Тайны насекомых: сколько глаз у обыкновенной мухи. Сколько кадров в секунду видит муха и сколько у неё глаз

Глаз насекомого при большом увеличении похож на мелкую решетку.

Это потому, что глаз насекомого состоит из множества маленьких "глазков"-фасеток. Глаза насекомых называют фасеточными . Крошечный глазок-фасетка называется омматидий . Омматидий имеет вид длинного узкого конуса, основание которого - линза, имеющая вид шестигранника. Отсюда и название фасеточного глаза: facette в переводе с французского означает "грань" .

Пучок омматидиев составляет сложный, круглый, глаз насекомого.

Каждый омматидий имеет очень ограниченное поле зрения: угол обзора омматидиев в центральной части глаза - всего около 1°, а по краям глаза - до 3°. Омматидий «видит» только тот крошечный участок находящегося перед глазами предмета, на который он "нацелен", то есть куда направлено продолжение его оси. Но так как омматидии тесно прилегают друг к другу, а их оси в круглом глазу расходятся лучеобразно, то весь сложный глаз охватывает предмет в целом. Причём изображение предмета получается в нем мозаичным, то есть составленным из отдельных кусочков.

Число омматидиев в глазу у разных насекомых различно. У рабочего муравья в глазу всего около 100 омматидиев, у комнатной мухи - около 4000, у рабочей пчелы - 5000, у бабочек - до 17 000, а у стрекоз - до 30 000! Таким образом, у муравья зрение весьма посредственное, тогда как огромные глаза стрекозы - два радужных полушария - обеспечивают максимальное поле зрения.

Из-за того, что оптические оси омматидиев расходятся под углами 1-6°, четкость изображения насекомых не очень высока: мелких деталей они не различают. Кроме того, большинство насекомых близоруки: видят окружающие предметы на расстоянии лишь нескольких метров. Зато фасеточные глаза отлично умеют различать мелькания (мигания) света с частотой до 250–300 герц (для человека предельная частота около 50 герц). Глаза насекомых способны определять интенсивность светового потока (яркость), а кроме того, они обладают уникальной способностью: умеют определять плоскость поляризации света. Эта способность помогает им ориентироваться, когда солнца не видно на небосклоне .

Насекомые различают цвета, но совсем не так, как мы. Например, пчелы «не знают» красного цвета и не отличают его от чёрного, но зато воспринимают невидимые для нас ультрафиолетовые лучи, которые расположены на противоположном конце спектра . Ультрафиолет различают также некоторые бабочки, муравьи и другие насекомые. Кстати, именно слепостью насекомых-опылителей нашей полосы к красному цвету объясняется любопытный факт, что среди нашей дикорастущей флоры нет растений с алыми цветками.

Свет, идущий от солнца, не поляризован, то есть его фотоны имеют произвольную ориентацию. Однако, проходя через атмосферу, свет поляризуется в результате рассеивания молекулами воздуха, и при этом плоскость его поляризации всегда направлена на солнце

Кстати...

Кроме фасеточных глаз у насекомых есть еще три простых глазка диаметром 0,03-0,5 мм, которые располагаются в виде треугольника на лобно-теменной поверхности головы. Эти глазки не приспособлены для различения объектов и нужны для совсем другой цели. Они измеряют усредненный уровень освещенности, который при обработке зрительных сигналов используется в качестве точки отсчета («ноль-сигнала»). Если заклеить насекомому эти глазки, оно сохраняет способность к пространственной ориентации, но летать сможет только при более ярком свете, чем обычно. Причина этого в том, что заклеенные глазки принимают за «средний уровень» черное поле и тем самым задают фасеточным глазам более широкий диапазон освещенности, а это, соответственно, снижает их чувствительность.

Вопрос "Сколько глаз у обыкновенной мухи?" не так прост, как кажется. Два больших глаза, расположенных по бокам головы, можно увидеть невооруженным взглядом. Но на деле устройство органов зрения мухи гораздо сложнее.

Если посмотреть на увеличенное изображение глаз мухи, видно, что они похожи на соты и состоят из множества отдельных сегментов. Каждая из частей имеет форму шестиугольника с правильными гранями. Отсюда и произошло название такого строения глаза – фасеточное («facette» в переводе с французского означает «грань»). Похвастаться сложными фасеточными глазами могут многие и некоторые членистоногие, причем муха далеко не рекордсмен по количеству фасеток: у нее всего 4 000 фасеток, а у стрекоз – около 30 000.

