Современные мэмс-гироскопы и акселерометры. Безгироскопная инерциальная навигационная система

Определение угла наклона различных объектов относительно гравитационного поля земли осуществляется прибором под названием инклинометр. Существует несколько физических принципов, на основе которых может быть создан инклинометр. Чаще всего наклон определяют с помощью силы гравитации Земли, геомагнитного поля, гироскопического эффекта или применяют косвенные измерения. Любой из перечисленных принципов имеет свои плюсы и минусы.

Проанализируем определение угла наклона с помощью силы гравитации Земли. Если единственной силой, действующей на объект является сила гравитации, то в этом случае для определения статичного угла наклона может быть использован MEMS-акселерометр (например, ), прибор, который измеряет проекцию ускорения (суперпозицию собственного ускорения акселерометра и вектора гравитации) на его чувствительную ось. По величине измеренной проекции определяется угол наклона.

На практике чаще всего на объект помимо силы гравитации действуют еще и другие силы, вызванные вращением, тряской и т.д. Так как сила гравитации имеет постоянную величину любые дополнительные силы, действующие на объект, изменят выходные данные акселерометра, а следовательно в расчете угла наклона появится ошибка. Применив предварительную обработку выходного сигнала акселерометра, можно свести влияние других сил к минимуму, но это приведет к задержке выдачи актуального значения угла.

Одноосевой акселерометр

Для начала рассмотрим идеальный случай, в котором ось X объекта всегда находится в плоскости действия силы гравитации. Воспользовавшись школьным курсом элементарной тригонометрии, получим выражение для вычисления проекции силы гравитации на ось Х:

где - угол между осью акселерометра и горизонтом. Обычно за горизонт принимают плоскость, ортогональную силе гравитации (Рисунок 1). Из-за того что выходное значение акселерометра пропорционально синусу угла наклона в поле гравитации, для определения угла наклона получим формулу:

(2)

Изучим характер зависимости проекции от угла наклона. По определению чувствительность инклинометра выражается отношением изменения его выходного сигнала к связанному с этим изменению угла. В одноосевом случае, если угол наклона близок к значению 90º, большое изменение угла приводит к маленькому изменению измеряемого ускорения. Таким образом, чувствительность измерения угла наклона будет стремиться к нулю с приближением значения угла к 90º.

Важной характеристикой инклинометра является величина его порога чувствительности. Эта характеристика определяет минимальную разность между двумя углами, которую прибор может измерить. Порог чувствительности акселерометра есть постоянная величина, значит для инклинометра он должен меняться подобно его чувствительности: наилучшее значение в районе угла наклона 0º и наихудшее при 90º.

Как подобрать акселерометр, который позволит нам получить желаемый порог чувствительности инклинометра на заданном интервале измеряемых углов? Акселерометр должен определить величину, на которую меняется проекция силы гравитации при изменении наклона на угол равный порогу чувствительности инклинометра. Разность двух показаний акселерометра при смене угла наклона представляется формулой:

где - текущий угол, а - шаг приращения угла. Построим зависимость разности от угла наклона и величины приращения (Рисунок 2). Построенные кривые могут быть в дальнейшем использованы для определения минимального необходимого разрешения акселерометра, достаточного для того чтобы получить заданный порог чувствительности. По графику видно, например, для того чтобы получить порог чувствительности равным в 0.5º на диапазоне измеряемых углов ±55º, необходимо выбрать акселерометр с разрешающей способностью как минимум 5мg/LSB.

Достижение высокой разрешающей способности на широком диапазоне измерений, в одноосевом случае, возможно лишь с применением акселерометра обладающего высокой разрешающей способностью. Кроме того, такая схема не может работать в полном диапазоне углов 0º-360º так как значения синуса совпадают для углов Nº и 180º-Nº.

Двухосевой акселерометр

Избавиться от перечисленных недостатков поможет введение в систему измерения дополнительной оси чувствительности y, ортогональной оси x и также находящейся в плоскости действия силы гравитации (Рисунок 3).

