Клетки-макрофаги: развитие, распространение, функции и заболевания. Воспалительный процесс. Макрофаги Опухоль и иммунитет - драматический диалог в трех частях с прологом

Наш организм окружает огромное количество негативных и повреждающих факторов внешней среды: ионизирующее и магнитное излучение, резкие колебания температуры, различные патогенные бактерии и вирусы. Чтобы противостоять их отрицательному влиянию и поддерживать гомеостаз на постоянном уровне, в биокомпьютер человеческого организма встроен мощный защитный комплекс. Он объединяет такие органы, как тимус, селезенка, печень и лимфатические узлы. В данной статье мы изучим функции макрофагов, входящих в мононуклеарную фагоцитарную систему, а также выясним их роль в формировании иммунного статуса организма человека.

Общая характеристика

Макрофаги - "большие пожиратели", так переводится название этих защитных клеток, предложенное И.И.Мечниковым. Они способны к амебоидному движению, быстрому захвату и расщеплению болезнетворных бактерий и продуктов их метаболизма. Эти свойства объясняются наличием в цитоплазме мощного лизосомного аппарата, ферменты которого легко разрушают сложные оболочки бактерий. Гистиоциты быстро распознают антигены и передают информацию о них лимфоцитам.

Характеристика макрофагов как клеток, вырабатываемых органами иммунной системы, свидетельствует о том, что их можно обнаружить во всех жизненно важных структурах тела: в почках, в сердце и легких, в кровяном и лимфатическом русле. Они имеют онкопротекторные и сигнальные свойства. На мембране располагаются рецепторы, узнающие антигены, сигнал о которых передается на активные лимфоциты, вырабатывающие интерлейкины.

В настоящее время гистологи и иммунологи считают, что макрофаги - это клетки, образованные из мультипотентных стволовых структур красного костного мозга. Они разнородны по строению и функциям, различаются местом нахождения в организме, степенью созревания и активностью по отношению к антигенам. Рассмотрим их далее.

Виды защитных клеток

Наибольшую группу представляют фагоциты, циркулирующие в соединительных тканях: лимфе, крови, остеокластах и оболочках внутренних органов. В серозных полостях желудка и кишечника, в плевре и легочных пузырьках есть как свободные, так и фиксированные макрофаги. Это обеспечивает защиту и детоксикацию как самих клеток, так и их кровоснабжающих элементов - капилляров легочных альвеол, тонкого и толстого кишечника, а также пищеварительных желез. Печень как один из наиболее значимых органов имеет дополнительную протекторную систему мононуклеарных фагоцитарных структур - купферовские клетки. Остановимся на их строении и механизме действия детальнее.

Как защищена главная биохимическая лаборатория организма

В большом круге кровообращения существует автономная система кровоснабжения печени, называемая кругом воротной вены. Благодаря ее функционированию, от всех органов брюшной полости кровь сразу поступает не в нижнюю полую вену, а в отдельный кровеносный сосуд - воротную вену. Далее она направляет насыщенную углекислотой и продуктами распада венозную кровь в печень, где гепатоциты и защитные клетки, образованные периферическими органами иммунной системы, расщепляют, переваривают и нейтрализуют токсические вещества и болезнетворные микроорганизмы, попавшие в венозную кровь из желудочно-кишечного тракта. Защитные клетки обладают хемотаксисом, поэтому скапливаются в очагах воспаления и фагоцитируют патогенные соединения, попавшие в печень. Теперь рассмотрим купферовские клетки, которые играют в защите пищеварительной железы особую роль.

Фагоцитарные свойства ретикуло-эндотелиальной системы

Функции макрофагов печени - купферовских клеток - заключаются в захвате и переработке потерявших свои функции гепатоцитов. При этом расщепляются как белковая часть пигмента крови, так и сам гем. Это сопровождается выделением ионов железа и билирубина. Одновременно происходит лизис бактерий, прежде всего кишечной палочки, попавших в кровь из толстого кишечника. Защитные клетки контактируют с микробами в синусоидных капиллярах печени, затем захватывают патогенные частицы и переваривают с помощью собственного лизосомного аппарата.

