Транспорт со2 кровью. Транспорт газов кровью. Транспорт О2 и СО2. Кривая диссоциации Нв. Гемоглобин и угарный газ

Существует фактор перехода О2 и СО2, называется диффузионная способность легких. Это способность газа проникать через легочные мембраны за 1 мин. При изменении давления на 2 мм рт.ст. в норме диффузионная способность легких для О2 равна 25-35 мл/мин, при изменении давления на 1 мм рт.ст.. для СО2 24 раза выше. Скорость диффузии зависит от след. факторов.:

1. От разности парциального давления

2. От диффузионной способности

3. От перфузии

Транспорт газов кровью. Газы могут быть в растворенном состоянии и физически связанном. Кол-во газа зависит от парциального давления газа над жидкостью и от коэффициента растворимости. Чем выше давление газа и меньше температура, чем больше газа будет растворяться в жидкости, растворение газа в жидкости показывает коэффициент растворимости. Для О2 коэффициент растворимости равен 0,022, а для СО2 0,51. В артериальной крови при парциальном давлении О2 100мм рт.ст. в растворенном состоянии находится 0,3%. СО2 при парциальном давлении 40 мм рт.ст. в растворенном состоянии находится 2,5%.

Транспорт О2. Большая часть О2 переносится кровью в виде химического соединения с гемоглобином. Направление реакции зависит от парциального давления, О2 и содержание оксигемоглобина в крови отражается кривой диссоциации оксигемоглобина. Эту зависимость меду парциальным давлением и кол-вом оксигемоглобина вывел ученый Бак Форд. При 40 мм рт.ст. 80% гемоглобина насыщается О2, а при 60мм рт.ст. 90 % гемоглобина насыщается О2 и превращается в оксигемоглобин. Способность гемоглобина реагировать с О2 называется сродство. На это сродство влияет несколько факторов:

1. Эритроциты содержат 2,3дифосфоглицерат, его кол-во увеличивается при снижении напряжения, а при снижении напряжения О2 снижается.



3. РН крови. Чем больше РН тем сродство меньше.

4. Температура. Чем выше, тем сродство меньше.

Максимальное кол-во О2, которое может связать кровь при полном насыщении гемоглобина называется кислородной емкостью крови. 1 грамм гемоглобина связывает 1,34мм О2, поэтому кислородная емкость крови равна 19.

Транспорт СО2. СО2 в венозной крови составляет 55-58%. СО2 может переноситься в нескольких видах:

1. Соединение гемоглобина с СО2-называется карбгемоглобин, его 5%. А остальной СО2 транспортируется в виде кислых солей угольной кислоты. Угольная кислота образуется в клетках, она может переходить из тканей в кровь. Часть этого СО2 остается в физически растворенном состоянии, а большая часть претерпевает изменение. Эритроцитами переносится 2 соединения: карбгемоглобин и бикарбонат калия(KНСО3), а плазмой крови переносится бикарбонат натрия (NaHCO3).

Нервно-гуморальная регуляция дыхания. Дыхательный центр. Само регуляция. Регуляция дыхания – это приспособление дыхания к постоянно меняющимся потребностям организма в кислороде. Важно, чтобы деятельность дыхательной системы соответствовала точности с потребностями организма в кислороде для оптимальной регуляции дыхания необходимо соответствующее механизмы – это рефлекторные и гуморальные механизмы. Рефлекторные механизмы или нервные осуществляются дыхательным центром. Дыхательным центром называется совокупность специализированных нервных клеток, которые расположены в различных отделах ЦНС, которые обеспечивают координационное ритмичное дыхание. Еще в начале XIX века французский ученый Легалуа обнаружил в опятах на птицах, что при действии на продолговатый мозг изменяется дыхание. А в 1842 году ученый Плоуранс экспериментально доказал, также в опытах путем раздражения и разрушения участков продолговатого доказал, что дыхательный центр находится в продолговатом мозне. Было установлено, что перерезка мозга выше Воролевого моста не изменяет дыхание. А если сделать перерезку между Воролевым мостом и продолговатым мозгом, то изменяется глубина и частота дыхания, а если сделать ниже продолговатого мозга, то дыхание останавливается. Этими опытами было доказано, что есть первичный дыхательные центры, которые находятся в головном мозге:

1-ый дыхательный центр: продолговатый мозг – он отвечает за смену вдоха и выдоха. Этот опыт также доказал в 1859 году русский ученый Миславский, путем точечного раздражения. Он установил, что дыхательный центр располагается в продолговатом мозге на дне 4-го желудочка в области ретикулярной фармации. Этот дыхательный центр является парным состоит из правой и левой половины. Нейроны правого посылают импульсы в дыхательные мышцы правой половины, а левого участка к левой половине. Каждый из них состоит еще из 2-х отделов: центр вдоха и центр выдоха, т.е. центр инспирации и центр экспирации.