Подобно ситуации с одним сенсором, значение ускорения измеренное акселерометром по оси X будет пропорционально синусу угла наклона, а значение ускорения измеренное акселерометром по оси Y- косинусу угла наклона. Из свойств функций синуса и косинуса следует, что в то время как чувствительность по одной оси будет уменьшаться, она же по другой будет увеличиваться. Расчет угла наклона можно провести воспользовавшись следующей формулой:

(4),
(5)

В отличие от одноосевого случая, применение отношения проекций для вычисления угла наклона, делает аналитическое определение порога чувствительности непростой задачей. Учитывая что чувствительность по одной оси растет в то время как по другой она падает, можно грубо считать общую чувствительность постоянной величиной. Такое поведение характеристики значительно упрощает выбор акселерометра, обладающего необходимой разрешающей способностью. Расчет порога чувствительности, выполненный для одного угла, будет справедлив для всего интервала измеряемых углов.

Любой наклон не по оси чувствительности приведет к значительным ошибкам измерения угла наклона одноосевым акселерометром. Введение дополнительной оси чувствительности позволяет получить довольно точные результаты, даже если присутствует наклон по третьей оси. Так происходит благодаря тому, что эффективная чувствительность инклинометра пропорциональна квадратному корню из суммы квадратов проекций силы гравитации на чувствительные оси.

Когда сила гравитации действует только в плоскости XY значение ускорения, которое измерит акселерометр, будет строго равно 1g. Наклон в плоскости XZ или YZ уменьшит измеряемое ускорение, что в свою очередь снизит чувствительность инклинометра. Но несмотря на это, все еще можно получить точные результаты, относящиеся к углу наклона в плоскости XY. Эти рассуждения справедливы только для не больших углов наклона в плоскости XZ и YZ. С ростом угла наклона влияние силы гравитации на оси X и Y будет уменьшаться, в итоге невозможно будет вообще рассчитать угол наклона.

Кроме того, дополнительная ось дает нам возможность измерять углы в диапазоне 0-360 градусов. Достигается это благодаря смене знака в зависимости от принадлежности угла к тому или иному квадранту.

Принадлежность угла к тому или иному квадранту, может быть определена в результате анализа значений, полученных для каждой из чувствительных осей.

Трехосевой акселерометр

Введение третьей чувствительной оси позволит измерять все углы наклона сенсора в пространстве. В начальной позиции положение устройства такое, при котором оси x и y находятся в плоскости горизонта, а ось z ортогональна осям x и y (Рисунок 4).

В начальной позиции, когда сила гравитации действует только на ось z, получим, что все значения углов равны 0. При этом, значения углов могут быть вычислены по следующим формулам:

(6)
(7)
(8)

Как и в 2-х осевом варианте, порог чувствительности постоянен и это позволяет точно измерить значения углов для всей сферы.

Калибровка акселерометра

Приведенные выше рассуждения для всех трех вариантов сенсора, выполнены с предположением о том, что используется идеальный акселерометр. А значит, он обладает идеальной чувствительностью и у него отсутствует какое-либо смещение нуля. В реальности же MEMS-акселерометр представляет собой механическое устройство и, несмотря на то, что он отрегулирован, после установки его в инклинометр, на него будет действовать статичная «нагрузка». В свою очередь это приведет к изменению чувствительности и смещению уровня нуля инклинометра. Как результат инклинометр будет выдавать значения углов наклона с точностью значительно хуже заданной. Снизить ошибку определения угла наклона поможет калибровка нулевого значения акселерометра и его чувствительности.

17 марта 2017 в 18:56

Исследование: звуковая атака на акселерометры подменяет показания

  • Информационная безопасность

Исследование группы ученых из Мичиганского университета и Университета Южной Каролины ставит под сомнение давнее убеждение о том, что программное обеспечение может автоматически доверять аппаратным датчикам, которые поставляют автономным системам информацию, необходимую для принятия решений.

Согласно результатам научной работы, звуковые волны можно использовать для взлома важных датчиков в широком спектре технологических устройств, включая смартфоны, автомобили, медицинскую технику и Интернет вещей.

В этом исследовании изучались инерциальные датчики – емкостные МЭМС-акселерометры, измеряющие изменение скорости объекта в трех измерениях. Команда исследователей использовала точно настроенные акустические сигналы, чтобы обмануть 20 различных моделей акселерометров, регистрирующих движения. Такой подход позволил обнаружить бэкдор, с помощью которого можно было управлять другими элементами системы.


Основы физики аппаратных средств позволили ученым обмануть датчики и заставить их передавать ложную информацию в микропроцессор. Емкостные МЭМС-акселерометры для измерения ускорения регистрируют отклонение инерционной массы. При воздействии силы инерционная масса изменяется, вызывая изменение емкости, которое преобразуется в аналоговый сигнал.

