клеток выделяют 4 категории клеточных популяций (по Леблону):

- Эмбриональная (быстро делящаяся клеточная популяция) – все клетки популяции активно делятся, специализированные элементы отсутствуют.

- Стабильная клеточная популяция – долгоживущие, активно функционирующие клетки, которые вследствие крайней специализации утратили способность к делению. Например, нейроны, кардиомиоциты.

- Растущая (лабильная) клеточная популяция – специализированные клетки которой способны делиться в определённых условиях. Например, эпителии почки, печени.

- Обновляющаяся популяция состоит из клеток, постоянно и быстро делящихся, а также специализированных функционирующих потомков этих клеток, продолжительность жизни которых ограничена. Например, эпителии кишечника, кроветворные клетки.

К особому типу клеточных популяций относят клон – группа идентичных клеток, происходящих от одной родоначальной клетки-предшественницы. Понятие клон как клеточной популяции часто используется в иммунологии, например, клон Т-лимфоцитов.

4. Регенерация тканей – процесс, обеспечивающий её обновление в ходе нормальной жизнедеятельности (физиологическая регенерация) или восстановление после повреждения (репаративная регенерация).

Камбиальные элементы – это популяции стволовых, полустволовых клеток-предшественников, а также бластных клеток данной ткани, деление которых поддерживает необходимое число ее клеток и восполняет убыль популяции зрелых элементов. В тех тканях, в которых не происходит обновления клеток путем их деления, камбий отсутствует. По распределению камбиальных элементов ткани различают несколько разновидностей камбия:

- Локализованный камбий – его элементы сосредоточены в конкретных участках ткани, например, в многослойном эпителии камбий локализован в базальном слое;

- Диффузный камбий – его элементы рассеяны в ткани, например, в гладкой мышечной ткани камбиальные элементы рассредоточены среди дифференцированных миоцитов;

- Вынесенный камбий – его элементы лежат за пределами ткани и по мере дифференцировки включаются в состав ткани, например, кровь содержит только дифференцированные элементы, элементы камбия находятся в органах кроветворения.

Возможность регенерации ткани определяется способностью ее клеток к делению и дифференцировке или уровнем внутриклеточной регенерации. Хорошо регенерируют ткани, которые имеют камбиальные элементы или представляют собой обновляющиеся или растущие клеточные популяции. Активность деления (пролиферации) клеток каждой ткани при регенерации контролируется факторами роста, гормонами, цитокинами, кейлонами, а также характером функциональных нагрузок.

Помимо тканевой и клеточной регенерации путем деления клеток существует внутриклеточная регенерация — процесс непрерывного обновления или восстановления структурных компонентов клетки после их повреждения. В тех тканях, которые являются стабильными клеточными популяциями и в которых отсутствуют камбиальные элементы (нервная ткань, сердечная мышечная ткань), данный тип регенерации является единственно возможным способом обновления и восстановления их структуры и функции.

Гипертрофия ткани – увеличение ее объема, массы и функциональной активности, — обычно является следствием а) гипертрофии клеток (при неизменном их числе) вследствие усиленной внутриклеточной регенерации; б) гиперплазии – увеличении числа ее клеток путем активации клеточного деления (пролиферации ) и (или) в результате ускорения дифференцировки новообразующихся клеток; в) сочетания обоих процессов. Атрофия ткани – снижение ее объема, массы и функциональной активности вследствие а) атрофии ее отдельных клеток вследствие преобладания процессов катаболизма, б) гибели части ее клеток, в) резкого уменьшения скорости деления и дифференцировки клеток.

5. Межтканевые и межклеточные отношения. Ткань поддерживает постоянство своей структурно-функциональной организации (гомеостаз) как единого целого только при условии постоянного влияния гистологических элементов друг на друга (внутритканевые взаимодействия), а также одних тканей на другие (межтканевые взаимодействия). Эти влияния можно рассматривать как процессы взаимного узнавания элементов, образования контактов и обмена информацией между ними. При этом формируются самые различные структурно-пространственные объединения. Клетки в ткани могут находиться на расстоянии и взаимодействовать друг с другом через межклеточное вещество (соединительные ткани), соприкасаться отростками, иногда достигающими значительной длины (нервная ткань), или образовывать плотно контактирующие клеточные пласты (эпителий). Совокупность тканей, объединенных в единое структурное целое соединительной тканью, координированное функционирование которого обеспечивается нервными и гуморальными факторами, образует органы и системы органов целого организма.

Для образования ткани необходимо, чтобы клетки объединились и были связаны между собой в клеточные ансамбли. Способность клеток избирательно прикрепляться друг к другу или к компонентам межклеточного вещества осуществляется с помощью процессов узнавания и адгезии, которые являются необходимым условием поддержания тканевой структуры. Реакции узнавания и адгезии происходят вследствие взаимодействия макромолекул специфических мембранных гликопротеидов, получивших название молекул адгезии . Прикрепление происходит с помощью особых субклеточных структур: а) точечных адгезионных контактов (прикрепление клеток к межклеточному веществу), б) межклеточных соединений (прикрепление клеток друг к другу).

Межклеточные соединения — специализированные структуры клеток, с помощью которых они механически скрепляются между собой, а также создают барьеры и каналы проницаемости для межклеточной коммуникации. Различают: 1) адгезионные клеточные соединения , выполняющие функцию межклеточного сцепления (промежуточный контакт, десмосома, полудесмасома), 2) замыкающие контакты , функция которых — образование барьера, задерживающего даже малые молекулы (плотный контакт), 3) проводящие (коммуникационные) контакты , функция которых состоит в передаче сигналов от клетки к клетке (щелевой контакт, синапс).

6. Регуляция жизнедеятельности тканей. В основе регуляции тканей – три системы: нервная, эндокринная и иммунная. Гуморальные факторы, обеспечивающие межклеточное взаимодействие в тканях и их метаболизм, включают в себя разнообразные клеточные метаболиты, гормоны, медиаторы, а также цитокины и кейлоны.

Цитокины являются наиболее универсальным классом внутри- и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях оказывают влияние на реакции клеточного роста, пролиферации и дифференцировки. Действие цитокинов обусловлено наличием рецепторов к ним на плазмолемме клеток-мишеней. Эти вещества переносятся кровью и обладают дистантным (эндокринным) действием, а также распространяются по межклеточному веществу и действуют локально (ауто- или паракринно). Важнейшими цитокинами являются интерлейкины (ИЛ), факторы роста , колониестимулирующие факторы (КСФ), фактор некроза опухоли (ФНО), интерферон . Клетки различных тканей обладают большим количеством рецепторов к разнообразным цитокинам (от 10 до 10000 на клетку), эффекты которых нередко взаимно перекрываются, что обеспечивает высокую надёжность функционирования этой системы внутриклеточной регуляции.

Кейлоны – гормоноподобные регуляторы пролиферации клеток: тормозят митозы и стимулируют дифференцировку клеток. Кейлоны действуют по принципу обратной связи: при уменьшении количества зрелых клеток (например, потеря эпидермиса при травме) количество кейлонов уменьшается, а деление малодифференцированных камбиальных клеток усиливается, что проводит к регенерации ткани.

наука, занимающаяся изучением тканей животных. Тканью называют группу клеток, сходных по форме, размерам и функциям и по продуктам своей жизнедеятельности. У всех растений и животных, за исключением самых примитивных, тело состоит из тканей, причем у высших растений и у высокоорганизованных животных ткани отличаются большим разнообразием структуры и сложностью своих продуктов; сочетаясь друг с другом, разные ткани образуют отдельные органы тела.

Гистология изучает ткани животных; исследование растительных тканей обычно относят к анатомии растений. Гистологию иногда называют микроскопической анатомией, поскольку она изучает строение (морфологию) организма на микроскопическом уровне (объектом гистологического исследования служат очень тонкие тканевые срезы и отдельные клетки). Хотя эта наука прежде всего описательная, в ее задачу также входит интерпретация тех изменений, которые происходят в тканях в норме и патологии. Поэтому гистологу необходимо хорошо разбираться в том, как формируются ткани в процессе эмбрионального развития, какова их способность к росту в постэмбриональный период и каким они подвергаются изменениям в различных естественных и экспериментальных условиях, в том числе в ходе своего старения и гибели составляющих их клеток.

История гистологии как отдельной ветви биологии тесно связана с созданием микроскопа и его совершенствованием. М.Мальпиги (1628-1694) называют «отцом микроскопической анатомии», а следовательно гистологии. Гистология обогащалась наблюдениями и методами исследования, проводившимися или создававшимися многими учеными, основные интересы которых лежали в области зоологии или медицины. Об этом свидетельствует гистологическая терминология, увековечившая их имена в названиях впервые описанных ими структур или созданных методов: островки Лангерганса, либеркюновы железы, купферовы клетки, мальпигиев слой, окраска по Максимову, окраска по Гимза и т.п.

В настоящее время получили распространение методы изготовления препаратов и их микроскопического исследования, дающие возможность изучать отдельные клетки. К таким методам относятся техника замороженных срезов, фазово-контрастная микроскопия, гистохимический анализ, культивирование тканей, электронная микроскопия; последняя позволяет детально изучать клеточные структуры (клеточные мембраны, митохондрии и др.). С помощью сканирующего электронного микроскопа удалось выявить интереснейшую трехмерную конфигурацию свободных поверхностей клеток и тканей, которую невозможно увидеть под обычным микроскопом.

Происхождение тканей . Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь - это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную систему. См. также ЭМБРИОЛОГИЯ. Основные типы тканей . Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань . Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих. Мышечная ткань . Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть. Соединительная ткань . Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов - костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена - белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира. Кровь . Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы - зернистых (гранулоциты) и незернистых (агранулоциты) - в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов - голубоватый оттенок, гранулы базофилов - пурпурный оттенок, гранулы нейтрофилов - слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие. См. также КРОВЬ. Нервная ткань . Нервная ткань состоит из высоко специализированных клеток - нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты - более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии. Замещение ткани и регенерация . На протяжении всей жизни организма постоянно происходит изнашивание или разрушение отдельных клеток, что составляет один из аспектов нормальных физиологических процессов. Кроме того, иногда, например в результате какой-то травмы, происходит утрата той или иной части тела, состоящей из разных тканей. В таких случаях для организма крайне важно воспроизвести утраченную часть. Однако регенерация возможна только в определенных границах. Некоторые относительно просто организованные животные, например планарии (плоские черви), дождевые черви, ракообразные (крабы, омары), морские звезды и голотурии, могут восстанавливать части тела, утраченные целиком по каким-либо причинам, в том числе в результате самопроизвольного отбрасывания (аутотомии). Чтобы произошла регенерация, недостаточно одного лишь образования новых клеток (пролиферации) в сохранившихся тканях; новообразованные клетки должны быть способны к дифференцировке, чтобы обеспечить замену клеток всех типов, входивших в утраченные структуры. У других животных, особенно у позвоночных, регенерация возможна лишь в некоторых случаях. Тритоны (хвостатые амфибии) способны регенерировать хвост и конечности. Млекопитающие лишены этой способности; однако и у них после частичного экспериментального удаления печени можно наблюдать в определенных условиях восстановление довольно значительного участка печеночной ткани. См. также РЕГЕНЕРАЦИЯ.

