Понятие электроотрицательность в химии. Относительная электроотрицательность элементов

Когда две различные атомы в молекуле связаны друг с другом посредством ковалентной связи, пара электронов, образующая связь не разделяется одинаково оба атомами. Другими словами, общая пара электронов не лежат в середине молекул, но сдвиг в сторону атома, имеющего большее сродство электронов.

Тенденция атома, чтобы привлечь к себе электроны при объединении в соединении называется электроотрицательность (E.N).

Например – В молекуле водорода хлорид пары электронов притягивается больше к хлору. Это происходит потому, что хлор является более электроотрицательным, чем водород,.

  • Значение E.N зависит от потенциала ионизации и электронного сродства атома.
  • Меньший размер атома притягивает электроны больше, чем крупные.
  • Низкий E.N является характеристикой металлов и высокой E.N является характеристикой неметаллов.

Электроотрицательность Таблица Диаграмма

Значение E.N зависит от следующих факторов.

  • Размер атома ()
  • Электронная конфигурация.
  • Ядерный аттракцион.
  • состояние Окисление.
  • Процентная доля сек -character

Как рассчитать Электроотрицательность – Найти электроотрицательность

Так как E.N элементов является относительным свойством, он не имеет единиц. Электроотрицательность может быть выражено на следующих трех шкал. Были многие ученые, которые объясняют E.N с различным масштабом для сравнения. Из этого Полинг, Весы является наиболее часто используемым.

Mulliken Scale

В этом масштабе Малликена, E.N берется как среднее значение энергии ионизации и электронного сродства.

Отношения между Полинг и Малликеном E.N масштаб, как:

Allred-Рохов Scale

Аллед и Рохи определяются E.N как электростатическая сила оказываемое на ядре валентных электронов. таким образом,

где Z представляет собой эффективный ядерный заряд и г-радиус ковалентного атома в к .

Полинг Scale

Он основан на энергии избыточных связей. Он определил E.N разницы между двумя атомами, а затем путем присвоения произвольных значений нескольких элементов (например. 4.00 фтору, 2.5 к углероду и 2.1 водороду). Он вычислил E.N других элементов.

Электроотрицательность Периодическая таблица

E.N элементов является обратно пропорциональный к радиусу атома. Атомный радиус будет увеличиваться до группы и уменьшается вдоль периода. Это означает, что поведение E.N будет находиться напротив атомный радиус.


электроотрицательность Примеры

Когда связь образуется между атомами двух или более различных элементов. Тип облигации (является ли он ионной или ковалентной или любой тип связи) в основном зависит от концепции E.N .

Электроотрицательность кислорода

  • Полинг шкала помогает измерить E.N Значение кислорода.
  • Кислород имеет значение 3.44
  • Его значение выше, чем Бром, но меньше, чем Фтор.
  • Порядок E.N некоторых элементов F>O >Cl = N>бром>С>я>ЧАС.

Электроотрицательность углерода

  • Существует разница в ноль, когда E.N существует связь между углеродными связями.
  • Его электроотрицательное значение 2.55.
  • Это показываетстоимостьменьше, чем азот(3.0) но больше, чем Бороны (2.0) и кремния (1.8).
  • Это вызывает тенденцию к образованию миллионов соединения с водородом.

Электроотрицательность водорода


Электроотрицательность – это свойство атома, соединенного ковалентной связью с другим атомом. Если в связи А–В электронное облако смещено в сторону А, то А более электроотрицателен, чем В.

Наибольшая электроотрицательность присуща атомам, расположенным в правом верхнем углу, наименьшая – в нижнем левом углу периодической системы. Таким образом, электроотрицательность растет слева направо по периодам и снизу вверх в группах.

В пределах главного периода она пропорциональна эффективному заряду ядра (для 2-го периода: С F). Внутри группы она тем больше, чем меньше степень экранирования ядер электронами:FClBrI.

Рассмотрим энергии связей трех молекул:

Экспериментально установлено, что

E A – B > (E A – A +E B – B)

Электроотрицательность рассматривают в основном по шкале Полинга. Полинг предположил, что

χ A – χ B =f(Δ)

где Δ = E A – B –(E A – A +E B – B)

Эмпирически было найдено, что эта зависимость является квадратичной.

Если произвольно приписать χ F = 4, то остальным атомам можно присвоить такие значения элетроотрицательностей, что будет справедливо соотношение

│χ A – χ B │ =
= 0,208
,

где Δ – в ккал/моль;

23,06 – переводной коэффициент из ккал/моль в эВ/моль, помноженный на 10 4 .