Воздействие звукового давления на чувствительную пружинно-массовую систему может сместить ее, тем самым создавая ложные сигналы ускорения. Эти поддельные сигналы ускорения коррелируют с сигналом акустических помех.

Важно отметить, что резонансная частота пружинно-массовой системы – характеристика того, как она спроектированна на физическом уровне, и для успешного обмана частота акустических помех должна ей соответствовать.

Исследователи провели несколько показательных демонстраций: аудиосигнал из простого динамика за $5 заставил браслет Fitbit показывать тысячи фальшивых шагов. В другом случае включали на смартфоне вредоносный музыкальный файл, и динамик управлял акселерометром другого смартфона, на котором приложение Android «крутило баранку» игрушечного автомобиля. Еще одна музыкальная дорожка вывела из строя акселерометр Samsung Galaxy S5, который вместо графика показаний выводил слово WALNUT (грецкий орех).

Команда исследователей также отмечает, что нарушить поведение акселерометра можно даже в сочетании с видео и музыкой, которые автоматически воспроизводятся с сайтов, вложений электронной почты, получением уведомлений и прочим.


МЭМС-акселерометры уже установлены в тысячи устройств и бытовых приборов. Автономные системы, такие как беспилотные летательные аппараты и автопилоты автомобилей, принимают решения на основе того, что подсказывают их датчики. Если автономные системы не смогут доверять своим чувствам-датчикам, то безопасность и надежность их находится под угрозой. В случае, когда система или устройство использует уязвимый датчик МЭМС для принятия решений, злоумышленники могут использовать их в качестве вектора атаки.

Чтобы добиться такого эффекта, исследователи определили резонансные частоты 20 различных акселерометров пяти производителей. В своих экспериментах они не использовали шумы ниже 110 дБ, но отмечают, что более низкие амплитуды могут также негативно повлиять на различные датчики.

Другие датчики МЭМС, включая гироскопы, также потенциально восприимчивы к звуковой атаке. В ходе своих экспериментов ученые обнаружили дополнительные уязвимости. Так, например, при разработке цифровых низкочастотных фильтров, которые отсеивают самые высокие частоты, а также усилителей, не учитывались проблемы безопасности.

Чтобы защитить датчики от звуковой атаки, необходимо использовать сочетание различных методов, однако существует два основных подхода:

  1. Располагать МЭМС-датчики таким образом, чтобы ограничить воздействие звуковых помех. Например, окружить его звукоизоляционным материалом.
  2. Развернуть алгоритмы обработки данных, отклоняющих аномально ускоряющиеся сигналы, особенно с частотами, близкими к резонансной частоте датчика МЭМС.
Кроме того, исследователи разработали несколько программных решений, которые могли бы минимизировать уязвимости, и сообщили об этом производителям.

Руководитель исследовательской группы и ведущий автор исследования Кевин Фу (Kevin Fu) ранее занимался исследованием рисков кибербезопасности медицинской техники, в том числе потенциальной угрозы передачи смертельных сердечных ритмов в кардиостимулятор по беспроводной сети.

По его словам, на проведение исследования, направленного на изучение влияния акустических сигналов на технику, их вдохновил случай, когда с помощью музыки были выведены из строя квадрокоптеры. Он добавил, что более ранние работы ученых продемонстрировали успешность DoS-атак, в которых звук используется для отключения акселерометров.

Это не единственное исследование, где безопасность использования акселерометров ставится под сомнение. В 2014 году исследователи в области безопасности из Стэнфордского университета

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих координат объекта и его угловой ориентации. Технический результат - повышение точности определения угловой ориентации объекта и его координат. Для достижения данного результата увеличивают число используемых акселерометров (с 6-ти до 12-ти). При этом взаимное расположение и ориентация их чувствительных осей обеспечивают измерение всех базовых навигационных параметров. Выделение из измеренных данных базовых параметров, составляющих угловой скорости, обеспечивает определение угловой ориентации объекта на основе однократного интегрирования показаний акселерометров. Предложенная система обеспечивает снижение скорости роста погрешностей определения угловой ориентации и координат объекта. 1 ил., 2 табл.