Ячейки, которые мы видим, называются омматидиями. Омматидии имеют конусообразную форму, узкий конец которой уходит вглубь глаза. Конус состоит из клетки, которая воспринимает свет, и хрусталика, защищенного прозрачной роговицей. Все омматидии тесно прижаты друг к другу и соединены роговицей. Каждый из них видит «свой» фрагмент картинки, а мозг складывает эти крошечные изображения в одно целое.

Расположение больших фасеточных глаз у самок и самцов мухи отличается. У самцов глаза близко посажены, а у самок – больше разнесены по сторонам, так как у них имеется лоб. Если посмотреть на муху под микроскопом, то посередине головы выше фасеточных органов зрения можно разглядеть три небольших точки, расположенных треугольником. На самом деле эти точки являются простыми глазами.

Итого у мухи одна пара сложных глаз и три простых - всего пять. Зачем природа пошла по такому сложному пути? Дело в том, что фасеточное зрение сформировалось, чтобы в первую очередь охватывать взглядом как можно больше пространства и улавливать движение. Такие глаза выполняют основные функции. Простыми глазами муху «обеспечили» для измерения уровня освещённости. Фасеточные глаза являются основным органом зрения, а простые – второстепенным. Если бы у мухи не было простых глаз, она была бы более медленной и могла летать только при ярком свете, а без фасеточных глаз она ослепла бы.

Каким муха видит окружающий мир?

Большие глаза выпуклой формы позволяют мухе видеть все вокруг себя, то есть угол зрения равен 360 градусам. Это в два раза шире, чем у человека. Неподвижные глаза насекомого одновременно смотрят по всем четырём сторонам. Зато острота зрения мухи ниже человеческой почти в 100 раз!

Так как каждый омматидий является самостоятельной ячейкой, картинка получается сетчатой, состоящей из тысяч отдельных маленьких изображений, дополняющих друг друга. Поэтому мир для мухи – это собранный пазл, состоящий из нескольких тысяч кусочков, причем довольно расплывчатый. Более или менее четко насекомое видит всего на расстоянии 40 - 70 сантиметров.

Муха способна различать цвета и даже невидимый человеческому глазу поляризованный свет и ультрафиолет. Глаз мухи чувствует малейшие изменения яркости света. Она способна видеть солнце, скрытое густыми облаками. Но в темноте мухи видят плохо и ведут преимущественно дневной образ жизни.

Еще одна интересная способность мухи – быстрая реакция на движение. Муха воспринимает движущийся объект в 10 раз быстрее человека. Она легко «вычисляет» скорость объекта. Эта способность жизненно необходима для определения расстояния до источника опасности и достигается за счет «передачи» изображения от одной ячейки - омматидия к другой. Авиационные инженеры взяли на вооружение такую особенность зрения мухи и разработали прибор для вычисления скорости летящего самолета, повторив строение ее глаза.

Благодаря такому быстрому восприятию, мухи живут в замедленной реальности, по сравнению с нами. Движение, длящееся секунду, с точки зрения человека, муха воспринимает как десятисекундное действие. Наверняка люди кажутся им очень медлительными существами. Мозг насекомого работает с быстротой суперкомпьютера, получая изображение, анализируя его и передавая соответствующие команды телу за тысячные доли секунды. Поэтому прихлопнуть муху получается далеко не всегда.

Итак, правильным ответом на вопрос "Сколько глаз у обыкновенной мухи?" будет число «пять». Основные являются у мухи парным органом, как и у многих живых существ. Почему природа создала именно три простых глаза - остается загадкой.


Тремя путями воспринимают свет насекомые: всей поверхностью тела, простыми глазками и сложными, так называемыми фасеточными глазами.

Как показали опыты, всей поверхностью тела чувствуют свет гусеницы, личинки водяных жуков, тли, жуки (даже слепые пещерные), мучные черви, тараканы и, конечно, многие другие насекомые. Свет через кутикулу проникает к голове и вызывает соответствующие реакции в воспринимающих его клетках мозга.