Полученная таким образом эмпирическая шкала Полинга выглядит следующим образом:

Таблица 5

Шкала Полинга:

По Малликену = 1/2E + I, гдеE– сродство к электрону,I– энергия ионизации атома в данном валентном состоянии.

Электроотрицательность по Малликену линейно пропорциональна электроотрицательности по Полингу.

Электроотрицательность атома зависит от эффективного заряда атома в конкретной молекуле и от состояния его гибридизации, т. е. не является фиксированной величиной.

Таблица 6

Электроотрицательность атома углерода в различных гибридных состояниях:

Тип связи

Состояние гибридизации атома углерода

Следовательно, электроотрицательность одного и того же многовалентного атома различна в направлении различных связей и зависит от других заместителей, входящих в состав молекулы. особенно от атомов, непосредственно соединенных с рассматриваемым. Поэтому имеет смысл рассчитать электроотрицательность и для атомных групп:

Таблица 7

Электроотрицательность групп

Сведения об электроотрицательности можно получить из спектров ЯМР. Химический сдвиг протона приблизительно пропорционален электронной плотности вокруг него, и, следовательно, электроотрицательности атома или группы, с которыми он связан. Чем выше электроотрицательность атома или группы, тем ниже электронная плотность вокруг связанного с ними протона и тем в большей степени сдвинут сигнал протона в слабое поле.

Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.

Электроотрицательность (э.о.)- это способность атома смещать к себе электронные пары.
Мерой э.о. является энергия равняя арифметически ½ сумме энергии ионизации I и энергии сходства к электронц Е
Э.О. = ½ (I+E)

Относительная электроотрицательность. (ОЭО)

Фтору как самому сильному э.о элементу присваивается значение 4.00 относительно которого рассматриваются остальные элементы.

Изменения в периодах и группах Периодической системы.

Внутри периодов с увеличением заряда ядра слева направо увеличивается электроотрицательность.

Наименьшее значение наблюдается у щелочных и щелочноземельных металлов.

Наибольшее - у галогенов.

Чем выше электроотрицательность, тем сильнее у элементов выражены неметаллические свойства.

Электроотрицательность (χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A-B (A, B - символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A-A и B-B.

Самое выское значение э.о. у фтора,а самое низкое –цезий.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA - соответственно энергия ионизации атома и его сродство к электрону.
Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы. Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.

2)Полярность химической связи, полярность молекул и ионов.

То,что есть в конспекте и в учебнике-Полярность связана с дипольным моментом.Проявляется в результате смещения общей электронной пары к одному из атомов.Полярность так же зависит от разности электроотрицательности связываемых атомов.Чем выше значение э.о. двух атомов,тем более полярной является хим.связь между ними.В зависимости от того,как происходит перераспределение электронной плотности при образовании химической связи,различают несколько ее типов.Предельный случай поляризации хим.связи – полный переход от одного атома к другому.

При этом образуется два иона, между которыми возникает ионная связь.Для того чтобы два атома смогли создать ионную связь,необходимо, чтобы их э.о. очень сильно различались.Если э.о. равны,то образуется неполярная ковалентная связь.Чаще всего встречается полярная ковалентная связь- она образуется между любыми атомами,имеющими разное значение э.о.

Количественной оценкой полярности связи могут служить эффективные заряды атомов.эффективный заряд атома характерезует разность между числом электоронов,принадлежащих данному атому в химическом соединении, и числом электронов свободного атома.атом более электроотрицательного элемента притягивает электроны сильнее,поэтому электроны оказываются ближе к нему,и он получает некоторый отрицательный заряд,который называют эффективным,а у его партнера появляется такой же положительный эффективный заряд.Если электроны,образующие связь между атомами, принадлежат им в равной степени,эффективные заряяды равны нулю.

Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента M=q*r где q-заряд полюса диполя,равный для двухатомной молекулы эффективному заряду, r-межъядерное расстояние.Диполный момент связи является векторной величиной. Он направлен от положительно зарядной части молекулы к ее отрицательной части.Эффектичный заряд на атоме элемента не совпадает со степенью окисления.

Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

Ионы, подобно электрическому полю, оказывают поляризующее действие друг на друга. При встрече двух ионов происходит их взаимная поляризация, т.е. смещение электронов внешних слоев относительно ядер. Взаимная поляризация ионов зависит от зарядов ядра и иона, радиуса иона и других факторов.

Внутри групп э.о. уменьшается.