Более глубокое понимание механизмов регенерации и дифференцировки несомненно откроет много новых возможностей для использования этих процессов в лечебных целях. Фундаментальные исследования уже внесли большой вклад в развитие методов пересадки кожи и роговицы. В большинстве дифференцированных тканей сохраняются клетки, способные к пролиферации и дифференцировке, но существуют ткани (в частности, центральная нервная система у человека), которые, будучи полностью сформированными, не способны к регенерации. Примерно в годовалом возрасте центральная нервная система человека содержит положенное ей число нервных клеток, и хотя нервные волокна, т.е. цитоплазматические отростки нервных клеток, способны регенерировать, случаи восстановления клеток головного или спинного мозга, разрушенных в результате травмы или дегенеративного заболевания, неизвестны.

Классическими примерами замещения нормальных клеток и тканей в организме человека служит обновление крови и верхнего слоя кожи. Наружный слой кожи - эпидермис - лежит на плотном соединительнотканном слое, т.н. дерме, снабженной мельчайшими кровеносными сосудами, доставляющими ей питательные вещества. Эпидермис состоит из многослойного плоского эпителия. Клетки его верхних слоев постепенно трансформируются, превращаясь в тонкие прозрачные чешуйки - процесс, называемый ороговением; в конце концов эти чешуйки слущиваются. Такое слущивание особенно заметно после сильных солнечных ожогов кожи. У земноводных и пресмыкающихся сбрасывание ороговевшего слоя кожи (линька) происходит регулярно. Ежедневная утрата поверхностных клеток кожи компенсируется за счет новых клеток, поступающих из активно растущего нижнего слоя эпидермиса. Различают четыре слоя эпидермиса: наружный роговой слой, под ним - блестящий слой (в котором начинается ороговение, и его клетки при этом становятся прозрачными), ниже - зернистый слой (в его клетках накапливаются пигментные гранулы, что вызывает потемнение кожи, особенно под действием солнечных лучей) и, наконец, самый глубокий - зачатковый, или базальный, слой (в нем на протяжении всей жизни организма происходят митотические деления, дающие новые клетки для замены слущивающихся).

Клетки крови человека и других позвоночных тоже постоянно обновляются. Каждому типу клеток свойственна более или менее определенная продолжительность жизни, по истечении которой они разрушаются и удаляются из крови другими клетками - фагоцитами («пожирателями клеток»), специально приспособленными для этой цели. Новые кровяные клетки (взамен разрушившихся) образуются в кроветворных органах (у человека и млекопитающих - в костном мозге). Если потеря крови (кровотечение) или разрушение клеток крови под действием химических веществ (гемолитических агентов) наносят клеточным популяциям крови большой ущерб, кроветворные органы начинают продуцировать больше клеток. При потере большого количества эритроцитов, снабжающих ткани кислородом, клеткам тела угрожает кислородное голодание, особенно опасное для нервной ткани. При недостатке лейкоцитов организм теряет способность сопротивляться инфекциям, а также удалять из крови разрушившиеся клетки, что само по себе ведет к дальнейшим осложнениям. В нормальных условиях потеря крови служит достаточным стимулом для мобилизации регенеративных функций кроветворных органов.

Выращивание тканевой культуры требует определенных навыков и оборудования, однако это важнейший метод изучения живых тканей. Кроме того, он позволяет получить дополнительные данные о состоянии тканей, изучавшихся обычными гистологическими методами.

Микроскопические исследования и гистологические методы . Даже самый поверхностный осмотр позволяет отличить одни ткани от других. Мышечную, костную, хрящевую и нервную ткани, а также кровь можно распознать невооруженным глазом. Однако для детального исследования необходимо изучать ткани под микроскопом при большом увеличении, позволяющем увидеть отдельные клетки и характер их распределения. Под микроскопом можно исследовать влажные препараты. Пример такого препарата - мазок крови; для его изготовления наносят каплю крови на предметное стекло и размазывают по нему в виде тонкой пленки. Однако эти методы обычно не позволяют получить полную картину распределения клеток, а также участков, в которых ткани соединяются . Живые ткани, извлеченные из тела, подвергаются быстрым изменениям; между тем любое самое незначительное изменение ткани ведет к искажению картины на гистологическом препарате. Поэтому очень важно сразу же после извлечения ткани из организма обеспечить ее сохранность. Это достигается с помощью фиксаторов - жидкостей различного химического состава, которые очень быстро убивают клетки, не искажая детали их строения и обеспечивая сохранение ткани в этом - фиксированном - состоянии. Состав каждого из многочисленных фиксаторов был разработан в результате многократного экспериментирования, и тем же способом многократных проб и ошибок было установлено нужное соотношение в них разных компонентов.

После фиксации ткань обычно подвергают обезвоживанию. Поскольку быстрый перенос в спирт высокой концентрации привел бы к сморщиванию и деформации клеток, обезвоживание производят постепенно: ткань проводят через ряд сосудов, содержащих спирт в последовательно возрастающей концентрации, вплоть до 100%. После этого ткань обычно переносят в жидкость, хорошо смешивающуюся с жидким парафином; чаще всего для этого используют ксилол или толуол. После кратковременного выдерживания в ксилоле ткань способна поглощать парафин. Пропитывание ведется в термостате, чтобы парафин оставался жидким. Всю эту т.н. проводку производят вручную или же помещают образец в специальный прибор, который проделывает все операции автоматически. Используется и более быстрая проводка с использованием растворителей (например, тетрагидрофурана), способных смешиваться как с водой, так и с парафином.

После того как кусочек ткани полностью пропитался парафином, его помещают в небольшую бумажную или металлическую форму и добавляют в нее жидкий парафин, заливая им весь образец. Когда парафин затвердеет, получается твердый блок с заключенной в нем тканью. Теперь ткань можно нарезать. Обычно для этого используют специальный прибор - микротом. Образцы тканей, взятые во время операции, можно нарезать, предварительно заморозив, т.е. не проводя обезвоживания и заливки в парафин.

Описанную выше процедуру приходится несколько модифицировать, если ткань, например кость, содержит твердые включения. Минеральные компоненты кости необходимо предварительно удалить; для этого ткань после фиксации обрабатывают слабыми кислотами - этот процесс называют декальцинированием. Наличие в блоке кости, не подвергшейся декальцинированию, деформирует всю ткань и повреждает режущий край ножа микротома. Можно, однако, распилив кость на мелкие кусочки и обтачивая их каким-либо абразивом, получить шлифы - чрезвычайно тонкие срезы кости, пригодные для изучения под микроскопом.

Микротом состоит из нескольких частей; главные из них - нож и держатель. Парафиновый блок прикрепляют к держателю, который перемещается относительно края ножа в горизонтальной плоскости, а сам нож при этом остается неподвижным. После того как получен один срез, держатель при помощи микрометрических винтов продвигают вперед на определенное расстояние, соответствующее желаемой толщине среза. Толщина срезов может достигать 20 мкм (0,02 мм) или составлять всего 1-2 мкм (0,001-0,002 мм); она зависит от размеров клеток в данной ткани и обычно колеблется от 7 до 10 мкм. Срезы парафиновых блоков с заключенной в них тканью помещают на предметное стекло. Далее удаляют парафин, помещая стекла со срезами в ксилол. Если нужно сохранить в срезах жировые компоненты, то для заливки ткани вместо парафина используют карбовакс - синтетический полимер, растворимый в воде.

После всех этих процедур препарат готов для окрашивания - очень важного этапа изготовления гистологических препаратов. В зависимости от типа ткани и характера исследования применяют разные методы окрашивания. Эти методы, как и методы заливки ткани, вырабатывались в ходе многолетнних экспериментов; однако постоянно создаются и новые методы, что связано как с развитием новых направлений исследований, так и с появлением новых химических веществ и красителей. Красители служат важным инструментом гистологического исследования в силу того, что они по-разному поглощаются разными тканями или их отдельными компонентами (клеточными ядрами, цитоплазмой, мембранными структурами). В основе окрашивания лежит химическое сродство между сложными веществами, входящими в состав красителей, и определенными компонентами клеток и тканей. Красители применяют в виде водных или спиртовых растворов, в зависимости от их растворимости и выбранного метода. После окрашивания препараты промывают в воде или спирте, чтобы удалить избыток красителя; после этого окрашенными остаются только те структуры, которые поглощают данный краситель.

Чтобы препарат сохранялся в течение достаточно долгого времени, окрашенный срез накрывают покровным стеклом, смазанным каким-нибудь клейким веществом, которое постепенно затвердевает. Для этого используют канадский бальзам (природная смола) и различные синтетические среды. Приготовленные таким образом препараты можно хранить годами. Для изучения тканей в электронном микроскопе, позволяющем выявить ультраструктуру клеток и их компонентов, применяют другие методы фиксации (обычно с использованием осмиевой кислоты и глутаральдегида) и другие среды для заливки (обычно эпоксидные смолы). Специальный ультрамикротом со стеклянным или алмазным ножом позволяет получать срезы толщиной менее 1 мкм, а постоянные препараты монтируют не на предметных стеклах, а на медных сеточках. Недавно были созданы методы, позволяющие применять ряд обычных гистологических процедур окрашивания после того, как ткань была подвергнута фиксации и заливке для электронной микроскопии.

Для описанного здесь трудоемкого процесса необходим квалифицированный персонал, однако при массовом производстве микроскопических препаратов используют конвейерную технологию, при которой многие этапы обезвоживания, заливки и даже окрашивания производятся автоматическими приборами для проводки тканей. В тех случаях, когда необходимо срочно поставить диагноз, в частности во время хирургической операции, ткани, полученные при биопсии, быстро фиксируют и замораживают. Срезы таких тканей изготавливают за несколько минут, не заливают и сразу окрашивают. Опытный патоморфолог может по общему характеру распределения клеток сразу поставить диагноз. Однако для детального исследования такие срезы непригодны.