Наиболее примитивные простые глазки, пожалуй, у личинок некоторых комаров. Это пигментные пятна с небольшим числом светочувствительных клеток (их нередко всего две или три). У личинок пилильщиков (отряд перепончатокрылых) и жуков глазки более сложные: пятьдесят и больше светочувствительных клеток, прикрытых сверху прозрачной линзой - утолщением кутикулы.

Красные глаза гусеницы. Фото: Jes

С каждой стороны головы личинки жука-скакуна шесть глазков, два из которых много больше других (в них 6 тысяч зрительных клеток). Хорошо ли они видят? Едва ли они способны передать в мозг впечатление о форме предмета. Однако приблизительные размеры увиденного два больших глазка засекают неплохо.

Личинка сидит в вертикальной норке, вырытой в песке. С расстояния в 3-6 сантиметров она замечает жертву или врага. Если проползающее близко насекомое не больше 3-4 миллиметров, личинка хватает его челюстями. Когда больше, прячется в норку.
Пять-шестъ простых глазков на каждой стороне головы гусениц содержат каждый всего по одной «ритинальной палочке» - зрительному элементу - и прикрыты сверху линзой, способной концентрировать свет.

Каждый глаз в отдельности не дает представления о форме наблюдаемого предмета. Однако в опытах гусеница проявляла поразительные способности. Вертикальные предметы она видит лучше, чем горизонтальные. Из двух столбов или деревьев выбирает более высокое и ползет к нему, даже если заклеить черной краской все ее простейшие глазки, оставив лишь один. В каждый данный момент он видит лишь точку света, но гусеница вертит головой, рассматривая единственным своим глазом поочередно разные пункты предмета, и этого достаточно, чтобы в ее мозгу сложилась приблизительная картина увиденного. Конечно, неясная, нечеткая, но все-таки показанный ей объект гусеница замечает.

Простые глазки типичны для личинок насекомых, есть они, впрочем, и у многих взрослых. У последних главное - так называемые сложные, или фасеточные, глаза: по бокам головы. Сложены они из множества удлиненных простых глазков - омматидиев. В каждом омматидии - соединенная нервом с мозгом воспринимающая свет клетка. Поверх нее - удлиненный хрусталик. Оба, светочувствительная клетка и хрусталик, окружены непроницаемым для света чехлом из пигментных клеток. Лишь сверху оставлено отверстие, но там хрусталик прикрыт прозрачной кутикулярной роговицей. Она общая для всех омматидиев, плотно прилегающих друг к другу и соединенных в один фасеточный глаз. В нем может быть всего 300 омматидиев (самка светлячка), 4000 (комнатная муха), 9000 (жук-плавунец), 17 000 (бабочки) и 10 000-28 000 у разных стрекоз.


Фасеточные глаза у бабочки Монарх. Фото: Monica R.

Каждый омматидий передает в мозг только одну точку из всей сложной окружающей насекомое картины мира. Из множества отдельных точек, увиденных каждым из омматидиев, складывается в мозгу насекомого мозаичное «панно» предметов ландшафта.
У ночных насекомых (светлячков, других жуков, у мотыльков) эта мозаичная картина оптического видения, так сказать, более смазанная. Ночью пигментные клетки, отделяющие омматидии сложного глаза друг от друга, сокращаясь, стягиваются кверху, к роговице. Лучи света, попадающие в каждую фасетку, воспринимаются не только ее светочувствительной клеткой, но и клетками, расположенными в соседних омматидиях. Ведь теперь они не закрыты темными пигментными «шторками». Этим достигается более полное улавливание света, которого не так уж много в ночном мраке.

Днем же пигментные клетки заполняют все промежутки между омматидиями, и каждый из них воспринимает только те лучи, которые концентрирует его собственный хрусталик. Иными словами, «суперпозиционный», так его называют, глаз ночных насекомых, днем функционирует как «аппозиционный» глаз насекомых дневных.