2-ой дыхательный центр находится в Воролевом мосту он называется пневмотоксический, он отвечает за глубину и частоту дыхания. Есть еще и вторичные центры, которые находятся в спинном мозге. К ним относятся 3-й центр шейный отдел спинного мозга, здесь находится центр диафрагмального нерва. 4-й в грудном отделе спинного мозга, здесь находится центр межреберных мышц. 5-й – гипоталамус. 6-й кора головного мозга – это на увиденное, на услышанное изменяется дыхание. Главным гуморальным регулятором дыхательного центра является избыток СО2. Роль СО2 как специфического раздражителя дыхательного центра был доказан ученым Фредериком в опыте на собаке с перекрестным кровообращением. Для этого Фредерик брал 2-х животных, соединял их единым кругом кровообращения, пережимал трахею у 1-ой собаки, у нее в крови появлялся избыток СО2 – это называется гиперкапния и недостаток О2 – гипоксия. Кровь 1-ой собаки с избытком СО2 омывало головной мозг 2-ой собаки, и у 2-ой собаки наблюдалась отдышка, а у 1-ой наоборот задержка дыхания. В 1911 году немецкий ученый Винтерштейн высказал мысль, что в возбудителях дыхательного центра является не сам СО2, а концентрация водорода с ионами, т.е. совмещение, изменение РН в кислую сторону. Но в дальнейшем его теория была отвергнута и было доказано, что раздражителем является избыток СО2.

Рефлексы Гейл Инга – Бреера. Эти рефлексы можно наблюдать при раздражении вагуса, наблюдают 3 вида рефлекса:

1. Инспираторно – тормозящий – прекращение вдоха

2. Экспираторно – облегчающий – при выдохе задерживается наступление следующего вдоха

3. Сильное разевание легких вызывает короткое сильное возбуждение инспираторных мышц, возникает судорожный вдох(вздох) – это называется парадоксальный эффект Хд. Значение рефлексов Гейл Инга – Бреера состоит в регулировании соотношения глубины и частоты дыхания в зависимости от состояния легких. Регуляция дыхания обеспечивает 2 группы процессов, которые обеспечивает наш организм:

1. Поддержание газового состава артериальной крови – гомеостатическая регуляция

2. Процесс, приспособления дыхания к изменяющимся условиям окружающей среды – поведенческая регуляция..

Транспортная функция крови заключается в переносе всех необходимых для жизнедеятельности организма веществ (пита­тельных веществ, газов, гормонов, ферментов, метаболитов).

Дыхательная функция состоит в доставке кислорода от легких к тканям и углекислого газа от тканей к легким.

Транспорт газов кровью – в организме кислород и углекислый газ транспортируются кровью. Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин , и в таком виде доставляется к тканям.

Кислород через тонкие стенки альвеол и капилляров поступает из воздуха в кровь, а углекислый газ из крови в воздух. Диффузия газов происходит в результате разности их концентраций в крови и в воздухе. Кислород проникает в эритроциты и соединяется с гемоглобином, кровь становится артериальной и направляется в ткани. В тканях происходит обратный процесс: кислород за счет диффузии переходит из крови в ткани, а углекислый газ , наоборот, переходит из тканей в кровь.

Кривая диссоциации оксигемоглобина - это зависимость насыщения гемоглобина кислородом (измеряется процентным отношением оксигемоглобина к общему количеству гемоглобина).

Газообмен между кровью и тканями. Нарушение газообмена в тканях.

Газообмен в тканях - четвертый этап дыхания, в результате которого кислород из крови капилляров поступает в клетки, а углекислый газ из клеток в кровь. Фактором, способствующим газообмену в тканях, является, также как и в легких, разность парциальных давлений газов между кровью и межтканевой жидкостью, омывающей все клетки и ткани.

Насколько клетки интенсивно поглощают кислород, настолько же интенсивно они вырабатывают углекислый газ. Напряжение углекислоты в клетках достигает 50 - 60 мм. рт. ст. Эта углекислота непрерывно переходит в межтканевую жидкость, а оттуда в кровь, делая кровь венозной.

Следствием таких нарушений газообмена может явиться гипоксия, кислородное голодание тканей. Гипоксия это недостаток кислорода.

Газообмен в легких, состав вдыхаемого альвеолярного, выдыхаемого воздуха.

Как атмосферный воздух, так и альвеолярный необходимо воздух представляют собой смесь газов, содержащую О2 , СО2 , N, и инертные газы. Определенное количество дыхательных газов содержится и в крови, поскольку она является их переносчиком. Парциальное давление того или иного газа в крови, ровно как и в любой другой жидкости, принято называть парциальным напряжением. Газообмен между альвеолярным воздухом и кровью капилляров (второй этап дыхания) осуществляется путем диффузии, благодаря разности давлений О2 и СО2. Тот воздух, который мы вдыхаем, т.е. атмосферный воздух , имеет более или менее постоянный состав: он содержит

20,94% кислорода,

0,03% углекислого газа

79,03% азота.