Рисунки к патенту РФ 2483279

Область техники

Изобретение относится к области инерциальной навигации и может использоваться для определения текущих координат объекта и его угловой ориентации. Устройство может применяться как автономно, так и в сочетании со спутниковыми радионавигационными системи GPS и ГЛОНАСС.

Уровень техники

Известно устройство, описанное в патенте США 2010/0268414 . Данное устройство предназначено для оценки угловой скорости мобильного объекта.

Известно устройство, описанное в патенте США 2010/0114517 . Данное устройство предназначено для определения пространственной ориентации объекта.

К недостаткам данных устройств относится невысокая точность определения пространственной ориентации объекта на основе показаний акселерометров.

Наиболее близким аналогом предлагаемого изобретения и принятым в качестве прототипа является устройство, описанное в работе , которое включает модуль из шести акселерометров, блок расчета составляющих углового ускорения, интегрирующий блок, блок расчета коэффициентов матрицы координатных преобразований, блок расчета ускорений в связанной системе координат, блок расчета ускорений в Земной системе координат, блок расчета навигационных параметров.

При этом модуль из шести акселерометров содержит одноосные акселерометры, координаты которых в подвижной системе координат и ориентация их чувствительных осей заданы следующим образом:

где r - расстояние от точки установки акселерометра до центра подвижной системы координат.

Определение навигационных параметров объекта (координат и скорости) в текущий момент времени с помощью данного устройства выполняется следующим образом. Блок расчета составляющих углового ускорения определяет величины углового ускорения объекта на основе показаний шести акселерометров. Интегрирующий блок определяет значения угловой скорости путем интегрирования значений углового ускорения. Блок расчета коэффициентов матрицы координатных преобразований выполняет определение угловой ориентации объекта на основе значений угловой скорости. Блок расчета ускорений в связанной системе координат выполняет расчет данных ускорений на основе значений составляющих угловой скорости и данных, снимаемых с акселерометров. Блок расчета ускорений в Земной системе координат определяет данные ускорения путем компенсации вектора гравитации из значений «кажущегося» ускорения. Блок расчета навигационных параметров осуществляет расчет скорости и координат объекта путем однократного и 2-кратного интегрирования ускорений в Земной системе координат.

Недостатком прототипа является невысокая точность определения угловой ориентации объекта. Это обусловлено тем, что для определения угловой ориентации необходимо двойное интегрирование углового ускорения, определяемого на основе показаний акселерометров. При этом происходит двойное интегрирование низкочастотного шума акселерометров. Поскольку низкочастотная составляющая практически является детерминированной величиной, то это ведет к тому, что погрешность определения угловой ориентации имеет монотонный рост и зависит от времени как ~t 2 . Т.к. координаты объекта определяются на основе последующего двойного интегрирования значений угловой ориентации, то погрешность определения координат монотонно возрастает и оценивается как ~t 4 .

Раскрытие изобретения

Задачей предлагаемого изобретения является повышение точности определения угловой ориентации объекта за счет перехода от двухкратного к однократному интегрированию показаний акселерометров. Техническим результатом, позволяющим выполнить поставленную задачу, является снижение кратности интегрирования показаний акселерометров и уменьшение скорости роста погрешностей определения угловой ориентации и координат объекта.

Сутью данного изобретения является определение угловой скорости объекта на основе «прямых» показаний акселерометров, т.е. без выполнения процедуры интегрирования. В этом случае при определении угловой ориентации будет использоваться однократное интегрирование показаний акселерометров, что приведет к уменьшению роста погрешности до величины ~t. Для выполнения данного условия предлагается определять базовые навигационные переменные на основе показаний акселерометров (A accel,j), где j - номер акселерометра. В общем случае, имеется 12 базовых навигационных переменных

где F X , F Y , F Z - составляющие «кажущегося» ускорения, - составляющие углового ускорения, W X , W Y , X Z - составляющие угловой скорости. Выражение, связывающее значения акселерометров (A accel,j) и базовых навигационных переменных (), имеет следующий вид:

A accel,j =Q j · , где

При этом матрица Q полностью определяется параметрами установки акселерометров: координатами акселерометров (R accel,j) и ориентацией их чувствительных осей ( accel,j). Значения может быть определено на основе решения системы линейных уравнений:

Поскольку имеется 12 базовых навигационных переменных (), то для их однозначного выделения на основе решения системы уравнений (2) предлагается использовать показания 12-ти акселерометров. При этом взаимное расположение акселерометров и ориентация их чувствительных осей выбираются из следующих условий:

Отсутствие вырожденности матрицы Q;

Максимизация значения детерминанта матрицы Q для снижения величины погрешности вычисления значения , поскольку в выражении (2) используется Q -1 .