Не менее важна, чем число фасеток, другая их особенность - угол зрения каждого омматидия. Чем он меньше, тем выше разрешающая способность глаза и тем более мелкие детали наблюдаемого объекта он может увидеть. У омматидия уховертки угол зрения - 8 градусов, у пчелы - 1 градус. Подсчитано, что на каждую точку в мозаичной картине увиденного уховерткой у пчелы приходится 64 точки. Следовательно, мелкие детали наблюдаемого предмета глаз пчелы улавливает в десятки раз лучше.
Но в глаз с меньшим углом зрения проникает и меньше света. Поэтому величина фасеток в сложных глазах насекомых неодинакова. В тех направлениях, где нужна более яркая видимость и не так уж необходимо точное рассматривание деталей, располагаются более крупные фасетки. У слепня, например, в верхней половине глаза фасетки заметно крупнее, чем в нижней.
Подобные же четко разделенные арены с разновеликими омматидиями есть и у некоторых мух. У пчелы иное устройство фасеток: их угол зрения в направлении горизонтальной оси тела в два-три раза больше, чем по вертикали.

У жуков-вертячек и самцов-поденок по существу два глаза с каждой стороны: один с крупными, другой с мелкими фасетками.
Помните, как гусеница, рассматривая предмет всего одним глазом (другие были замазаны краской), могла, однако, составить известное, правда очень грубое, представление о его форме. Она, вертя головой, весь объект разглядывала по частям, а запоминающий аппарат мозга складывал в единое впечатление все увиденные в каждый данный момент точки. Так же поступают и насекомые с фасеточными глазами: рассматривая что-либо, вертят головой. Сходный эффект достигается и без поворота головы, когда наблюдаемый объект движется или когда летит само насекомое. На лету фасеточные глаза видят лучше, чем в покое.
Пчела, например, способна постоянно держать в поле зрения предмет, который мелькает 300 раз в секунду. А наш глаз даже и вшестеро более медленного мелькания не заметит.

Близкие предметы насекомые видят лучше, чем дальние. Они очень близоруки. Четкость увиденного у них намного хуже, чем у нас.
Интересный вопрос: какие цвета различают насекомые? Опыты показали, что пчелы и падальные мухи видят самые коротковолновые лучи спектра (297 миллимикрон), которые только есть в солнечном свете. Ультрафиолет - к нему наш глаз совершенно слеп - различают также муравьи, ночные бабочки и, очевидно, многие другие насекомые.


Глаза насекомого. Фото: USGS Bee Inventory and Monitoring Laboratory

Чувствительность к противоположному концу спектра у насекомых разная. Пчела слепа к красному свету: он для нее все равно, что черный. Самые длинные волны, которые она еще воспринимает, - 650 миллимикрон (где-то на границе между красным и оранжевым). Осы, натренированные прилетать за кормом на черные столики, путают их с красными. Красное не видят и некоторые бабочки, сатиры например. Но другие (крапивница, капустница) красный цвет различают. Рекорд, однако, принадлежит светлячку: он видит темно-красный цвет с длиной волны в 690 миллимикрон. Ни одно из исследованных насекомых на такое не было способно.
Для человеческого глаза самая яркая часть спектра - желтая. Опыты с насекомыми показали, что у одних зеленая часть спектра воспринимается глазом как самая яркая, у пчелы - ультрафиолетовая, у падальной мухи наибольшая яркость отмечалась в красной, сине-зеленой и ультрафиолетовой полосах спектра.

Несомненно, бабочки, шмели, некоторые мухи, пчелы и другие насекомые, посещающие цветы, различают цвета. Но в какой мере и какие именно, мы еще мало знаем. Необходимы дополнительные исследования.
С пчелами в этом отношении были проведены наиболее многочисленные опыты. Пчела видит окружающий мир, окрашенный в четыре основных цвета: красно-желто-зеленый (не каждый из названных в отдельности, а вместе, слитно, как единый неведомый нам цвет), затем - сине-зеленый, сине- фиолетовый и ультрафиолетовый. Тогда как объяснить, что пчелы прилетают и на красные цветы, на маки, например? Они, а также многие белые и желтые цветы отражают много ультрафиолетовых лучей, поэтому пчела их видит. В какой цвет окрашены они для ее глаз, нам неизвестно.