Металлические свойства элементов возрастают.

Металлические элементы на внешнем энергетическом уровне содержат 1,2,3 электрона и характеризуются низким значением ионизационных потенциалов и э.о. потому что металлы проявляют выраженную тенденцию к отдаче электронов.
Неметаллические элементы отличаются более высоким значением энергии ионизации.
По мере заполнения наружной оболочки у неметаллов внутри периодов уменьшается радиус атомов. На внешней оболочке число электронов равно 4,5,6,7,8.

Полярность химической связи. Полярность молекул и ионов.

Полярность химической с вязи – определяется смещением связей электронной пары к одному из атомов.

Химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа, за счет образования ионов или образования общих электронных пар.
Химическая связь характеризуется энергией и длиной.
Мерой прочности связи служит энергия, затрачиваемая на разрушение связи.
Например. Н – Н = 435 кДжмоль-1

Электроотрицательность атомово элементов
Электроотрицательность - химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Относительная электроотрицательность

Первой и наиболее известной шкалой относительной электроотрицательности является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0.

Элементы VIII группы периодической системы (благородные газы) имеют нулевую электроотрицательность;
Условной границей между металлами и неметаллами считается значение относительной электроотрицательности равное 2.

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь.
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.

Полярность химической связи, полярность молекул и ионов
Полярность химических связей, характеристика химической связи, показывающая перераспределение электронной плотности в пространстве вблизи ядер по сравнению с исходным распределением этой плотности в нейтральных атомах, образующих данную связь.

Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах - в той или иной степени полярны. Обычно ковалентные связи слабо полярны, ионные связи сильно полярны.

Например:
ковалентная неполярная: Cl2, O2, N2, H2,Br2

ковалентная полярная: H2O, SO2, HCl, NH3 и т.д.

При взаимодействии элементов образуются электронные пары за счёт принятия или отдачи электронов. Способность атома оттягивать электроны была названа Лайнусом Полингом электроотрицательностью химических элементов. Полинг составил шкалу электроотрицательности элементов от 0,7 до 4.

Что такое электроотрицательность?

Электроотрицательность (ЭО) - количественная характеристика элемента, показывающая, с какой силой притягиваются электроны ядром атома. ЭО также характеризует способность удерживать валентные электроны на внешнем энергетическом уровне.

Рис. 1. Строение атома.

Возможность отдавать или принимать электроны определяет принадлежность элементов к металлам или неметаллам. Ярко выраженными металлическими свойствами обладают элементы, легко отдающие электроны. Элементы, принимающие электроны проявляют неметаллические свойства.

Электроотрицательность проявляется в химических соединениях и показывает смещение электронов в сторону одного из элементов.

Электроотрицательность увеличивается слева направо и уменьшается сверху вниз в периодической таблице Менделеева.

Как определить

Определить значение можно с помощью таблицы электроотрицательности химических элементов или шкалы Полинга. За единицу принята электроотрицательность лития.

Наибольшей ЭО обладают окислители и галогены. Значение их электроотрицательности больше двух. Рекордсменом является фтор с электроотрицательностью 4.

Рис. 2. Таблица электроотрицательности.

Наименьшую ЭО (меньше двух) имеют металлы первой группы периодической таблицы. Активными металлами считаются натрий, литий, калий, т.к. им легче расстаться с единственным валентным электроном, чем принять недостающие электроны.

Некоторые элементы занимают промежуточное положение. Их электроотрицательность близка к двум. Такие элементы (Si, B, As, Ge, Te) проявляют металлические и неметаллические свойства.

Для удобства сравнения ЭО используется ряд электроотрицательности элементов. Слева располагаются металлы, справа - неметаллы. Чем ближе к краям, тем активнее элемент. Самый сильным восстановителем, легко отдающим электроны и имеющим наименьшую электроотрицательность, является цезий. Активным окислителем, способным притягивать электроны, является фтор.

Рис. 3. Ряд электроотрицательности.

В неметаллических соединениях притягивают электроны элементы с большей ЭО. Кислород с электроотрицательностью 3,5 притягивает атомы углерода и серы с электроотрицательностью 2,5.

Что мы узнали?

Электроотрицательность показывает степень удержания ядром атома валентных электронов. В зависимости от значения ЭО элементы способны отдавать или принимать электроны. Элементы с большей электроотрицательностью оттягивают электроны и проявляют неметаллические свойства. Элементы, атомы которых легко отдают электроны, обладают металлическими свойствами. Некоторые элементы имеют условно нейтральную ЭО (около двух) и могут проявлять металлические и неметаллические свойства. Степень ЭО увеличивается слева направо и снизу вверх в таблице Менделеева.