Выдыхаемый воздух обеднен кислородом и насыщен углекислотой. В среднем выдыхаемый воздух содержит

16,3% кислорода,

4% углекислоты

79,7% азота.

По сравнению с атмосферным воздухом, альвеолярный воздух содержит

14% кислорода,

5% углекислоты

79,5% азота.

Состав альвеолярного воздуха относительно стабилен, так как при спокойном дыхании в альвеолы поступает всего 350 мл свежего воздуха, что составляет лишь 1/7 того воздуха, который содержится в легких после обычного выдоха. Данный воздух находится в альвеолах и обеспечивает потребление кислорода для обменных процессов в капиллярах легких.

Такая же небольшая порция альвеолярного воздуха удаляется при выдохе, что способствует стабилизации его состава.

Регуляция дыхания. Нервно-регуляторная и гуморальная регуляция дыхания.

Внешнее дыхание- это обмен воздуха между альвеолами легких и внешней средой, которое осуществляется в результате ритмического дыхания движения грудной клетки,вызывающих чередование актов вдоха и выдоха.

Главная цель внешнего дыхания - поддержание оптимальный состав артериальной крови. Основной способ для достижения этой цели - регулирование объема легочной вентиляции путем изменения частоты и глубины дыхания. Какие же механизмы обеспечивают приспособление дыхания к меняющимся потребностям организма? Организм располагает двумя регуляторными системами - нервной и гуморальной . Последняя представлена циркулирующими в крови гормонами и метаболитами, которые могут влиять на дыхание.

Регуляция дыхания – называется процесс управления вентиляцией легких,направленный на поддержание дыхательных констант и приспособления дыхания к условиям изменяющейся внешней среды.

Следовательно, для осуществления дыхательных движений нужен продолговатый мозг и тот отдел спинного мозга, который посылает двигательные нервы к дыхательным мышцам.

СО2 образуется в тканях (основной источник – реакции окислительного декарбоксилирования альфа-кетокислот в матриксе митохондрий). За сутки в физиологических условиях легкими выводится 300-600 л СО2 (в среднем 480 л или 22 моля). pCО22 в межклеточной жидкости составляет примерно 50 мм рт. ст., а в артериальной крови – 40 мм рт. ст. И хотя разница pCО2 значительно меньше аналогичной для О2, но коэффициент диффузии СО2 в 30 раз больше и он быстро диффундирует из тканей через межклеточную жидкость, стенки капилляров в кровь. Содержание СО2 в венозной крови составляет 55-60 об. %, А в артериальной – 50 об. %. Таким образом, из тканей в легкие переносится 5-10 мл СО2 на каждые 100 мл крови. В форме растворенного в плазме газа транспортируется примерно 6%. Основное количество СО2 переносится в виде гидрокарбонатов, которые образуются в результате гидратации СО2 и диссоциации угольной кислоты.

Гидратация СО2 – процесс очень медленный, и только в эритроцитах является фермент карбоангидразой, который катализирует эту реакцию. Протоны, которые освобождаются при диссоциации угольной кислоты, связываются специфическими аминокислотными остатками гемоглобина. Это способствует освобождению кислорода из оксигемоглобина (эффект Бора) в капиллярах тканей. Таким образом, диссоциация оксигемоглобина в тканях обусловлено низким pО2 в тканях, связыванием ионов Н +, а также прямым присоединением СО2 к гемоглобину.
Все количество СО2, образующегося в тканях за сутки, эквивалентная 13000 ммоль Н + / 2 л конц. НСl. Огромное количество ионов Н + могла бы мгновенно снизить рН крови и межклеточной жидкости до 1,0, если бы они не связывались с гемоглобином. Дезоксигемоглобин, в отличие от оксигемоглобина, является слабой кислотой.

Анионы НСО3- выходят по градиенту концентрации из эритроцитов в плазму, а вместо них для сохранения электронейтральности в эритроциты поступают ионы Сl-.

Когда венозная кровь попадает в капилляры легких, О2 диффундирует в эритроциты, образуется оксигемоглобин, что как сильная кислота распадается, освобождая ионы водорода. Гидрокарбонаты плазмы также поступают в эритроциты, взаимодействуют с протонами, с угольной кислоты под действием карбоангидразы освобождается СО2, который диффундирует в альвеолярный воздух. Перехода СО2 из эритроцитов в альвеолярный пространство способствуют градиент парциального давления СО2 и высокая диффузионная способность. Схематично процессы, происходящие в капиллярах тканей и капиллярах легких, изображены на рис.