У бабочек, очевидно, цветовое зрение более близкое к нашему, чем у пчелы. Мы уже знаем, что некоторые бабочки (крапивница и капустница) различают красный цвет. Ультрафиолет они видят, но он не играет для них такой большой роли, как в зрительных восприятиях пчелы. Наиболее привлекают этих бабочек два цвета - сине-фиолетовый и желто-красный.
Разными методами было доказано, что и многие другие насекомые различают цвета, и лучшим образом цвета растений, на которых кормятся либо размножаются. Некоторые бражники, жуки- листоеды, тли, шведские мушки, клопы сухопутные и водяной клоп гладыш - вот далеко не полный перечень таких насекомых. Интересно, что у гладыша только верхняя и задняя часть глаза обладает цветовым зрением, нижняя и передняя - нет. Почему так, непонятно.

Помимо восприятия ультрафиолетовых лучей другое свойство глаза насекомых, которого лишены наши глаза, - это чувствительность к поляризованному свету и способность ориентироваться по нему. Не только фасеточные глаза, но и простые глазки, как показали опыты с гусеницами и личинками перепончатокрылых, способны воспринимать поляризованный свет. Рассмотрели под электронным микроскопом глаз некоторых, и нашли в ретинальной светочувствительной палочке молекулярные структуры, действующие, очевидно, как поляроид.

Некоторые наблюдения последних лет убеждают: ночные насекомые обладают органами, улавливающими инфракрасные лучи.



Удивительными, необычными глазами обладает обыкновенная муха!
Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Экснер доказал наличие необычного мозаичного зрения у насекомых. Он сфотографировал окно сквозь фасеточный глаз светляка, помещенный на предметное стекло микроскопа. На фотографии было видно изображение оконного переплета, а за ним расплывчатые очертания собора.

Сложные глаза мухи называются фасеточными, состоят они из многих тысяч крохотных, отдельных шестиугольных глазков-фасеток, называемых омматидиями. Каждый омматидий состоит из линзочки и примыкающего к ней длинного прозрачного кристаллического конуса.

У насекомых фасеточный глаз может иметь от 5000 до 25 000 фасеток. Глаз комнатной мухи состоит из 4000 фасеток. Острота зрения у мухи низкая, видит она в 100 раз хуже человека. Интересно, что у насекомых острота зрения зависит от числа фасеток в глазу!
Каждая фасетка воспринимает лишь часть изображения. Части складываются в одну картину, и муха видит "мозаичную картину" окружающего мира.

Благодаря этому муха имеет почти круговое поле зрения на 360 градусов. Она видит не только то, что находится впереди нее, но и то, что творится вокруг и сзади, т.е. крупные фасеточные глаза позволяют мухе одновременно смотреть в разные стороны.

В глазах мухи отражение и преломление света происходит таким образом, что максимальная его часть попадает внутрь глаза под прямым углом, вне зависимости от угла падения.

Фасеточный глаз - это растровая оптическая система, в которой в отличие от глаза человека нет единой сетчатки.
Каждый омматидий имеет свой диоптрический аппарат. Кстати, понятия аккомодации, близорукости или дальнозоркости для мухи не существует.

Муха, как и человек, видит все цвета видимого спектра. Кроме того муха способна различать ультрафиолет и поляризованный свет.

Понятия аккомодации, близорукости или дальнозоркости мухе не знакомы.
Глаза мухи очень чувствительны к изменению яркости света.

Изучение фасеточных глаз мухи показало инженерам, что муха способна очень точно определять скорость объектов, движущихся на огромной скорости. Инженеры скопировали принцип мушиных глаз для создания быстродействующих детекторов, определяющих скорость летящих самолетов. Такой прибор получил название "глаз мухи"

Панорамная камера «глаз мухи»

Ученые Федеральной политехнической школы Лозанны изобрели камеру с обзором на 360 градусов, позволяющую трансформировать изображение в формат 3D, не искажая его. Они предложили совершенно новую конструкцию, источником вдохновения послужило устройство глаза мухи.
По форме камера напоминает маленькую полусферу размером с апельсин, по поверхности расположены 104 мини-камеры, наподобие тех, что встроены в мобильные телефоны.

Эта панорамная камера дает трехмерное изображение на 360 градусов. Однако каждую из составных камер можно использовать и отдельно, перенося внимание зрителя на определенные участки пространства.
Этим изобретением ученые разрешили две основные проблемы традиционных кинокамер: неограниченного в пространстве ракурса и глубины резкости.