Гистохимия . Некоторые методы окрашивания позволяют выявлять в клетках те или иные химические вещества. Возможно дифференциальное окрашивание жиров, гликогена, нуклеиновых кислот, нуклеопротеинов, определенных ферментов и других химических компонентов клетки. Известны красители, интенсивно окрашивающие ткани с высокой метаболической активностью. Вклад гистохимии в изучение химического состава тканей постоянно возрастает. Подобраны красители, флуорохромы и ферменты, которые можно присоединить к специфическим иммуноглобулинам (антителам) и, наблюдая связывание этого комплекса в клетке, идентифицировать клеточные структуры. Эта область исследований составляет предмет иммуногистохимии. Использование иммунологических маркеров в световой и электронной микроскопии способствует быстрому расширению наших знаний о биологии клетки, а также повышению точности медицинских диагнозов. «Оптическое окрашивание » . Традиционные гистологические методы окрашивания сопряжены с фиксацией, которая убивает ткани. Методы оптического окрашивания основаны на том, что клетки и ткани, различающиеся по толщине и химическому составу, обладают и разными оптическими свойствами. В результате, используя поляризованный свет, дисперсию, интерференцию или фазовый контраст, удается получать изображения, на которых отдельные детали строения хорошо видны благодаря различиям в яркости и (или) окраске, тогда как в обычном световом микроскопе такие детали малоразличимы. Эти методы позволяют изучать как живые, так и фиксированные ткани и исключают появление артефактов, возможных при использовании обычных гистологических методов. См. также АНАТОМИЯ РАСТЕНИЙ. ЛИТЕРАТУРА Хэм А., Кормак Д. Гистология , тт. 1-5. М., 1982-1983

Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций.

Ткань закладывается в эмбриогенезе из зародышевых листков.

Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, неврогенная ткань и мезотелий (серозные оболочки).

Из энтодермы - эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы).

Направленность развития (дифференцировки клеток) обусловлена генетически - детерминация.

Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток - дифферон.

Ткани образуют органы. В органах выделяют строму образованную соединительными тканями, и паренхиму. Все ткани регенерируют.

Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

а) путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

б) внутриклеточная регенерация - она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл, которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение (Ник. Григ. Хлопин Х И морфофункциональные Ал. Ал. Заварзин). Согласно этой классификации структура определяется функцией ткани.

Первыми возникли эпителиальные или покровные ткани, важнейшие функции - защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая - поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу - кровь и лимфу - жидкие ткани.

Следующие - мышечные (сократительные) ткани. Основное свойство - сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань - умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань - внутриклеточная регенерация, и скелетную ткань - регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация. Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать, но сами нервные клетки (нейроны) - высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации - от клеточного до внутриклеточного.

Эпителиальные ткани

Это наиболее древние и наиболее распространённые в организме. Развиваются из всех трёх зародышевых листков. Выполняют защитную и барьерную функцию, обменную, трофическую, секреторную и выделительную.

Они подразделяются на покровные, которые выстилают тело и все полости, имеющиеся в организме, и железистые, которые вырабатывают и выделяют секрет. Все эпителиальные ткани являются пластом эпителиальных клеток. В них крайне мало межклеточного вещества. Эпителиальные клетки плотно прилегают друг к другу и прочно соединены клеточными контактами.

Для эпителиальных клеток характерна полярность - в базальной части почти всегда находятся ядро и органеллы. Здесь идёт синтез секретов, в верхушечной части накапливаются гранулы секрета и там располагаются микроворсинки и реснички. Полярность характерна для эпителиального пласта в целом. Внутри клетки содержат тонофибриллы, они выполняют функцию каркаса. Эпителиальный пласт всегда лежит на базальной мембране, которая содержит фибриллы и аморфное вещество и регулирует проницаемость. Под базальной мембраной находится рыхлая соединительная ткань, которая содержит кровеносные сосуды. Из них питательные вещества через базальную мембрану поступают в эпителий, а продукты обмена в обратном направлении. В самом эпителиальном пласте сосудов нет. Все эпителиальные ткани отличаются высокой способностью к регенерации за счёт деления и дифференцировки стволовых клеток. Регенерация усиливается при снижении концентрации в эпителиальной ткани кибионов.

Эпителий содержит большое число рецепторов. В эпителиях находятся иммунокомпетентные клетки. Это лимфоциты памяти и макрофаги, которые обеспечивают местный иммунитет. Покровный эпителий. Для него существует гистогенетическая классификация Хлопина. На первое место он поставил происхождение эпителия, поэтому его классификация имеет большое значение в онкологии в связи с метастазами опухолей. По филогенетической классификации эпителии делят на 5 типов:

1) эпидермальные эпителии эктодермального происхождения (кожные),

2) энтеродермальные эпителии кишечного типа,

3) целонефродермальные эпителии (почечного типа и целомический эпителий полостей - мезотелий),

4) ангиодермальный эпителий (эндотелий лимфатических и кровеносных сосудов и выстилка полостей сердца),

5) эпендимоглиальные эпителии (выстилка желудочков мозга и центрального канала спинного мозга).

Более распространена морфофункциональная классификация Заварзина. По ней все покровные ткани делятся на однослойные и многослойные эпителии.

Ведущей функцией однослойных эпителиев является обменная функция. Однослойные делятся на: однорядные, которые в зависимости от формы клеток подразделяются на: плоский эпителий, кубический эпителий, цилиндрический или призматический эпителий, и многорядный - эпителий, в котором все клетки лежат на базальной мембране, но имеют разную высоту, поэтому их ядра располагаются на разных уровнях, что при световой микроскопии создает впечатление многослойности (многорядности).

Выделяют многослойный эпителий, содержащий несколько слоев, этот эпителий плоский. Ведущая функция - защитная. Он подразделяется на плоский неороговевающий плоский ороговеваюший и многослойный переходный эпителий.

Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность - мезотелий - развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских полигональной формы клеток, связанных между собой неровными краями. Клетки имеют одно, реже два уплощенных ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза. Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апикальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает мелкие выводные протоки поджелудочной железы, желчные протоки и почечные канальцы.

Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, почках, половых железах и половых путях. При этом строение и функция определяется его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией, которая зависит от среды, с которой контактирует эпителий (в желудке 1,5 суток, в кишечнике 2-2,5 суток), у детей регенерация идет быстрее.

Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым „эпителием. В каёмчатом эпителии кишечника преобладают каёмчатые клетки - энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистые бокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет эктрдермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные - это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоев. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них - стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.

Многослойный плоский ороговеваюший эпителий - эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоев:

Базальный слой - содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты)

Шиповатый слой - клетки полигональной формы, в них содержатся тонофибриллы.

Зернистый слой - клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения

Блестящий слой - узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.

Роговой слой - содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.

В тонкой коже, которая не испытывает нагрузки, отсутствует зернистый и блестящий слой.

Многослойный кубический и цилиндрический эпителий встречаются крайне редко - в области конъюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями. Переходный эпителий (уроэпитлий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток - крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от действия мочи.

Железистый эпителий - разновидность эпителиальной ткани, которая состоит из эпителиальных железистых клеток, которые в процессе эволюции приобрели ведущее свойство вырабатывать и выделять секреты. Такие клетки называются секреторными (железистыми) - гландулоцитами. Они имеют точно такую же общую характеристику как покровный эпителий.

Секреторный цикл железистых клеток содержит несколько фаз.

1 - поступление в клетку исходных веществ из кровеносных капилляров.

2 - синтез и накопление секрета.

3 - выделение секрета.

Механизм выделения секрета определяется его плотностью, вязкостью. По характеру вырабатываемого секрета железистые клетки подразделяются на белковые, слизистые и сальные.

Очень жидкие секреты, как правило, белковые (напр.: слюнной секрет) выделяется по мерокриновому типу, клетка не разрушается.

Более вязкий секрет (напр., потовый секрет, молочный секрет) выделяется по апокриновому типу. При этом от верхушки отделяется часть клетки в виде капель, которые содержат секрет. Верхушка клетки разрушается.

Очень вязкий секрет (сальный секрет) выделяется при полном разрушении клетки - голокриновый тип секреции.

4- восстановление (регенерация) клетки, который идёт за счёт внутриклеточной регенерации для клеток, функционирующих по мерокриновому и апокриновому типам; при голокриновом типе секреции за счёт пролиферации стволовых клеток. Процесс регенерации идёт интенсивно.

Железистый эпителий входит в состав желез, образует железы, а железы - это органы. Они также возникают в процессе эволюции (филогенеза). В эмбриогенезе часть эпителиального пласта погружается в подлежащую соединительную ткань и превращается в железистый эпителий, который участвует в формировании желез.

Если связь с покровным эпителием утрачивается, то такие железы становятся эндокринными и свой секрет - гормон - они диффузно выделяют в кровь. Если связь желез сохраняется с покровным эпителием с помощью выводного протока, то такие железы называются экзокринными.

В экзокринных железах выделяют секреторный отдел, в которых вырабатывается секрет, и выводной проток. Через него секрет выводится (попадает) на поверхность покровного эпителия или в полость органов.

Основная масса желез - многоклеточные и лишь одна железа одноклеточная - бокаловидная слизистая клетка. Эта клетка располагается эндоэпителиально, а все другие железы - экзоэпителиальные и располагаются либо в стенке органов, либо образуют крупные самостоятельные органы. По строению железы подразделяются на простые и имеют один выводной проток и сложные (у них несколько выводных протоков, они ветвятся).

Различают неразветвлённые железы, когда в один выводной проток открывается один секреторный отдел, и разветвлённые, когда в один выводной проток открывается несколько выводных протоков.

По форме секреторного отдела различают альвеолярные железы, трубчатые железы и альвеолярно-трубчатые. По характеру вырабатываемого и выделяемого секрета железы делятся на белковые, слизистые, белково-слизистые и сальные железы.

Железы эктодермального происхождения являются многослойными и в секреторных отделах, и в мелких выводных протоках. Они содержат миоэпителиальные клетки, у которых маленькое тело и тонкие длинные отростки, которыми они охватывают снаружи секреторные клетки и эпителии выводных протоков. Сокращаясь, они способствуют выведению по протокам.

Железы энтодермального происхождения однослойные.

Все железы помимо железистого эпителия содержат соединительную ткань и большое количество кровеносных капилляров.

Железы характеризуются высокой способностью к регенерации. Все крупные железы являются сложными и разветвлёнными.

Опорно-трофические ткани

Они содержат клетки, межклеточное вещество в них хорошо выражено и занимает большой объём. В нём выделяют основное вещество и волокнистые структуры. Соединительные ткани выполняют опорную, формообразующую стромальную функции, также трофическую функцию. За счёт этого поддерживается гомеостаз - постоянство внутренней среды: выполняют как специфическую, так и неспецифическую защитные функции, пластическую функцию. Она отличается высокой способностью к регенерации.

Все разновидности соединительной ткани отличаются количеством и разнообразием клеточного состава, объёмом межклеточного вещества, количеством и степенью упорядоченности расположения волокон в межклеточном веществе.

В группе опорно-трофических тканей особое место занимают жидкие ткани - кровь и лимфа, все остальные объединены под названием соединительных тканей.

Все соединительные ткани подразделяются на:

Собственно соединительные ткани (волокнистые). Здесь выделяют рыхлую неоформленную соединительную ткань, плотные ткани, которые делят на плотную неоформленную соединительную ткань и плотную оформленную соединительную ткань.