Таким образом, увеличение числа акселерометров с 6-ти до 12-ти в предлагаемом изобретении, а также соответствующий выбор координат установки акселерометров и взаимной ориентации их чувствительных осей обеспечивают однозначное решение системы уравнений (2). При этом на основе показаний 12-ти акселерометров осуществляется расчет базовых навигационных параметров, из которых выделяются соответствующие составляющие угловой скорости. Однократное интегрирование составляющих угловой скорости обеспечивает более точное (по сравнению с прототипом) определение угловой ориентации объекта, задаваемое матрицей координатных преобразований.

Краткое описание чертежей

На фигуре представлена структурная схема безгироскопной инерциальной навигационной системы, состоящей из блоков:

1 - модуль первых шести акселерометров;

2 - блок расчета коэффициентов матрицы координатных преобразований;

3 - блок расчета ускорений в связанной системе координат;

4 - блок расчета ускорений в Земной системе координат;

5 - блок расчета навигационных параметров;

6 - модуль вторых шести акселерометров;

7 - блок расчета базовых навигационных переменных;

8 - блок расчета составляющих угловой скорости.

Осуществление изобретения

Безгироскопная инерциальная навигационная система, содержащая распределенное множество акселерометров, состоит из модуля акселерометров (1), блока расчета коэффициентов матрицы координатных преобразований (2), блока расчета ускорений в связанной системе координат (3), блока расчета ускорений в Земной системе координат (4), блока расчета навигационных параметров (5), при этом первые шесть акселерометров имеют координаты

в связанной системе координат, где r - расстояние от точки установки акселерометра до центра системы координат.

Для обеспечения повышенной точности определения угловой ориентации объекта, а так же навигационных параметров: скорости и координат объекта, в устройство введены:

Модуль вторых шести акселерометров (6);

Блок расчета базовых навигационных переменных (7);

Блок расчета составляющих угловой скорости (8).

При этом ориентация чувствительных осей акселерометров (), расположенных в модуле первых шести акселерометров (1), задана в связанной системе координат как

акселерометры, расположенные в модуле вторых шести акселерометров (6), имеют координаты

в связанной системе координат, а ориентация их чувствительных осей задана в связанной системе координат как

Модуль вторых шести акселерометров (6) в сочетании с модулем первых шести акселерометров обеспечивает возможность выделения базовых навигационных переменных: , которые содержат составляющие угловой скорости объекта.

Блок расчета базовых навигационных переменных (7) предназначен для определения данных составляющих () на основе показаний акселерометров.

Блок расчета составляющих угловой скорости (8) предназначен для расчета данных составляющих на основе базовых навигационных переменных.

Блоки (7) и (8) могут быть реализованы как аппаратно, так и программно.

Связи между устройствами осуществляются следующим образом:

Выходы модуля первых шести акселерометров (1) и модуля вторых шести акселерометров (6) подсоединены ко входам блока расчета базовых навигационных переменных (7) и блока расчета ускорений в связанной системе координат (3);

Выход блока базовых навигационных переменных (7) подсоединен ко входу блока расчета ускорений в связанной системе координат (3) и ко входу блока расчета составляющих угловой скорости (8);

Выход блока расчета составляющих угловой скорости (8) подсоединен во входу блока расчета коэффициентов матрицы координатных преобразований (2);

Выход блока расчета коэффициентов матрицы координатных преобразований (2) подключен ко входу блока расчета ускорений в Земной системе координат (4);

Выход блока расчета ускорений в связанной системе координат (3) подключен ко входу блока расчета ускорений в Земной системе координат (4);

Выход блока расчета ускорений в Земной системе координат (4) подключен ко входу блока расчета навигационных параметров (5).

Пример конкретной реализации.

Проведенное моделирование показало, что максимальное значение детерминанта матрицы Q, обеспечивающее минимизацию погрешности определения базовых навигационных параметров, выполняется при задании координат установки акселерометров и ориентации их чувствительных осей, представленных ниже в таблицах 1, 2.