ГИБКАЯ КАМЕРА НА 180 ГРАДУСОВ

Группа исследователей из университета Иллинойса под руководством профессора Джона Роджерса создали фасетчатую камеру, работающую принципу глаза насекомого.
Новое устройство внешне, и по своиму внутреннему строению напоминает глаз насекомого.


Камера состоит из 180 крошечных линз, у каждой из которых есть свой собственный фотодатчик. Это позволяет каждой из 180 микрокамер действовать автономно, в отличие от обычных камер. Если проводить аналогию с миром животных, то 1 микролинза - это 1 фасетка глаза мухи. Далее данные в низком разрешении, полученные микрокамерами, поступают в процессор, где эти 180 маленьких картинок собираются в панораму, ширина которой соответствует углу обзора в 180 градусов.

Камера не требует фокусировки, т.е. объекты, находящиеся близко, видно так же хорошо, как и объекты, находящиеся вдали. Форма камеры может быть не только полусферической. Ей можно придать практически любую форму. . Все оптические элементы выполнены из эластичного полимера, который используют при изготовлении контактных линз.
Новое изобретение может найти широкое применение не только в системах охраны и наблюдения, но и в компьютерах нового поколения.

Есть такая занятная телереклама. Парнишка, одетый во всё красное, попал в загон к быку. А считается, что быков раздражает красный цвет. И чтобы избежать нападения, парень вымазывается с головы до ног грязью. Между тем один из его приятелей, стоящий в безопасности за изгородью, спрашивает резонно:
-- А разве быки не дальтоники?
В самом деле, не выдумка ли так широко бытующее убеждение? Что действительно видят и чего не видят животные, птицы, насекомые? Как и в чём их зрение отличается от нашего? Чему может поучиться человек у "братьев наших меньших"?
Вот как отвечают на эти вопросы специалисты, пытающиеся посмотреть на мир чужими глазами...

Глаза разные нужны
Глаза -- одно из величайших изобретений природы. И природа изобрела их несколько типов, каждый раз настраивая наилучшим образом для того или иного видения. Скажем, глаза рыб отлично приспособлены различать окружающее под водой, кошки отлично ориентируются в темноте, а орёл замечает крохотную мышь с километровой высоты...
Человек, создавая фотоаппарат, сумел на первых порах сымитировать лишь свой собственный глаз. А вот сложный, фасеточный глаз насекомого скопировать до сих пор толком так и не смог. Этот шедевр природы сложен из многих тысяч крохотных, отдельных "глазков" -- омматидиев.
Каждый омматидий состоит из "линзочки" и примыкающего к ней длинного прозрачного кристаллического конуса. Глаз комнатной мухи состоит из 4000 омматидиев-конусов; рабочей пчелы -- из 5000 конусов, прилегающих вплотную друг к другу; глаз бабочки -- из 17 000, а стрекозы -- из 30 000 отдельных глазков. Каждый из них выхватывает из окружающего их пространства одну точку. Но в мозгу насекомого все они складываются в единую мозаику.

Чем хорош такой глаз? Да хотя бы тем, что замечает мельчайшее, даже очень быстрое движение. Учёные, например, подсчитали: для того чтобы пчела смогла различать на экране то, что показывает проектор, надо крутить плёнку со скоростью не 16 или 24 кадра в секунду, как нам с вами, а по крайней мере в десять раз быстрее. Иначе она увидит лишь мелькание отдельных кадров, а не слитное движение.

Красных нам не надо
Та же пчела по-своему различает и цвета. Ботаники уже давно обратили внимание на то, что в природе сравнительно редко встречаются красные цветы. Почему? Оказывается, опыляющие их пчёлы в отличие от людей слепы к красному цвету -- он для них всё равно что чёрный.
Впрочем, большинство красных цветов, украшающих наши луга и сады -- например, вереск, рододендрон, цикламен, луговой клевер, -- не чисто красные, а представляют собой смесь пурпурно-красных и синих оттенков. А уж синий цвет пчёлы различают отлично. Некоторые же чисто красные цветы -- например, дрёму, растущую по берегам рек и лесных озёр, -- опыляют вовсе не пчёлы, а бабочки.
Особый случай -- мак-самосейка. С нашей точки зрения он красный. А пчела видит, что он отражает еще и ультрафиолет, людьми не видимый.