Соединительные ткани со специальными свойствами. Сюда входит ретикулярная ткань, жировая, слизистая и пигментная ткани.

Скелетные соединительные ткани. К ним относятся хрящевые и костные ткани.

Рыхлая неоформленная соединительная ткань

Входит в состав кожи, сопровождает все кровеносные сосуды, лимфатические сосуды, нервы и входит в состав внутренних органов.

Она отличается чрезвычайным разнообразием клеточного состава, большим объёмом межклеточного вещества. Основное вещество полужидкое, студенистое, слабо минерализованное и в нём без какого-либо порядка находятся волокнистые структуры. Рыхлая соединительная ткань образует строму большинства органов и сопровождает кровеносные и лимфатические сосуды.

Основные функции: трофическая, защитная и она отличается наибольшей способностью к регенерации.

Среди клеток преобладают фибробласты. Это крупные отросчатые клетки, в них крупное овальное ядро, широкая цитоплазма, в которой в большом количестве находятся канальцы гранулярной эндоплазматической сети. Ведущей является белоксинтезирующая функция. Они вырабатывают межклеточное вещество (гликопротеины, протеогликаны, коллагеновые и эластиновые волокна). Часть из них является стволовыми, они способны быстро пролиферировать и дифференцироваться. За счёт фибробластов идёт быстрая регенерация рыхлой соединительной ткани. Функция фибробластов регулируется гормонами надпочечников [минералокортикоиды клубочковой зоны коры надпочечников усиливают коллагенообразование, а глюкокортикоиды пучковой зоны - ослабляют]. Фибробласты со временем превращаются в фиброциты - это мелкие клетки веретеновидной формы с мелким плотным ядром. Они утрачивают способность к пролиферации и белоксинтезирующую функцию. Макрофаги по размерам меньше фибробластов, у них базофильное округлое или овальное ядро, чёткие гранулы, цитоплазма образует выросты, в момент фагоцитоза хорошо развит лизосомальный аппарат. Они фагоцитируют (захватывают) чужеродные клетки, микроорганизмы, антигенные структуры, переваривают их внутри, т.е. участвуют в неспецифической защите. Они переводят корпускулярную форму антитела в молекулярную форму, и передаёт информацию об антигене другим иммунокомпетентным клеткам лимфоцитам. Они участвуют в специфической иммунной защите. Мечниковым обосновано учение о макрофагической системе. Моноциты из крови выходят в ткани и органы и там превращаются в макрофаги. При этом в разных органах и тканях приобретает свои особенности строения и специальные названия, но функции свои сохраняют. Макрофаги способны синтезировать и секретировать в окружающую ткань пирогены, лизоцим, интерлейкин I и др.

Среди клеток рыхлой соединительной ткани выделяют плазматические клетки. Они образуются из В-лимфоцитов крови и выделяют антитела в ответ на антигенное раздражение. Мелкие, округлой или овальной формы, резко базофильное эксцентрично расположенное ядро, у них сильно развита гранулярная эндоплазматическая сеть, перед ядром более светлый участок - пластинчатый комплекс. Эти клетки вырабатывают иммуноглобулины (антитела).

Рядом с кровеносными капиллярами располагаются базофильные или тучные клетки, лаброциты. Они развиваются из базофилов крови. Это крупные клетки, цитоплазма заполнена большим числом базофильных гранул, которые содержат биологически активные вещества – гепарин, гистамин и многие другие, которые выделяются из клеток. Гистамин усиливает проницаемость стенки капилляров и межклеточного вещества, гепарин снижает свёртываемость крови и проницаемость стенки капилляров и межклеточного вещества.

Среди клеток рыхлой соединительной ткани встречаются жировые клетки (липоциты). Они располагаются одиночно или небольшими скоплениями, шаровидные, в цитоплазме содержат крупную жировую каплю, а ядро и органеллы смещены на периферию. Также содержатся пигментные клетки или пигментоциты. Это отросчатые клетки с большим количеством пигмента, развивающиеся из нервного гребешка (эктодермы).

Постепенно в рыхлую соединительную ткань из крови поступают нейтрофильные и эозинофильные лейкоциты, лимфоциты.

Адвентициальные клетки. Они идут по ходу капилляров, веретеновидной формы, это стволовые клетки. Вероятно, они способны пролиферировать и дифференцироваться в фибробласты, липоциты, а также участвуют в регенерации кровеносных капилляров.

Вокруг кровеносных капилляров расположены клетки перициты. Они лежат в складках базальной мембраны.

В межклеточном веществе по объёму преобладает основное вещество, оно студенистое, полужидкое, в нём мало минеральных веществ, очень много воды, немного органических соединений, среди которых практически отсутствуют липиды, а преобладают гликопротеины. Среди них преобладают гликозаминогликаны (а именно, гиалуроновая кислота). В них имеются тканевые каналы, по которым движется тканевая жидкость, несущая питательные вещества из крови к рабочим клеткам, а продукты обмена в обратном направлении - от рабочих клеток к кровеносным капиллярам. Чем больше гликозаминогликанов, тем хуже проницаемость соединительной ткани.

В основном веществе рыхло, беспорядочно располагаются волокна. Среди волокон выделяют коллагеновые волокна - широкие, лентовидные, извитые. Они построены из белка коллагена. Основу коллагена составляют три полипептидных цепочки из аминокислот. Аминокислоты располагаются строго последовательно и определяют прочность волокна, его поперечную исчерченность и тип коллагенового волокна. Известно 12 типов коллагена. Они нерастяжимы, но их способность растягиваться усиливается в водной среде, особенно в слабокислых и слабощелочных растворах. Коллагеновые волокна определяют прочность ткани.

Эластические волокна - тонкие разветвлённые волокна, растяжимы, эластичны, но менее прочны. Основа - белок эластин, молекулы которого в волокне располагаются хаотично.

Ретикулярные волокна. Основа - белок коллаген, снаружи покрыты углеводной плёнкой; тоньше, чем коллагеновые и разветвлённые, создаётся трёхмерная сеть. Входит в состав многих органов, но особенно много в органах кроветворения (в селезенке, лимфоузлах). Волокна коллагена "прячутся"1 от красителя в складках цитолеммы фибробластов, поэтому их выявляют специальными способами, например: солями серебра (отсюда другое их название - аргирофильные волокна).

Воспалительная реакция

Клетки крови и соединительной ткани участвуют в защитной реакции. Это неспецифическая реакция развивается на любом повреждении, на внедрение инородного тела, следовательно реагируют тучные клетки (тканевые базофилы). Они выделяют гистамин гепарин, которые вызывают повышение проницаемости стенки капилляров и основного вещества соединительной ткани. Расширяются капилляры, усиливается кровоток (гиперемия). Нейтрофильные лейкоциты в большом количестве из крови выходят в соединительную ткань и направляются к зоне повреждения и образуют вокруг инородного тела лейкоцитарный вал (через 5-6 часов). Это соответствует лейкоцитарной фазе воспалительной реакции. Нейтрофильные лейкоциты фагоцитируют микроорганизмы, токсические вещества и быстро погибают.

Из крови в ткань поступают моноциты, они становятся макрофагами в ткани. Образовавшиеся макрофаги мигрируют в зону вала и там фагоцитируют разрушенные, погибшие клетки, инородные частицы и погибшие Нейтрофильные лейкоциты - макрофагическая фаза.

Позднее пролиферируют фибробласты, которые выбрасывают коллагеновые волокна, заполняющие зону повреждения и выталкивающие инородное тело, или формируют вокруг него соединительнотканную капсулу, отграничивающую его от окружающей ткани. Это фибробластическая фаза.

Плотная оформленная (волокнистая) соединительная ткань.

Они отличаются меньшим количеством клеток, клеточный состав менее разнообразен. В межклеточном веществе содержатся волокна и очень мало основного вещества.

В плотной неоформленной соединительной ткани коллагеновые волокна образуют пучки и в пучке они идут параллельно, и между ними находится небольшое количество фибробластов и фиброцитов. Пучки волокон переплетаются и образуют прочную сетевидную структуру. Между пучками располагаются тонкие прослойки рыхлой соединительной ткани с гемокапиллярами (кровеносными капиллярами). Эта ткань образует сетчатый слой кожи.

В плотной оформленной соединительной ткани все волокна идут плотно и параллельно друг другу. Из этой ткани образуются фиброзные мембраны - капсулы органов, апоневрозы, твёрдая мозговая оболочка, связки и сухожилия. В сухожилиях коллагеновые волокна (пучок первого порядка) располагаются параллельно, плотно, между ними - фиброциты фибробластов нет. Несколько коллагеновых волокон образуют пучок второго порядка. Между ними лежит тонкая прослойка рыхлой соединительной ткани с кровеносными капиллярами - эндотеноний.

Пучки второго порядка объединяются в пучки третьего порядка, которые разделяются перитенонием - более широкая прослойка. Способность к регенерации очень низкая.

Соединительные ткани со специальными свойствами

Ретикулярная ткань. Состоит из отросчатых ретикулярных клеток, которые соединяются отростками, и образуют сеть. По ходу их отростков идут ретикулярные волокна. Эта ткань составляет строму кроветворных органов, является микроокружением, то есть создаёт условия для кроветворения. Очень хорошо регенерирует.

Жировая ткань - может быть белая и бурая. Белая жировая ткань характерна для взрослых, содержит скопления жировых клеток, которые образуют жировые дольки. Между ними идут прослойки рыхлой соединительной ткани с кровеносными капиллярами. Жировые клетки накапливают нейтральный жир. Объём клетки меняется. Белая жировая ткань образует подкожную жировую клетчатку, капсулу вокруг органов. Служит источником воды, энергии. Бурый жир присутствует в эмбриогенезе и у новорождённых. Он более энергоёмкий.

Пигментная ткань. Представлена скоплениями пигментных клеток в определенных участках тела (сетчатка глаза, радужна, сосок, родимые пятна).

Слизистая ткань. В норме имеется в эмбриогенезе и в пуповине, содержит студенистое полужидкое основное вещество, богатое гликозаминогликанами. и в нём располагаются в небольшом количестве мукоциты (сходны с фибробластами) и редкие тонкие коллагеновые волокна.

Хрящевые ткани. Они выполняют механическую, опорную, защитную функции. В них упругое плотное межклеточное вещество. Содержание воды до 70- 80%, минеральных веществ до 4-7%, органические вещества составляют до 10-15%, и в них преобладают белки, углеводы и крайне мало липидов. В них выделяются клетки и межклеточное вещество. Клеточный состав всех разновидностей хрящевых тканей одинаковый и включает хондробласты - малодифференцированные, уплощенные клетки с базофильной цитоплазмой, они способны пролиферировать и вырабатывать межклеточное вещество. Хондробласты дифференцируются в молодые хондроциты, приобретают овальную форму. Они сохраняют способность к пролиферации и выработке межклеточного вещества. Затем малые дифференцируются в более крупные, округлые зрелые хондроциты. Они утрачивают способность к пролиферации и выработке межклеточного вещества. Зрелые хондроциты в глубине хряща скапливаются в одной полости и называются изогенными группами клеток.