Как упоминалось выше, гемоглобин непосредственно связывает СО2, N-конечной альфа-аминогруппой каждого из 4-х полипептидных цепей с образованием карбгемоглобин (карбаминогемоглобину).

Реакция обратная и в капиллярах тканей вследствие высокого pО2 происходит слева направо, а в легких – в обратном направлении. В виде карбгемоглобин переносится незначительное количество СО2, которая уменьшает сродство его с 2 и наоборот, связывание в легких гемоглобином кислорода уменьшает сродство его с СО2.

Таким образом, гемоглобин может связывать по 4 молекулы О2 или СО2, примерно 4 ионы Н + и 1 молекулу ДФГ. Изменение концентрации любого из этих 4 лигандов гемоглобина через изменение конформации молекулы белка регулирует его родство с другими лигандами. Благодаря этому молекула гемоглобина прекрасно приспособлена к осуществлению одновременного переноса эритроцитами О2, СО2 и ионов Н +.

ПОДІЛИТИСЯ:

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-90%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

Хотя СO2 растворяется в жидкости гораздо лучше, чем O2 , только 3−6 % общего количества продуцируемого тканями СO2 переносится плазмой крови в физически растворенном состоянии. Остальная часть вступает в химические связи.

Поступая в тканевые капилляры, СО2 гидратируется, образуя нестойкую угольную кислоту:

Направление этой обратимой реакции зависит от РCО2 в среде. Она резко ускоряется под действием фермента карбоангидразы, находящегося в эритроцитах, куда СO2 быстро диффундирует из плазмы.

Около4/5 углекислого газа транспортируется в виде гидрокарбоната НСО-3. Связыванию СO2 способствует уменьшение кислотных свойств (протонного сродства) гемоглобина в момент отдачи им кислорода - дезоксигенирование (эффект Холдена). При этом гемоглобин высвобождает связанный с ним ион калия, с которым в свою очередь, реагирует угольная кислота:

Часть ионов НСО-3 диффундирует в плазму, связывая там ионы натрия, в эритроцит же поступают в порядке сохранения ионного равновесия ионы хлора. Кроме того, также за счет уменьшения протонного сродства дезоксигенированный гемоглобин легче образует карбаминовые соединения, связывая при этом еще около 15 % переносимого кровью СO2 .

В легочных капиллярах происходит высвобождение части СO2 , который диффундирует в альвеолярный газ. Этому способствует более низкое, чем в плазме, альвеолярное РCO2 также усиление кислотных свойств гемоглобина при его оксигенации. В ходе дегидратации угольной кислоты в эритроцитах (эта реакция тоже резко ускоряется карбоангидразой) оксигемоглобин вытесняет ионы калия из гидрокарбоната. Ионы НСО-3 поступают из плазмы в эритроцит, а ионы Cl- - в обратном направлении. Таким путем каждые 100 мл крови отдают в легких 4−5 мл СО2 - то же количество, какое кровь получает в тканях (артериовенозная разница по СO2).



Дыхательный центр и его отделы (дорсальная и вентральная группы респираторных нейронов, пневмотаксический центр). Регуляция дыхания при изменении газового состава крови (с хеморецепторов рефлексогенных зон), при раздражении механорецепторов легких и верхних дыхательных путей.

Регуляция дыхания. Дыхательный центр.

Бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные α и β-нейроны. Первые возбуждаются при вдохе. Одновременно к β-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с α-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Эти их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, в также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гас-пинг – длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста – апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали, что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов центральной нервной системы в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

Рефлекторная регуляция дыхания.

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантрые рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят α-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких. Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания.

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение – гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличивается. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются, и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

2. Как при производстве бензина, так и при выработке электроэнергии происходят выбросы парниковых газов. Если структура генерации является столь «грязной», как в Нидерландах, то удельные выбросы СО2 при производстве «топлива» для электромобиля намного выше, чем удельные выбросы НПЗ. Если структура генерации является такой же чистой, как, например, автомобиль с двигателем внутреннего сгорания (ДВС) на данной стадии очевидно проигрывает.

3. Со стадией эксплуатации всё понятно. Основная доля выбросов автомобиля с ДВС приходится на эксплуатацию. У электромобиля она равна нулю.

Наконец, итог.

Как мы видим, даже при голландской («неудовлетворительной» с климатической точки зрения) структуре производства электроэнергии выбросы СО2 в течение жизненного цикла электромобиля меньше, чем у бензиновой машины. Если электромобиль бегает на полностью возобновляемой энергии, разрыв становится еще больше. А уж если (добавлю от себя) производства аккумуляторов в Китае будут работать на возобновляемом электричестве (), то и углеродный след электрического транспорта сойдет на нет практически полностью.