Немецкий учёный Карл фон Фриш, долгое время всесторонне исследующий пчёл, подметил также, что пчёлы плохо воспринимают слитные формы, зато сразу примечают фигуры, составленные из крохотных элементов. Вот почему для них столь привлекательны растения, осыпанные множеством мелких цветков.

Глаза на затылке?
Ещё одна особенность зрения насекомых: они более отчётливо видят движущиеся предметы, нежели неподвижные. И если кто-то приближается к ним, то вовремя замечают опасность и пытаются спастись. Поле зрения фасеточных глаз охватывает все 360 градусов, так что насекомые видят всё вокруг. Поэтому, например, так трудно поймать муху.
Такой же особенностью отличаются и многие птицы, а также животные. Например, глаза зайца расположены так, что угол зрения между левым и правым глазом составляет 180 градусов.
Для сравнения: у других животных этот показатель значительно ниже (у жирафа -- 140 градусов; у оленя -- 100 градусов; у собаки и волка -- 30 -- 50 градусов). У льва угол обзора ещё меньше. Что ж, царь зверей может не опасаться врагов. Зато ему проще преследовать добычу: чем ближе посажены друг к другу глаза, тем объёмнее зрение, тем точнее можно определить расстояние до своей жертвы, готовясь к прыжку.

Этот многоцветный мир
Многие млекопитающие, как и мы, люди, видят окружающий мир объёмным, трёхмерным. Вот только его красочное великолепие в их глазах меркнет. Сплошь и рядом животные -- дальтоники, не различают те или иные цвета. Так, золотистые хомячки, сумчатые крысы и еноты, ведущие ночной образ жизни, видят всё в чёрно-белом цвете.
Быки и коровы вопреки распространённому представлению не различают красного цвета. Во время корриды быка раздражает вовсе не цвет мулеты, которой размахивает тореадор; его раздражает сам факт движения. Поскольку быки, похоже, ещё и близоруки, то мелькание тряпки они воспринимают как вызов своей особе со стороны неведомого им противника...
Ёж замечает лишь жёлто-коричневые тона, что не случайно: в этот цвет окрашены черви, излюбленная пища ежей. Мышь-полёвка различает жёлтый и красный цвета, ведь ей приходится отличать спелые, покрасневшие плоды от ещё незрелых. Для лошадей и коз по-иному выглядит небо, ведь синего цвета они не воспринимают. Овцы не видят как синее, так и красное.
Для собак что красный, что зелёный, что оранжевый, что жёлтый -- всё едино. Слепые люди, бесстрашно следующие за собакой-поводырём, не подозревают, что, глядя на светофор, четвероногий поводырь не различает, какой там горит цвет -- красный или зелёный. Собака ориентируется по тому, как меняется яркость глазков светофора и как действуют окружающие её люди.

Чемпионы ночи
Для кошачьего зрения недоступны красные и зелёные тона, окрашивающие листву, траву и плоды. Зато зрачки любого представителя этого семейства могут сильно расширяться, приспосабливаясь к любому освещению. Лунной ночью рысь, пума или наша домашняя кошка видят почти так же хорошо, как мы сами солнечным днём.
Это происходит потому, что кошачьи глаза способны усиливать слабый сумеречный свет. Под их сетчаткой расположен особый светящийся слой клеток. Благодаря ему глаза кошек так таинственно мерцают в темноте. Световые лучи, проникающие внутрь глаза, отражаются от этого слоя, словно от зеркала, и вновь достигают фоторецепторов. Так световой импульс усиливается. Кошки в темноте видят в 6 раз лучше, чем человек.
Впрочем, и нам есть чем гордиться! Пусть мы совсем не видим ультрафиолетовых лучей, плохо ориентируемся в темноте, но мир для нас и без этого прекрасен. Человеческий глаз содержит 123 миллиона палочек, отвечающих за чёрно-белое зрение, и семь миллионов колбочек (им мы обязаны цветовым зрением). Благодаря такому обилию цветочувствительных клеток наш глаз способен воспринимать около пяти миллионов цветовых оттенков -- тут уж ни одно животное не сравнится с нами.

И наделила нас природа таким зрением, потому что для нас оно самое подходящее. Не лучше, не хуже, чем у других живых существ, наших соседей по планете, а именно самое подходящее.