Отличаются хрящевые ткани строением межклеточного вещества и волокнистыми структурами. Различают гиалиновую, эластическую и волокнистую хрящевые ткани. Они участвуют в образовании хрящей и образуют гиалиновый, эластический и волокнистый хрящ.

Гиалиновый хрящ выстилает суставные поверхности, находится в зоне соединения рёбер с грудиной и в стенке воздухоносных путей. Снаружи покрыт надхрящницей - перихондрий, который содержит кровеносные сосуды. Её периферическая часть состоит из более плотной соединительной ткани, а внутренняя часть из рыхлой, содержит фибробласты и хондробласты. Хондробласты вырабатывают и выделяют межклеточное вещество и обусловливают аппозиционный рост хряща. В периферической части собственно хряща находятся молодые хондроциты. Они пролиферируют, вырабатывают и выделяют хондромукой (хондроитинсульфаты * протеогликаны), обеспечивая рост хряща изнутри.

В средней части хряща находятся зрелые хондроциты и изогенные группы клеток. Между клетками располагается межклеточное вещество. Оно содержит основное вещество и коллагеновые волокна. Сосуды отсутствуют, питается он диффузно из сосудов надкостницы. В молодом хряще межклеточное вещество оксифильное, постепенно становится базофильным. С возрастом, начиная с центральной части, в нём откладываются соли кальция, хрящ обызвествляется. становится хрупким, ломким.

Эластический хрящ - образует основу ушной раковины, в стенке воздухоносных путей. Он аналогичен по строению гиалиновому хрящу, но содержит не коллагеновые, а эластические волокна, и в норме он никогда не обызвествляется.

Волокнистый хрящ - он находится в зоне перехода связок, сухожилий с костной тканью, в участке, где кости покрыты гиалиновым хрящом и в зоне межпозвоночных соединений. В нем грубые пучки коллагеновых волокон идут продольно оси натяжения, являясь продолжением сухожильных нитей. Волокнистый хрящ в области прикрепления к кости больше похож на гиалиновый хрящ, а в области перехода в сухожилие - на сухожилие.

Костные ткани

Они формируют костный скелет тела человека. Для костной ткани характерна очень высокая степень минерализации (70%), в основном за счет фосфата кальция. Межклеточное вещество представлено преимущественно коллагеновыми волокнами, основного склеивающего вещества очень мало. Из органических веществ в основном преобладают коллагеновые белки.

Различают следующие виды костной ткани:

Грубоволокнистую или ретикулярно-фиброзную ткань. Эта ткань имеется в эмбриогенезе. У взрослых из нее построены швы плоских костей черепа:

Пластинчатую костную ткань.

Клеточный состав этих двух видов тканей одинаков. Есть остеобласты - клетки образующие костную ткань. Они крупные, округлой или кубической формы, с хорошо развитым белоксинтезирующим аппаратом, вырабатывающим коллагеновые волокна. Этих клеток много в растущем организме и при регенерации костей. Остеобласты превращаются в остеоциты. У них мелкое овальное тело и длинные тонкие отростки, которые располагаются в костных канальцах, анастомозируют между собой. Эти клетки не делятся, не вырабатывают межклеточное вещество.

Остеокласты - очень крупные клетки. Они происходят из моноцитов крови, являются макрофагами костной ткани, многоядерные, в них хорошо развит лизосомальный аппарат и на одной из поверхностей имеются микроворсинки. Из клетки в зону микроворсинок выделяются гидролитические ферменты, которые расщепляют белковую матрицу кости, в результате чего высвобождается и вымывается из костей кальций.

Межклеточное вещество содержит коллагеновые (оссеиновые) волокна. Эти волокна широкие, лентовидной формы и в пластинчатой костной ткани располагаются параллельно и прочно склеены между собой основным веществом. Именно эти волокна образуют костные пластинки.

В соседних костных пластинках коллагеновые волокна идут под разными углами, за счет этого достигается высокая прочность костной ткани. Между костными пластинками находятся тела остеоцитов, отростки которых пронизывают костные пластинки. В грубоволокнистой костной ткани костные волокна идут беспорядочно, переплетаются друг с другом и образуют пучки. Между волокнами залегают остеоциты.

Кости взрослого человека построены из пластинчатой костной ткани, причем она формирует компактное вещество кости, содержащее остеоны и губчатое вещество кости (в нем остеоны отсутствуют).

Эпифизы трубчатых костей построены из губчатой костной ткани, а диафизы - из компактного костного вещества.

Строение диафиза трубчатой кости

Снаружи диафиз покрыт надкостницей или периостом. Ее наружный слой построен из более плотной волокнистой соединительной ткани, а внутренний - из более рыхлой. Во внутреннем слое находятся фибробласты и остеобласты, в надкостнице располагаются кровеносные сосуды и рецепторы.

Из надкостницы прободающие коллагеновые волокна внедряются в вещество кости, поэтому надкостница очень плотно связана с веществом кости. Далее располагается собственно вещество кости, которое построено из пластинчатой костной ткани - компактное вещество, содержащее остеоны. Пластинки образуют 3 слоя. Наружный слой общих пластинок содержит крупные концентрические пластинки. Внутренний слой общих пластинок располагается ближе к костномозговому каналу. Эти пластинки более мелкие, чем наружные. Изнутри костный выстлан рыхлой соединительной тканью, которая содержит кровеносные сосуды и называется эндостом.

Между наружным и внутренним слоями располагается остеонный слой. Этот слой содержит остеоны - это структурно-функциональные единицы кости. Остеон содержит костные пластинки в виде цилиндров разного диаметра. При этом мелкие цилиндры вставлены в более крупные, располагаются они продольно оси диафиза. Внутри остеома находится канал, содержащий кровеносный сосуд. Эти сосуды соединяются.

Между остеонами находятся вставочные пластинки - остатки разрушающихся остеонов. В норме разрушение и восстановление остеонов происходит постоянно.

Между костными пластинками во всех слоях находятся остеоциты, отростки которых по костным канальцам пронизывают все вещество кости и в ней формируется сильно разветвленная сеть костных канальцев по которым мигрирует тканевая жидкость.

Кровеносные сосуды (артерии) из надкостницы по прободающим каналам попадают в остеон, затем проходят по каналам остеонов, соединяются между собой. Питательные вещества из сосудов поступают в каналы остеона и по системе канальцев быстро распространяются во все участки костной ткани.

В эпифизах и перекладинах трубчатых костей остеоны отсутствуют - губчатое костное вещество.

Гистогенез (образование) костной ткани и костей

Выделяют 2 механизма:

1. Прямой остеогенез - образование костей прямо из мезенхимы. Таким механизмом образуются плоские кости на втором месяце эмбриогенеза. Мезенхимные клетки в том месте, где будет формироваться кость, усиленно размножаются, группируются, утрачивают отростки, превращаются в остеокласты, формируются остеогенные островки. Остеобласты начинают вырабатывать и выделять межклеточное вещество, замуровывая тем самым себя. Эти замурованные клетки превращаются в остеоциты. В результате образуются костные балки. Далее происходит кальцинация. Снаружи костной балки распределяются остеобласты, а основу составляет грубо волокнистая костная ткань. Из мезенхимы в костные балки врастают кровеносные сосуды. Вместе с кровеносными сосудами врастают и остеокласты, разрушающие грубоволокнистую костную ткань, на месте которой образуется плотная пластинчатая костная ткань. В результате происходит полная замена грубоволокнистой костной ткани на пластинчатую.

2. Непрямой остеогенез - образование кости на месте гиалинового хряща. Таким образом, образуются все трубчатые кости. На месте будущей кости из гиалинового хряща формируется зачаток трубчатой кости, снаружи он покрыт надкостницей. Этот процесс протекает на втором месяце эмбриогенеза. Далее в области диафиза между надкостницей и веществом хряща образуется из грубоволокнистой костной ткани перихондральная кость или перихондральная

костная манжетка, которая полностью окружает вещество хряща в зоне диафиза и тем самым нарушает поступление питательных веществ из надхрящницы в хрящ. Это вызывает частичное разрушение гиалинового хряща в диафизе, а остатки хряща обызветствляются. Надхрящница превращается в надкостницу, и из надкостницы кровеносные сосуды пронизывают костную манжетку. При этом грубоволокнистая ткань костной манжетки разрушается и замещается

пластинчатой костной тканью. Кровеносные сосуды глубоко врастают в диафиз, вместе с ними проникают остеобласты, остекласты и мезенхимные клетки. Остеокласты постепенно разрушают обызвествленный хрящ, а остеобласты вокруг участков обызвествленного хряща образуют пластинчатую костную ткань, которая формирует эндохондральную кость.

Перихондральная и эндохондральная костные ткани разрастаются, соединяются, остеокласты начинают разрушать костную ткань в средней части диафиза, и постепенно формируется костномозговой канал (полость). Из мезенхимы

закладывается красный костный мозг.

Позднее осуществляется окостенение эпифиза, между эпифизами и диафизом сохраняется метаэпифизарный хрящ (зона роста кости). За счет этой пластинки кость растет в длину. В ней выделяют пузырчатый слой на границе с диафизом, содержащий разрушающиеся клетки. Затем идет столбчатый слой, в котором молодые хондроциты образуют ряды. Молодые хондроциты пролиферируют, образуют межклеточное вещество. Также выделяют пограничный слой, имеющий строение типичного гиалинового хряща. Эти пластинки окостеневают последними.

Костная ткань в общем, и кости в частности хорошо регенерируют за счет метаэпифизарных стволовых клеток надкостницы. В начале с помощью фибробластов надкостницы образуется рыхлая соединительная ткань. Далее активируются остеобласты, вырабатывающие грубоволокнистую костную ткань. В течение первых двух недель она заполняет зону повреждения и формирует костные мозоли.

Со 2 недели в костные мозоли внедряются кровеносные сосуды, и грубоволокнистая костная ткань замещается пластинчатой костной тканью.

На развитие, рост и регенерацию костной ткани и костей существенно влияют: физическая нагрузка, оптимальный пищевой режим (пища должна содержать достаточное количество белка, кальция, витаминов), гормоны роста, тиреоидные и половые гормоны.

ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

КАФЕДРА ГИСТОЛОГИИ. ЭМБРИОЛОГИИ И ЦИТОЛОГИИ

ОБЩАЯ ГИСТОЛОГИЯ

ИЖЕВСК–2002

Составители: докт.мед.наук Г.В.Шумихина, докт.мед.наук Ю.Г.Васильев, доц.А.А.Соловьев, канд.мед.наук В.М.Кузнецова, С.А.Соболевский, С.В.Кутявина, И.В.Титова, Т.Г.Глушкова

Рецензент: доктор мед.наук, профессор каф. мед.биологии ИГМА

Н.Н.Чучкова

Общая гистология:Учебно-методическое пособие /Сост.Г.В.Шумихина, Ю.Г.Васильев, А.А.Соловьев и др.–Ижевск, 2002.– с.