Таблица 1
Координаты установки акселерометров
R accel Acc 1 Acc 2 Асс 3 Acc 4 Acc 5 Acc 6 Acc 7 Acc 8 Acc 9 Acc 10 Acc 11 Acc 12
X 0 0 r r 0 0 -r -r 0 0 0 0
Y r r 0 0 -r -r 0 0 0 0 0 0
Z 0 0 0 0 0 0 0 0 -r -r r r
Таблица 2
Ориентация чувствительных осей акселерометров
accel Acc 1 Acc 2 Асс 3 Acc 4 Acc 5 Acc 6 Acc 7 Acc 8 Acc 9 Acc 10 Acc 11 Acc 12
Х 0 0 0 -1 -1 0 0 1 1 0 0 0
Y 0 -1 0 0 0 1 -1 0 0 0 1 0
Z 1 0 -1 0 0 0 0 0 0 1 0 -1

Определение навигационных параметров объекта (координат и скорости ) в текущий момент времени (t i) с помощью предлагаемого устройства выполняется следующим образом:

Показания акселерометра могут быть определены как:

где F - «кажущееся» ускорение объекта в подвижной системе координат; R j - координаты установки акселерометра (см. табл.1); accel,j - ориентация чувствительных осей акселерометров (см. табл.2); W - угловая скорость объекта.

На основе 12-ти акселерометров базовые навигационные параметры определяются как =Q -1 ·F accel .

Блок расчета базовых навигационных переменных (3) обеспечивает вычисление:

где - элементы матрицы (обратной Q j), det(Q) - детерминант матрицы Q.

Блок расчета составляющих угловой скорости (4) выполняет следующее преобразование на основе полученных составляющих базовых навигационных параметров:

Проведем оценку погрешности определения угловой ориентации и расчета координат объекта. Поскольку угловая ориентация определяется на основе однократного интегрирования показаний акселерометров, то это ведет к тому, что погрешность определения угловой ориентации оценивается как ~t. Т.к. координаты определяются на основе последующего двойного интегрирования значений угловой ориентации, то погрешность определения координат так же имеет монотонный рост и оценивается уже как ~t 3 .

Сравнение оценок роста погрешностей для прототипа и предложенного устройства показало, что предложенное устройство имеет выигрыш по точностным характеристикам определения навигационных параметров за счет уменьшения скорости роста погрешностей: если для прототипа вклад в погрешность ориентации и координат от низкочастотных шумов акселерометров составляет ~t 2 ~t 4 , соответственно, то аналогичные оценки для прототипа выглядят как ~t и ~t 3 , соответственно.

Применение данного изобретения дает возможность повысить точность определения угловой ориентации объекта, а так же точность определения его навигационных параметров (координат и скорости).

Источники информации

1. Патент США 2010/0268414, G06F 7/00 20060101, G06F 007/00.

2. Патент США 2010/0114517, 702/92; 702/153.

3. Chao-Yu Hung, Chun-Min Fang, and Sou-Chen Lee "A Compensator to Advance Gyro-Free INS Precision", International Journal of Control, Automation, and Systems, vol.4, no.3, p.351-358, June 2006.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Безгироскопная инерциальная навигационная система, содержащая распределенное множество акселерометров, а именно модуль акселерометров, блок расчета коэффициентов матрицы координатных преобразований, блок расчета ускорений в связанной системе координат, блок расчета ускорений в земной системе координат, блок расчета навигационных параметров, при этом первые шесть акселерометров имеют координаты в связанной системе координат,

где r - расстояние от точки установки акселерометра до центра системы координат, при этом выход модуля этих акселерометров подключен во входу блока расчета ускорений в связанной системе координат, выход блока расчета коэффициентов матрицы координатных преобразований подключен ко входу блока расчета ускорений в земной системе координат, выход блока расчета ускорений в связанной системе координат подключен ко входу блока расчета ускорений в земной системе координат, выход блока расчета ускорений в земной системе координат подключен ко входу блока расчета навигационных параметров, отличающаяся тем, что в состав системы введены модуль вторых шести акселерометров, блок расчета базовых навигационных переменных, блок расчета составляющих угловой скорости, при этом ориентация чувствительных осей акселерометров (), расположенных в модуле первых шести акселерометров, задана в связанной системе координат как акселерометры, расположенные в модуле вторых шести акселерометров, имеют координаты в связанной системе координат, а ориентация их чувствительных осей задана в связанной системе координат как при этом выход модуля вторых шести акселерометров соединен со входами блока расчета базовых навигационных переменных и блока расчета ускорений в связанной системе координат, выход модуля первых шести акселерометров соединен со входом блока расчета базовых навигационных переменных, выход блока расчета базовых навигационных переменных соединен со входами блока расчета ускорений в связанной системе координат и блока расчета составляющих угловой скорости, а выход блока расчета составляющих угловой скорости соединен со входом блока расчета коэффициентов матрицы координатных преобразований.