Если нейтральные атомы двух элементов сильно различаются значения­ми энергии ионизации и сродства к электрону , то они способны легко взаимодействовать друг с другом с образованием прочной химической связи.

Однако использование указанных характеристик ограничено тем, что они относятся к изолированным нейтральным атомам. Если же атомы находятся в составе химического соединения, то для характеристики их способности притягивать к себе общие электроны введено понятие электроотрицательности (ЭО)*.

Электроотрицательность – величина, характеризующая способность атома в молекуле или притягивать электроны, участвующие в образовании ковалентной связи.

И хотя электроотрицательность атома, зависящая от валентного состояния атома и типа химического соединения, в котором он находится, имеет условный характер, её использование полезно для характеристики как отдельных ковалентных связей, так и химического соединения в целом.

Электроотрицательность атома равна полусумме значений его энергии ионизации и сродства к электрону:

На практике обычно пользуются величиной относительной электроотрицательности, принимая за её единицу величину электроотрицательности атома лития.

Относительная электроотрицательность атома какого–либо элемента, обозначаемая греческой буквой χ (хи), определяется отношением равна ЭО А /ЭО Li .

Наибольшую относительную электроотрицательность имеет атом фтора – 4,0, наименьшую – атомы цезия и франция – 0,7. В сравнении с ними рассматриваются относительные электроотрицательности атомов остальных элементов (табл. 7). Наименьшие значения относительной электроотрицательности имеют нейтральные атомы s-элементов I группы, наибольшие –p -элементов VI и VII групп. Чем больше относительная электроотрицательность, тем сильнее атом данного элемента проявляет окислительные свойства и тем сильнее притягивает общую (не)электронную()ые пару(ы) ковалентной связей в соединении.

У нейтральных атомов элементов в пределах периода с увеличением заряда ядер происходит увеличение электроотрицательности (наименьшие значения имеют атомы щелочных метал­лов – элементов группы IA, наибольшие – атомы галогенов – элементов группы VIIA). Это обусловлено тем, что число электронных слоёв в атомах не изменяется, а заряд их ядер по периоду растёт, и поэтому взаимодействие электронов с ядром усиливается, и, как следствие, уменьшается размер (радиус) атомов. В этом же направлении увеличиваются энергия ионизации, сродство к электрону и электроотрицательность нейтральных атомов элементов. В соответствии с этим восстановительные свойства нейтральных атомов элементов ослабевают в периоде слева направо, а окислительные свойства – усиливаются. Самые сильные окислители в периоде – атомы галогенов.



В группах А значения электроотрицательности нейтральных атомов элементов, а следовательно, и окислительные свойства уменьшаются сверху вниз, а в группах Б (за исключением III группы), наоборот, увеличиваются.

Таким образом, самым сильным окислителем является нейтральный атом фтора (группа VIIA), а самым сильным восстановителем –нейтральный атом франция (группа IA) (рис. 12).

В большинстве случаев связи в молекулах имеют промежуточный характер между двумя предельными случаями – ковалентным или ионным типамихимической связи. Например, в молекуле иодистого водорода HI связь не является ни чисто ковалентной, ни чисто ионной.



По разности значений относительных электроотрицательностей нейтральных атомов элементов судят о степени ионности связей. При разности значений χ больше 2,0 связь может считаться ионной, при разности от 0,4– до 2,0 - ковалентной с частично ионным характером, и при разности меньше 0,4 ковалентной.

По значению относительной электроотрицательности атомов элементы условно делят на металлы и неметаллы , граница между которыми в Периодической системе Д.И. Менделеева (в её полудлинном, 18-клеточном варианте) проводится по элементам главных подгрупп по диагонали от бора до астата. Значения χ атомов граничных – амфотерных* – элементов близка к 2 (они выделены в табл. 7 жирным шрифтом и затемнением клеток).