Иллюстрации: доктор мед.наук Ю.Г.Васильев

Данное методическое пособие составлено согласно программе по гистологии, цитологии и эмбриологии для студентов высших учебных заведение ВУНМЦ МЗ РФ (Москва, 1997).

Пособие предназначено для студентов медицинских вузов всех факультетов. Приведены современные представления о микроанатомической, гистологической и клеточной организации тканей человека. Пособие изложено в лаконичной форме, сопровождается вопросами для самоконтроля, клиническими примерами, иллюстрациями.

Издание подготовлено сотрудниками кафедры гистологии, эмбриологии и цитологии Ижевской государственной медицинской академии.

Предназначено для студентов лечебного, педиатрического, стоматологического факультетов.

Г.В.Шумихина, Ю.Г.Ва-

сильев, А.А.Соловьев и

др., составления, 2002.

ВВЕДЕНИЕ В ТКАНИ

Ткань – это возникшая в процессе эволюции (филогенезе) система из взаимодействующих между собой и нередко общих по происхождению гистологических элементов (клеток и их производных), обладающая собственной особенностью строения и специфическими функциями.

Ткани возникли в ходе эволюции у многоклеточных организмов на определённых этапах филогенеза. Первые признаки примитивных тканей можно обнаружить у таких представителей животного мира, как губки и кишечно-полостные. В процессе индивидуального развития (онтогенеза), в значительной мере повторяющего филогенез, их источниками являются эмбриональные зачатки. Теория дивергентного развития тканей; развития тканей в фило- и онтогенезе (Н.Г. Хлопин), предполагает, что ткани возникли в результате дивергенции (расхождения признаков), в ходе которой однотипные клетки тканевого зачатка постепенно приобретают по мере развития всё более выраженные различия в структуре и функции, приспосабливаясь к новым условиям существования. Иными словами, тканевые элементы эволюционных и эмбриональных зачатков тканей, попадая в разные условия (окружение), дают большое разнообразие морфофункциональных типов вследствие приспособления их строения к новым условиям функционирования. Причины эволюции тканей описывает теория параллельных рядов тканевой эволюции (А.А. Заварзин), согласно которой ткани, выполняющие сходные функции, имеют сходное строение. В ходе филогенеза одинаковые ткани возникали параллельно в разных эволюционных ветвях животного мира, т.е. совершенно разные филогенетические типы первоначальных тканей, попадая в сходные условия существования внешней или внутренней среды, давали сходные морфофункциональные типы тканей. Эти типы возникают в филогенезе независимо друг от друга, т.е. параллельно, у абсолютно разных групп животных при стечении одинаковых обстоятельств эволюции. Эти две взаимодополняющие друг друга теории объединены в единую эволюционнную концепцию тканей (А.А. Браун и П.П. Михайлов), согласно которой сходные тканевые структуры в различных ветвях филогенетического древа возникали параллельно в ходе дивергентного развития.

С теориями эволюции и происхождения тканей тесно связана их классификация.

Существуют 2 основных принципа классификации тканей:

1.Гистогенетическая классификация основывается на происхождении тканей в процессах онто- и филогенеза из разных зачатков. Она логически связана с теорией дивергентного развития Н.Г. Хлопина и частоошибочно носит его имя. Наличие общих свойств у тканей, развившихся из одного эмбрионального зачатка, позволяет объединять их в единый тканевой тип. Выделяют ткани: а) эктодермального типа, б) энтодермального типа, в) нейрального типа, г) мезенхимального типа, д) мезодермального типа.

2. Морфофункциональная классификация , наиболее распространенная среди гистологов в настоящее время, объединяет ткани в четыре группы по признакам сходства их строения и (или) выполняемой функции. Различают: а) эпителиальные, б) соединительные (ткани внутренней среды), в) мышечные и г) нервную. Каждая морфофункциональная группа может включать в себя ряд подгрупп. Эту классификацию обычно связывают с именем А.А. Заварзина, на примере эволюции тканей показавшем тесную взаимосвязь строения и выполняемой функции.

Генетическая и морфофункциональная классификации тканей не универсальны и дополняют друг друга, поэтому часто при характеристике тканей указывают на их происхождение, например: эктодермальный эпителий, мышечная ткань мезенхимального типа. На этом принципе построена классификация эпителиальных тканей по Н.Г. Хлопину, который онтогенетически в данной морфофункциональной группе выделяет: эпидермальные эпителии; энтеродермальные эпителии; целонефродермальные эпителии; эпендимоглиальные эпителии и эпителии ангиодермального типа.

Принципы структурной организации тканей. Некоторые ткани состоят преимущественно из клеток (эпителиальная, нервная, гладкая и сердечная мышечные ткани). В тканях внутренней среды (кровь, соединительные, скелетные ткани) помимо клеток хорошо выражено межклеточное вещество. Основным компонентом скелетной мышечной ткани являются мышечные волокна. Эти разнообразные структурно-функциональные составляющие тканей в гистологии называются гистологические элементы и подразделяются на 2 основных типа:

1. Гистологические элементы клеточного типа обычно являются живыми структурами с собственным метаболизмом, ограниченные плазматической мембраной, и представляют собой клетки и их производные, возникшие в результате специализации. К ним относятся:

а) Клетки – главные элементы тканей, определяющие их основные свойства;

б) Постклеточные структуры , в которых утеряны важнейшие для клеток признаки (ядро, органоиды), например: эритроциты, роговые чешуйки эпидермиса, а также тромбоциты, вообще являющиеся частями клеток;

в) Симпласты – структуры, образованные в результате слияния отдельных клеток в единую цитоплазматическую массу с множеством ядер и общей плазмолеммой, например: волокно скелетной мышечной ткани, остеокласт;

г) Синцитии – структуры, состоящие из клеток, объединенных в единую сеть цитоплазматическими мостиками вследствие неполного разделения, например: сперматогенные клетки на стадиях размножения роста и созревания.

2. Гистологические элементы неклеточного типа представлены веществами и структурами, которые вырабатываются клетками и выделяются за пределы плазмолеммы, объединенными под общим названием «межклеточное вещество» (тканевой матрикс). Межклеточное вещество обычно включает в себя следующие разновидности:

а) Аморфное (основное) вещество – представлено бесструктурным скоплением органических (гликопротеины, гликозоаминогликаны, протеогликаны) и неорганических (соли) веществ, находящихся между клетками ткани в жидком, гелеобразном или твердом, иногда кристаллизованном состоянии (основное вещество костной ткани);

б) Волокна– состоят из фибриллярных белков (эластин, различные виды коллагена), часто образующих в аморфном веществе пучки разной толщины, взаимодействующие с клеточными элементами тканей. Среди них различают: 1) коллагеновые, 2) ретикулярные и 3) эластические волокна . Фибриллярные белки участвуют также в формировании капсул клеток (хрящи, кости) и базальных мембран (эпителии).

Клеточные популяции . У человека более 120 типов клеток, которые можно идентифицировать на этапах их дифференцировки. Тканевые признаки клеток базируются на наличии или отсутствии межклеточных контактов, взаимоотношениями с межклеточным веществом и структурными элементами других тканей. Специфику клеток каждой разновидности тканей определяют размеры, форма, специальные структуры поверхностей, органоиды, ферменты и другие параметры. Тканевые признаки трудно идентифицировать у родоначальных (стволовых) клеток.

В ходе дифференцировки клетки приобретают не только специфичные для каждого дифферона структурно-функциональные признаки, но и особый спектр рецепторов к регуляторам их жизненной активности (гормонам, медиаторам, факторам роста, кейлонам, цитокинам и другим). Указанные факторы носят системообразующий характер и определяют специфику жизнедеятельности того или иного вида тканей.

Сообщества клеток, входящих в ткани, принято называть клеточными популяциями. В широком понимании клеточные популяции – это совокупность клеток организма или ткани, сходных между собой по какому-либо признаку.

Например, по способности к самообновлению путём деления выделяют 4 категории клеточных популяций (по Леблону):

    Эмбриональная (быстро делящаяся клеточная популяция) – все клетки популяции активно делятся, специализированные элементы отсутствуют.

    Стабильная клеточная популяция – долгоживущие, активно функционирующие клетки, которые вследствие крайней специализации утратили способность к делению. Например, нейроны, кардиомиоциты.

    Растущая (лабильная) клеточная популяция – специализированные клетки которой способны делиться в определённых условиях. Например, эпителии почки, печени.

    Обновляющаяся популяция состоит из постоянно и быстро делящихся клеток и их специализированных функционирующих потомков, продолжительность жизни которых ограничена. Например, эпителии кишечника, форменные элементы крови.

В узком смысле клеточная популяция – это однородная группа клеток (клеточный тип), сходных по строению, функции и происсхождению, а также по уровеню дифференцировки . Например, популяция стволовых клеток крови. К особому типу клеточных популяций относят клон группу идентичных клеток, происходящих от одной родоначальной клетки-предшественницы. Понятие клон как самое узкое толкование клеточной популяции часто используется в иммунологии, например, клон Т-лимфоцитов.

Детерминация и дифференцировка клеток, дифферон. Развитие тканей в фило- и эмбриогенезе связано с процессами детерминации и дифференцировки их клеток. Детерминация – это процесс, определяющий направление развития клеток, тканей. В ходе детерминации клетки получают возможность развиваться в определённом направлении (т.е. происходит ограничение их потенций). На молекулярно-биологическом уровне этот механизм осуществляется поэтапным блокированием части клеточного генома и уменьшением числа разрешённых к экспрессии генов. Ступенчатое, согласованное с программой развития организма, ограничение возможных путей развития вследствие детерминации называется коммитированием . Детерминация клеток и тканей в организме, как правило, необратима.

Дифференцировка. В ходе дифференцировки происходит постепенное формирование морфологических и функциональных признаков специализации клеток тканей (образование клеточных типов). Дифференцировка направлена на создание в многоклеточном организме нескольких структурно-функциональных типов клеток. У человека таких типов клеток более 120. Ткань обычно содержит популяции клеток с разным уровнем дифференцировки. Поэтому клеточные популяции ткани можно рассматривать как совокупность клеточных форм (видов клеток), находящихся на разных этапах своего развития, от наименее дифференцированных (стволовых), до зрелых, наиболее дифференцированных. Такой гистогенетический ряд развивающихся клеток одинакового происхождения, но находящихся на разных этапах дифференцировки , в гистологии принято называть диффероном .