Исследование группы ученых из Мичиганского университета и Университета Южной Каролины ставит под сомнение давнее убеждение о том, что программное обеспечение может автоматически доверять аппаратным датчикам, которые поставляют автономным системам информацию, необходимую для принятия решений.

Согласно результатам научной работы, звуковые волны можно использовать для взлома важных датчиков в широком спектре технологических устройств, включая смартфоны, автомобили, медицинскую технику и Интернет вещей.

В этом исследовании изучались инерциальные датчики – емкостные МЭМС-акселерометры, измеряющие изменение скорости объекта в трех измерениях. Команда исследователей использовала точно настроенные акустические сигналы, чтобы обмануть 20 различных моделей акселерометров, регистрирующих движения. Такой подход позволил обнаружить бэкдор, с помощью которого можно было управлять другими элементами системы.


Основы физики аппаратных средств позволили ученым обмануть датчики и заставить их передавать ложную информацию в микропроцессор. Емкостные МЭМС-акселерометры для измерения ускорения регистрируют отклонение инерционной массы. При воздействии силы инерционная масса изменяется, вызывая изменение емкости, которое преобразуется в аналоговый сигнал.

Воздействие звукового давления на чувствительную пружинно-массовую систему может сместить ее, тем самым создавая ложные сигналы ускорения. Эти поддельные сигналы ускорения коррелируют с сигналом акустических помех.

Важно отметить, что резонансная частота пружинно-массовой системы – характеристика того, как она спроектированна на физическом уровне, и для успешного обмана частота акустических помех должна ей соответствовать.

Исследователи провели несколько показательных демонстраций: аудиосигнал из простого динамика за $5 заставил браслет Fitbit показывать тысячи фальшивых шагов. В другом случае включали на смартфоне вредоносный музыкальный файл, и динамик управлял акселерометром другого смартфона, на котором приложение Android «крутило баранку» игрушечного автомобиля. Еще одна музыкальная дорожка вывела из строя акселерометр Samsung Galaxy S5, который вместо графика показаний выводил слово WALNUT (грецкий орех).

Команда исследователей также отмечает, что нарушить поведение акселерометра можно даже в сочетании с видео и музыкой, которые автоматически воспроизводятся с сайтов, вложений электронной почты, получением уведомлений и прочим.


МЭМС-акселерометры уже установлены в тысячи устройств и бытовых приборов. Автономные системы, такие как беспилотные летательные аппараты и автопилоты автомобилей, принимают решения на основе того, что подсказывают их датчики. Если автономные системы не смогут доверять своим чувствам-датчикам, то безопасность и надежность их находится под угрозой. В случае, когда система или устройство использует уязвимый датчик МЭМС для принятия решений, злоумышленники могут использовать их в качестве вектора атаки.

Чтобы добиться такого эффекта, исследователи определили резонансные частоты 20 различных акселерометров пяти производителей. В своих экспериментах они не использовали шумы ниже 110 дБ, но отмечают, что более низкие амплитуды могут также негативно повлиять на различные датчики.

Другие датчики МЭМС, включая гироскопы, также потенциально восприимчивы к звуковой атаке. В ходе своих экспериментов ученые обнаружили дополнительные уязвимости. Так, например, при разработке цифровых низкочастотных фильтров, которые отсеивают самые высокие частоты, а также усилителей, не учитывались проблемы безопасности.

Чтобы защитить датчики от звуковой атаки, необходимо использовать сочетание различных методов, однако существует два основных подхода:

  1. Располагать МЭМС-датчики таким образом, чтобы ограничить воздействие звуковых помех. Например, окружить его звукоизоляционным материалом.
  2. Развернуть алгоритмы обработки данных, отклоняющих аномально ускоряющиеся сигналы, особенно с частотами, близкими к резонансной частоте датчика МЭМС.
Кроме того, исследователи разработали несколько программных решений, которые могли бы минимизировать уязвимости, и сообщили об этом производителям.