Таблица 7 Относительные электроотрицательности атомов, элементов эВ F 4,0 Cl 3,0 Br 2,8 I 2,5 At 2,2
O 3,5 S 2,5 Se 2,4 Te 2,1 Po 2,0
N 3,0 P 2,1 As 2,0 Sb 1,9 Bi 1,9
C 2,5 Si 1,8 Ge 1,8 Sn 1,8 Pb 1,9
B 2,0 Al 1,5 Ga 1,6 In 1,7 Tl 1,8
Zn 1,6 Cd 1,7 Hg 1,9
Cu 1,9 Ag 1,9 Au 2,4
Ni 1,9 Pd 2,2 Pt 2,2
Co 1,9 Rh 2,2 Ir 2,2
Fe 1,8 Ru 2,2 Os 2,2
Mn 1,5 Te 1,9 Re 1,9
Cr 1,6 Mo 1,8 W 1,7
V 1,6 Nb 1,6 Ta 1,5
Ti 1,5 Zr 1,4 Hf 1,3
Sc 1,3 Y 1,2 La-Lu 1,0-1,2
Be 1,5 Mg 1,2 Ca 1,0 Sr 1,0 Ba 0,9
H 2,1 Li 1,0 Na 0,9 K 0,8 Rb 0,8 Cs 0,7

Главные подгруппы

I II III IV V VI VII VIII
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Ga Ge As Se Br Kr
Rb Sr In Sn Sb Te I Xe
Cs Ba Tl Pb Bi Po At Rn
Fr Ra

Рис. 12. Изменение окислительно-восстановительных свойств

нейтральныхатомов элементов главных подгрупп (А-групп)

Слово ″кислота″ и ″основание″ – это функциональные определения, а не этикетки с названиями. Они скорее указывают на что способно вещество, чем что оно собой представляет.

Р. фон Хандлер (1931).

2.5. Кислотно-оснóвные свойства химических соединений

Периодичность свойств элементов, связанная с изменением строения электронных оболочек их атомов при возрастании заряда атомных ядер, проявляется и в их однотипных соединениях.

Периодическая система химических элементов построена так, что в левой части ее таблицы располагаются элементы, гидроксиды которых проявляют основные свойства. Особенно ярко проявляются эти свойства у гидрооксидов щелочных металлов. Наоборот, в правой части таблицы периодической системы расположены элементы, оксиды которых под действием воды превращаются в гидроксиды, обладающие кислотными свойствами, то есть в кислоты. Оксидам и гидроксидам многих элементов – тех, что оказались в середине таблицы периодической системы, – присуща двойственность поведения. Взаимодействуя с сильными кислотами, они проявляют основные свойства, а в реакциях со щелочами – кислотные.

В периодах при переходе слева направо свойства оксидов и гидроксидов с оснόвных, у элементов групп IA–IIА постепенно сменяются на амфотерные и элементов групп VA–VIIA становятся кислотными.

Для оксидов и гидроксидов элементов, значения относительных электроотрицательностей атомов которых находятся в интервале 1,5–2,2, обычно характерны амфотерные свойства. При этом чем меньше значения χ, тем сильнее оксиды и гидроксиды про­являют оснóвные свойства, и, наоборот, чем больше значения χ, тем сильнее они проявляют кислотные свойства оксиды и гидроксиды. Например, у элемента группы IIIА галлия (χ = 1,7) кислотные и оснóвные свойства Ga 2 O 3 и Ga(OH) 3 выражены в одинаковой степени.

Радиусы катионов меньше радиусов нейтральных атомов, так как они образуются путём отдачи электронов, а радиусы анионов – больше радиусов нейтральных атомов, так как они образуются путём принятия электронов.

В гидроксидах Э–О–Н по группам сверху вниз за счет увеличения радиуса атомов элементов увеличивается расстояние между атомами элемента и кислорода, а значит уменьшается сила их взаимодействия. В соответствии с этим увеличивается степень электролитической диссоциации гидрооксидов по связи Э–О:

Э + + ОН – Э–О–Н ЭО – + Н +

и усиливается оснóвный характер гидроксидов, а степень диссоциации по связи О–Н уменьшается, и их кислотные свойства ослабевают (рис. 13).

На­пример:

Be(ОH) 2 – амфотерный гидрооксид, Mg(OH) 2 – слабое основание, Ca(OH) 2 – сильное основание;

метафосфорная кислота НРО 3 значительно слабее, чем азотная кислота НNО 3 .

У гидридов соединений неметаллов с водородом кислотные свойства увеличиваются при увеличении радиуса атомов элементов возрастают в группах А сверху вниз от HF к HI и от H 2 O к H 2 Te.

Главные подгруппы

I II III IV V VI VII VIII
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Ga Ge As Se Br Kr
Rb Sr In Sn Sb Te I Xe
Cs Ba Tl Pb Bi Po At Rn
Fr Ra

Рис. 13. Изменение кислотно-основных свойств оксидов и гидроксидов элементов главных подгрупп (А-групп)