Многие ткани содержат не один, а несколько клеточных дифферонов , которые взаимодействуют друг с другом. Поэтому ткань нельзя рассматривать как систему клеток одного типа, сходных по строению, функции и происхождению. В составе дифферона последовательно (по степени дифференцировки) различают следующие клеточные популяции: а) стволовые клетки - наименее дифференцированные клетки данной ткани, способные делиться и являющиеся источником развития других её клеток; б) полустволовые клетки -предшественники имеют ограничения в способности формировать различные типы клеток, вследствие коммитирования, но способны к активному размножению; в) клетки-бласты , вступившие в дифференцировку но сохраняющие способность к делению; г) созревающие клетки , заканчивающие дифференцировку; д)зрелые (дифференцированные) клетки. Последние заканчивают гистогенетический ряд, способность к делению у них, как правило, исчезает, в ткани они активно функционируют. Можно выделить также популяцию закончивших активное функционирование (старых) клеток.

Уровень специализации клеток в популяциях дифферона возрастает от стволовых до зрелых клеток. При этом происходят изменения состава и активности ферментов, органоидов клеток. Для гистогенетических рядов дифферона характерен принцип необратимости дифференцировки , т.е. в нормальных условиях переход от более дифференцированного состояния к менее дифференцированному невозможен. Это свойство дифферона часто нарушается при патологических состояниях (злокачественные опухоли, неоплазии).

Наличие в тканях малодифференцированных клеток, способных к митотическому делению, обеспечивает способность ткани к самообновлению и восстановлению (регенерации). Такую, имеющуюся в ткани совокупность клеток, способных к делению, называют камбием . Камбиальные элементы – это популяции стволовых, полустволовых клеток-предшественников, а также бластных клеток данной ткани, деление которых поддерживает необходимое число ее клеток и восполняет убыль популяции зрелых элементов. В тех тканях, в которых не происходит обновления клеток путем их деления, камбий отсутствует. По распределению камбиальных элементов ткани различают несколько разновидностей камбия:

*Локализованный камбий – его элементы сосредоточены в конкретных участках ткани, например, в многослойном эпителии камбий локализован в базальном слое;

* Диффузный камбий – его элементы рассеяны в ткани, например, в гладкой мышечной ткани камбиальные элементы рассредоточены среди дифференцированных миоцитов;

*Вынесенный камбий – его элементы лежат за пределами ткани и по мере дифференцировки включаются в состав ткани, например кровь как ткань содержит только дифференцированные элементы, элементы камбия находятся в органах кроветворения.

Регенерация тканей. Регенерация ткани – процесс, обеспечивающий её обновление в ходе нормальной жизнедеятельности (физиологическая регенерация) или восстановление после повреждения (репаративная регенерация). Хотя полноценная регенерация ткани включает обновление (восстановление) ее клеток и их производных, включая межклеточное вещество, основную роль в регенерации тканей играют клетки, так как именно они служат источником всех остальных компонентов тканей. Поэтому возможность регенерации ткани определяется способностью ее клеток к делению и дифференцировке или уровнем внутриклеточной регенерации. Хорошо регенерируют те ткани, которые имеют камбиальные элементы или представляют собой обновляющиеся или растущие леблоновские клеточные популяции . Активность деления (пролиферации) клеток каждой ткани при регенерации контролируется факторами роста, гормонами, цитокинами, кейлонами, а также характером функциональных нагрузок. Необходимо отличать тканевую и клеточную регенерацию путем деления клеток от внутриклеточной регенерации, которую следует понимать как процесс непрерывного обновления или восстановления структурных компонентов клетки после их повреждения. Внутриклеточная регенерация универсальна, то есть свойственна всем клеткам тканей организма человека. В тех тканях, которые являются стабильными клеточными популяциями и в которых отсутствуют камбиальные элементы (нервная, сердечная мышечная ткань), данный тип регенерации является единственно возможным способом обновления и восстановления их структуры и функции. Ткани в процессе жизнедеятельности могут подвергаться гипертрофии и атрофии. Гипертрофия ткани – увеличение ее объема, массы и функциональной активности, - обычно является следствием а) гипертрофии ее отдельных клеток (при неизменном их числе) вследствие усиленной внутриклеточной регенерации в условиях преобладания анаболитических процессов над катаболическими; б) гиперплазии – увеличении числа ее клеток путем активации клеточного деления (пролиферации ) и (или) в результате ускорения дифференцировки новообразующихся клеток; в) сочетания обоих процессов. Атрофия ткани – снижение ее объема, массы и функциональной активности вследствие а) атрофии ее отдельных клеток вследствие преобладания процессов катаболизма, б) гибели части ее клеток, в) резкого уменьшения скорости деления и дифференцировки клеток.

Межтканевые и межклеточные отношения . Ткань поддерживает постоянство своей структурно-функциональной организации (гомеостаз) как единого целого только при условии постоянного влияния гистологических элементов друг на друга (внутритканевые взаимодействия), а также одних тканей на другие (межтканевые взаимодействия). Эти влияния можно рассматривать как процессы взаимного узнавания элементов, образования контактов и обмена информацией между ними. При этом формируются самые различные структурно-пространственные объединения. Клетки в ткани могут находиться на расстоянии и взаимодействовать друг с другом через межклеточное вещество (соединительные ткани), соприкасаться отростками, иногда достигающими значительной длины (нервная ткань), или образовывать плотно контактирующие клеточные пласты (эпителий). Совокупность тканей, объединенных в единое структурное целое соединительной тканью, координированное функционирование которого обеспечивается нервными и гуморальными факторами, образует органы и системы органов целого организма.

Для образования ткани необходимо, чтобы клетки объединились и были связаны между собой в клеточные ансамбли. Способность клеток избирательно прикрепляться друг к другу или к компонентам межклеточного вещества осуществляется с помощью процессов узнавания и агдезии, которые являются необходимым условием поддержания тканевой структуры. Реакции узнавания и агдезии происходят вследствие взаимодействия макромолекул специфических мембранных гликопротеидов, получивших название молекул агдезии . Прикрепление происходит с помощью особых субклеточных структур: а) точечных агдезионных контактов (прикрепление клеток к межклеточному веществу), б) межклеточных контактов (прикрепление клеток друг к другу).

В их состав входят особые трансмембранные белки и гликопротеиды – кадгерины, иммуноглобулины, интегрины и коннексины, а также белки, осуществляющие прикрепление этих структур к компонентам клеточного матрикса, – актинин, винкулин, талин. Кроме того, на поверхности клеток находятся агдезивные рецепторы и соответствующие им лиганды, обеспечивающие специфическое взаимное распознавание элементов ткани. К агдезионным белкам межклеточного матрикса относят фибронектин и витронектин. Межклеточные контакты - специализированные структуры клеток, с помощью которых они механически скрепляются между собой, а также создают барьеры и каналы проницаемости для межклеточной коммуникации. Различают: 1) агдезионные клеточные контакты , выполняющие функцию межклеточного сцепления (промежуточный контакт, десмосома, полудесмасома), 2) замыкающие контакты , функция которых - образование барьера, задерживающего даже малые молекулы (плотный контакт), 3) проводящие (коммуникационные) контакты , функция которых состоит в передаче сигналов от клетки к клетке (щелевой контакт, синапс).

Регуляция жизнедеятельности тканей . Гуморальные факторы, обеспечивающие межклеточное взаимодействие в тканях и их метаболизм, включают в себя разнообразные клеточные метаболиты, гормоны, медиаторы, а также цитокины и кейлоны.

Цитокины являются наиболее универсальным классом внутри- и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях оказывают влияние на реакции клеточного роста, пролиферации и дифференцировки. Действие цитокинов обусловлено наличием рецепторов к ним на плазмолемме клеток-мишеней. Эти вещества переносятся кровью и обладают дистантным (эндокринным) действием, а также распространяются по межклеточному веществу и действуют локально (ауто – или паракринно). Важнейшими цитокинами являются интерлейкины (ИЛ), факторы роста , колониестимулирующие факторы (КСФ), фактор некроза опухоли (ФНО), интерферон . Клетки различных тканей обладают большим количеством рецепторов к разнообразным цитокинам (от 10 до 10000 на клетку), эффекты которых нередко взаимо перекрываются, что обеспечивает высокую надёжность функционирования этой системы внутриклеточной регуляции.

Кейлоны представляют собой факторы, вырабатываемые дифференцированными клетками данной ткани и угнетающие деление её малодифференцированных камбиальных элементов. Благодаря продукции кейлонов осуществляется поддержание относительного постоянства числа клеток в зрелой ткани. При повреждении ткани и убыли её зрелых клеток снижение продукции кейлонов вызывает усиленную пролиферацию клеток, приводящую к регенерации ткани.

Межтканевые отношения. Ткани в организме существуют не изолированно, а в постоянном взаимодействии с другими тканями, что способствует поддержанию их нормальной функциональной организации. Это так называемые индуктивные взаимодействия, утрата которых, например, при культивировании тканей in vitro в оптимальных условиях вызывает изменения морфологии и потерю ряда функций, характерных для этих тканей in vivo. Межтканевые взаимодействия осуществляются посредством локальных метаболитов и дистантных гуморальных факторов, включающих в себя гормоны, нейромедиаторы и другие информационные молекулы. Взаимодействие тканей, образующих органы на уровне целостного организма, контролируются эндокринной, нервной и иммунной системами. Межтканевые отношения определяют структуру и функцию органа, обеспечивают оптимальные уровни физиологической и репаративной регенерации.

1.Тема: эпителиальные ткани. Железы.

Цели занятия:

Научиться:

1.Характеризовать основные морфофункциональные и гистогенетические особенности эпителиальных тканей.

2.Сопоставлять микроскопические, ультрамикроскопические и гистохимические особенности различных видов эпителиальных тканей с выполняемой ими функцией. Объяснять механизм секреторного процесса в железистых эпителиальных клетках.

3. Определять эпителиальную ткань на микроскопическом уровне,

идентифицировать различные виды покровного и железистого эпителия.

4.Научиться определять тип экзокринных желез по их строению и характеру выделяемого секрета.

Эпителиальные ткани , или эпителии (от греч. epi – над и thele – сосок, тонкая кожица) – часто выступают как пограничные ткани , располагаясь на границе с внешней средой, покрывают поверхность тела, выстилают его полости, слизистые оболочки внутренних органов и образуют большинство желез. В связи с этим различают два вида эпителиев :

I . Покровные эпителии (образуют разнообразные выстилки в виде пластов).

II . Железистые эпителии (образуют железы).

Общие морфологические признаки эпителия как ткани:

1.Эпителиоциты располагаются плотно друг к другу.

2.Между клетками практически нет межклеточного вещества.

3.Между клетками находятся межклеточные контакты.

4.Эпителии часто занимают пограничное положение (обычно между тканями внутренней среды и внешней средой).