Руководитель исследовательской группы и ведущий автор исследования Кевин Фу (Kevin Fu) ранее занимался исследованием рисков кибербезопасности медицинской техники, в том числе потенциальной угрозы передачи смертельных сердечных ритмов в кардиостимулятор по беспроводной сети.

По его словам, на проведение исследования, направленного на изучение влияния акустических сигналов на технику, их вдохновил случай, когда с помощью музыки были выведены из строя квадрокоптеры. Он добавил, что более ранние работы ученых продемонстрировали успешность DoS-атак, в которых звук используется для отключения акселерометров.

Это не единственное исследование, где безопасность использования акселерометров ставится под сомнение. В 2014 году исследователи в области безопасности из Стэнфордского университета продемонстрировали , как датчик может скрытно использоваться в качестве примитивного микрофона. Еще раньше, в 2011 году, группа из Массачусетского технологического института и Технологического института Джорджии показала , как с помощью акселерометра в смартфоне можно расшифровать примерно 80% всех слов, набранных на клавиатуре компьютера.

МЭМС АКСЕЛЕРОМЕТРЫ

Акселерометр (ускоряю + измеряю) - прибор, измеряющий разность между истинным ускорением объекта и гравитационным ускорением.

Схема простейшего акселерометра показана на рис.1. Груз (Масса ) закреплён на пружине. Демпфер подавляет колебания груза. Чем больше истинное ускорение, тем сильнее деформируется пружина, изменяя показания прибора.

Рис.1 Схема простейшего акселерометра

Реализация выходного сигнала и принципа измерения обеспечивается преобразователями перемещении, дефор­мации, сил и электроникой. Конструктив­ный узел, включающий в себя ИнМ и под­вес с элементами крепления, можно опре­делить как чувствительный элемент (ЧЭ) акселерометра. Чувствительный элемент является основным конструктивным узлом акселерометра.

По виду движений инерци­онной массы акселеромет­ры делятся на осевые и маятниковые . В осевых акселерометрах конструкция уп­ругого подвеса обеспечивает прямоли­нейное перемещение инерци­онной массы, а в маятниковых - угловое. Маятниковые акселерометры называют также угловыми , а иногда - балочными .

У акселерометра выделяют ось чув­ствительности и перпендикулярные к ней поперечные оси. Ось чувствительности - это ось, в направлении которой возможно перемещение ИнМ, обусловленное конст­рукцией подвеса. Акселерометры, с одной осью чувствительности называют одно- компонентными . В одном корпусе могут быть установлены ЧЭ с разным направле­нием осей чувствительности (двух- и трехкомпонентные акселерометры).

С помощью акселеро­метров возможно измерение линейного и углового ускорения. По виду измеряемого ускорения различают линейные к угловые акселерометры.

В линейных акселерометрах ось чув­ствительности параллельна вектору изме­ряемого ускорения. В акселерометрах для измерения углового ускорения она долж­на быть параллельна вектору линейного ускорения, являющегося следствием уг­лового ускорения.

По принципу измерения акселеро­метры делятся на:

Приборы прямого измерения/преобразо­вания;

Приборы компенсационного измерения/преобразо­вания.

Чувствительные элементы приборов прямого измерения непосредственно переда­ют информацию о действующем на него ускорении в виде перемещений ИнМ или деформаций упругих элементов подвеса на вторичный преобразователь (переме­щений или деформаций). В этом случае все погрешности измерительной цепи присутствуют в выходном сигнале аксе­лерометра.

В акселерометрах компенсационного измерения сила, вызванная измеряемым ускорением и действующая на ИнМ, час­тично или полностью (интегратор в кон­туре) уравновешивается с помощью цепи отрицательной обратной связи, реали­зующей силовую разгрузку (компенса­цию) ЧЭ посредством выходного сигнала, поступающего на устройство компенса­ции (преобразователи силы, момента). В этом случае точность измерительной цепи зависит в основном от преобразователя силы (момента).

В условиях невесомости показания любого акселерометра равны нулю (почему?). Все системы, использующие акселерометр как датчик наклона, прекращают функционировать. Например, планшетный компьютер не изменяет положение изображения при повороте корпуса.