5.Для эпителиоцитов характерна полярность клеток. Различают апикальный и базальный полюсы, последний обращен к базальной мембране. Многослойным эпителиям свойственна вертикальная анизоморфность неодинаковые морфологические свойства клеток различных слоев эпителиального пласта.

6.Эпителиоциты располагаются на базальной мембране – особом неклеточном образовании, которое создает основу для эпителия, обеспечивает барьерную и трофическую функции.

7.В эпителии отсутствуют сосуды; питание осуществляется путем диффузии веществ через базальную мембрану из сосудов соединительной ткани.

8.Для большинства эпителиев характерна высокая способность к регенерации – физиологической и репаративной, которая осуществляется благодаря камбию.

Морфологические особенности клеток составляющих эпителиальную ткань варьируют в широких пределах, различаясь как в разных типах эпителиев, так и между отдельными клетками в пределах одного типа. Эти особенности тесно связаны с функцией клеток и их положением в эпителиальном пласте.

Форма эпителиоцитов служит важным классификационным признаком, как отдельных клеток, так и эпителиальных пластов вцелом. Выделяют плоские, кубические и призматическиеклетки. Ядро эпителиоцитов может иметь различную форму, которая обычно соответствует форме клетки: в плоских– оно дисковидное, в кубических – сферическое, в цилиндрических – эллипсоидное. В большинстве клеток ядро сравнительно светлое, содержит хорошо заметное крупное ядрышко, однако в оровевающих эпителиях по мере дифференцировки клеток оно уменьшается, уплотняется или лизируется – подвергается кариопикнозу, кариорексису или кариолизису.

Цитоплазма эпителиоцитов содержит все органеллы общего значения, а в некоторых клетках – также органеллы специального значения, обеспечивающие выполнение специфических функций данных клеток. В клетках железистого эпителия хорошо развит синтетический аппарат. В связи с полярностью клеток органеллы распределены в их цитоплазме неравномерно.

Цитоскелет эпителиоцитов хорошо развит, представлен микротрубочками, микрофиламентами (диаметром до 4нм) и промежуточными филаментами (диаметром 8-10 нм). Последние в эпителиоцитах особенно многочисленны и называются тонофиламентами, которые при фиксации склеиваются, образуя крупные агрегаты, выявляемые под световым микроскопом и описанные под названием тонофибрилл.

Цитокератины белки, образующие тонофиламенты, которые специфичны для клеток эпителиальных тканей. Идентифицировано около 30 различных форм цитокератинов, причем выработка каждого вида цитокератина кодируется особым геном. Для конкретного вида эпителия (а в многослойных эпителиях – для каждого слоя) характерен определенный набор цитокератинов, экспрессию которых рассматривают как маркер дифференцировки эпителиальных клеток. Изменения нормальной экспрессии цитокератинов могут указывать на нарушения дифференцировки клеток и в ряде случаев служить важным диагностическим признаком их злокачественного перерождения.

Поверхности эпителиоцита (латеральная, базальная, апикальная) обладают отчетливой структурно-функциональной специализацией, которая особенно хорошо выявляется в однослойном эпителии, в том числе в железистом эпителии.

    Латеральная поверхность эпителиоцитов обеспечивает взаимодействие клеток за счет межклеточных контактов, которые обуславливают механическую связь эпителиоцитов друг с другом – это плотные контакты, десмосомы, интердигитации , а также химическую (метаболическую, ионную и электрическую) связь между эпителиоцитами – это щелевые контакты.

    Базальная поверхность эпителиоцитов прилежит к базальной мембране, к которой она прикреплена с помощью полудесмосом. В функциональном плане базальная и латеральная (до уровня плотных соединений) части плазмолеммы эпителиоцита в совокупности образует единый комплекс, мембранные белки которого служат: а) рецепторами, воспринимающими различные сигнальные молекулы, б) переносчиками питательных веществ, поступающих из сосудов подлежащей соединительной ткани, в) ионными насосами и др.

Базальная мембрана (БМ) связывает эпителий и подлежащую соединительную ткань и образована компонентами, которые вырабатываются этими тканями, БМ поддерживает нормальную архитектонику, дифференцировку и поляризацию эпителия; обеспечивает избирательную фильтрацию питательных веществ. На светооптическом уровне на препаратах она имеет вид тонкой полоски, плохо окрашивается гематоксилином и эозином. На ультраструктурном уровне в базальной мембране выделяют три слоя (в направлении от эпителия):

1) светлая пластинка , которая соединяется с полудесмосомами эпителиоцитов, содержит гликопротеины (ламинин) и протеогликаны (гепарансульфат), 2) плотная пластинка содержит коллаген IV, V, VII типов, имеет фибриллярную структуру. Тонкие якорные филаменты пересекают светлую и плотную пластинки, переходя в 3) ретикулярную пластинку , где якорные филаменты связываются с коллагеновыми (коллаген I и II типов) фибриллами соединительной ткани.

В физиологических условиях базальная мембрана препятствует росту эпителия в сторону соединительной ткани, что нарушается при злокачественном росте, когда раковые клетки прорастают сквозь базальную мембрану в подлежащую соединительную ткань (инвазивный рост опухоли).

Специфичные признаки эпителиев. Базальная исчерченность эпителиоцитов – термин, используемый для описания базального отдела некоторых клеток (например, в канальцах почки и части выводных протоков слюнных желез). На базальной поверхности много пальцевидных впячиваний плазмолеммы вглубь клетки. В цитоплазме базальной части клеток вокруг впячиваний плазмолеммы много митохондрий, которые обеспечивают энергозависимый процесс вывода молекул, ионов за пределы клетки.

Апикальная поверхность эпителиоцитов может быть относительно гладкой или образует выпячивания. У некоторых эпителиоцитов на ней имеются специальные органеллы – микроворсинки и реснички. Микроворсинки максимально развиты в эпителиоцитах, участвующих в процессах всасывания (например, в тонкой кишке или канальцах проксимального отдела нефрона), где их совокупность называется щеточной (исчерченной) каемкой.

Микрореснички – подвижные структуры, содержащие комплексы микротрубочек.

Источники развития эпителиев. Эпителии развиваются из всех трех зародышевых листков, начиная с 3 – 4 недели эмбрионального развития человека. В зависимости от эмбрионального источника различают эпителий эктодермального, мезодермального и энтодермального происхождения.

Подробности

Гистология: понятие о тканях.
Общая гистология изучает

1) структуру и функцию нормальных тканей

2) развитие тканей (гистогенез) в онтогенезе и филогенезе

3) взаимодействие клеток в составе тканей

4) патологии тканей

Частная гистология изучает строение, функции и взаимодействие тканей в составе органов.

Мечников – гипотеза фагоцитоза . Два типа тканей: внутренние - соединительная ткань и кровь, и внешняя – эпителиальная.

Происхождение тканей. Заварзин.
1. Наиболее древние – ткани общего назначения: покровные, ткани внутренней среды.
2. Мышечная и нервная – более поздние, специализированные.

Ткань – филогенетически обусловленная система клеток и межклеточных структур, составляющих морфологическую основу для выполнения основных функций.

Свойства тканей : 1) пограничность – эпителий 2) внутренний обмен – кровь, соед ткань 3) движение – мышечная ткань 4) раздражимость – нервная ткань.

Принципы организации тканей : автономность снижена, клетка-ткань-орган, взаимосвязь возрастает: межклеточный матрикс, мжк организация, система обновления (гистогенез).
Внутри- и межтканевые взаимодействия обеспечивают: рецепторы, молекулы адгезии, цитокины (циркулируют в тканевой жидкости и несут сигналы), факторы роста – действуют на дифференцировку, пролиферацию и миграцию.

Молекулы адгезии : 1. Учавствуют в передаче сигнала 2. а,в-интегрины – встроены в плазмолемму 3. Кадгерины Р, Е, N, - клеточные контакты, десмосомы 4. Селектины А,Р, Е – лейкоциты крови с эндотелием. 5. Ig – подобные белки, ICAM – 1,2, NCAM – проникновение лейкоцитов под эндотелий.
Цитокины (больше 100 видов) – для общения между лейкоцитами, (интерлейкины ((ИЛ-1,18), интерфероны (ИФ-а,ф,у) – противовоспалительные, факторы некроза опухолей (ФНО-а,в), колониестимулирующие факторы: высокий пролиферативный потенциал, образование клонов: ГМ(гранулоциты, макрофаги)-КСФ, факторы роста: ФРФ, ФРК, ТФР ав – морфологические процессы.

Классификация тканей.

Метагенетическая классификация Хлопина, основоположник метода культуры тканей.
Лейдинг – морфофункциональная классификация : эпителиальная, ткани внутренней среды (соед ткань+кровь), мышечная, нервная.

Развитие: пренатальное, постнатаьное. Регенерация: физиологическая (обновление), репаративная (восстановление).
Принципы обновления клеточного состава тканей.

Гистологический ряд дифферон обновляющихся тканей. Клетки-предшественники –не делятся, дифференцированы.
Одна ушла на деление, дифференцировку, вторая сама себя поддерживает. На это способна только стволовая клетка . Она очень редко делятся (ассиметрично) – сохранение потенциала и дифференцировки. В итоге клетка входит в терминальную диф. Пока клетки пролиферируют – синтез ДНК-появление специфичных иРНК- специфические белки, диф клетки.

Свойства стволовой клетки : самоподдержание, способность к дифференцировке, высокий пролиферативный потенциал, способность репопулировать ткань in vivo.
Ниша стволовых клеток – это группа клеток и внеклеточный матрикс, которые способны неограниченно долго поддерживать самоподдерживание СК.
Классификация (тотипотентность понижается) . Тотипотентные-зигота, плюрипотентные – ЭСК, мультипотентные – мезенхимные (кроветворная, эпидермальная) СК, сателлитная – униполярные (клетки мышц), клетки опухолей.
Амплефаеры – эти клетки делятся очень активно, увеличивают популяцию.

Классификация тканей по типу обновления:
1. Высокий уровень обновления и высокий регенеративный потенциал – клетки крови, эпидермиса, эпидермис молочной железы.
2. Низкий уровень обновления, высокий регенеративный потенциал – печень, скелетные мышцы, поджелудочная железа.
3. Низкие уровни обновления и регенерации – головной мозг (нейроны), спинной мозг, сетчатка, почка, сердце.

Онтофилогенетическая классификация (Хлопин).
1. Эктодермальный тип – из экзодермы, многослойное или многорядное строение, защитная ф.
2. Этнеродермальный – из энтодермы, однослойный призматический, ф всасывания веществ (желудок, каемчатый эпителий тонкой кишки)
3. Целонефродермальный – из мезодермы, однослойный плоский, кубический или призматический. Ф барьерная или экскреторная (мочевые канальцы)
4. Эпендимоглиальный - из нервной трубки, в полостях мозга.
5. Ангиодермальный – из мезенхимы, выстилает эндотелиальную выстилку кровеносных сосудов.