Сигнальная функция фагоцитов

Макрофаги - это не только защитные структуры, обеспечивающие клеточный иммунитет. Они могут идентифицировать чужеродные частицы, попавшие в клетки организма, т. к. на мембране фагоцита есть рецепторы, которые узнают молекулы антигенов или биологически активных веществ. Большинство этих соединений не может напрямую контактировать с лимфоцитами и запускать ответную защитную реакцию. Именно фагоциты поставляют на мембрану антигенные группы, которые служат маяками для В-лимфоцитов и Т-лимфоцитов. Клетки-макрофаги, очевидно, выполняют важнейшую функцию передачи сигнала о присутствии повреждающего агента на самые активные и быстро действующие иммунные комплексы. Те, в свою очередь, способны молниеносно реагировать на патогенные частицы в организме человека и уничтожать их.

Специфические свойства

Функции элементов иммунной системы не ограничиваются только защитой организма от чужеродных компонентов окружающей среды. Например, фагоциты способны к осуществлению обмена ионов железа в красном костном мозге и селезенке. Участвуя в эритрофагоцитозе, защитные клетки переваривают и расщепляют старые эритроциты. Альвеолярные макрофаги накапливают ионы железа в виде молекул ферритина и гемосидерина. Их можно обнаружить в мокроте больных, страдающих сердечной недостаточностью с застоем крови в малом круге кровообращения и различными формами порока сердца, также у пациентов, перенесших инфаркт, отягощенный тромбоэмболией легочной артерии. Присутствие большого количества иммунных клеток в различных видах клинических исследований, например в мазках из влагалища, в моче или сперме, может свидетельствовать о воспалительных процессах, инфекционных или онкологических заболеваниях, протекающих у человека.

Периферические органы иммунной системы

Учитывая важнейшую роль фагоцитов, лейкоцитов и лимфоцитов в сохранении здоровья и генетической уникальности организма, в результате эволюции были созданы и усовершенствованы две линии защиты: центральные и периферические органы иммунной системы. Они вырабатывают различные виды клеток, участвующих в борьбе с чужеродными и патогенными агентами.

Это прежде всего Т-лимфоциты, В-лимфоциты и фагоциты. Селезенка, лимфатические узлы и фолликулы пищеварительного тракта также способны образовывать макрофаги. Это обеспечивает возможность тканям и органам человеческого организма быстро распознавать антигены и мобилизовать факторы гуморального и клеточного иммунитета для эффективной борьбы с инфекцией.

Макрофаги – это клетки системы мононуклеарных фагоцитов, которые способны захватывать и переваривать чужеродные частицы или остатки клеток в организме. Они имеют овальное ядро, большое количество цитоплазмы, диаметр макрофага составляет от 15 до 80 мкм.

В систему мононуклеарных фагоцитов помимо макрофагов входят их предшественники – монобласты, промоноциты. Макрофаги имеют схожие функции с нейтрофилами, однако они задействованы в некоторых иммунных и воспалительных реакциях, в которых нейтрофилы участия не принимают.

Моноциты образуются в костном мозге в виде промоноцитов, затем попадают в кровь, из крови путем диапедеза, протискивания моноцитов в щели между эндотелиальными клетками сосудов, они попадают в ткани. Там они становятся макрофагами, больше всего их скапливается в селезенке, легких, печени, костном мозге, где они выполняют специфические функции.

У мононуклеарных фагоцитов есть две основные функции, которые выполняются двумя типами клеток:

— профессиональными макрофагами, которые устраняют корпускулярные антигены;

— антигенпрезентирующими клетками, которые участвуют в поглощении, процессинге и представлении антигена T-клеткам.

К макрофагам относятся гистиоциты соединительной ткани, моноциты крови, кулферовские клетки печени, клетки стенок альвеол легкого и стенок брюшины, эндотелиальные клетки капилляров кроветворных органов, гистиоциты соединительной ткани.

Макрофаги обладают рядом функциональных признаков:

— способность прилипать к стеклу;

— способность поглощать жидкость;

— возможность поглощать твердые частицы.

Макрофаги обладают способностью к хемотаксису – это возможность двигаться по направлению к источнику воспаления благодаря разности содержания веществ в клетках и вне них. Макрофаги способны вырабатывать компоненты комплемента, которые играют важную роль в образовании иммунных комплексов, выделять лизоцим, обеспечивающий бактериальное действие, вырабатывать интерферон, который ингибирует размножение вирусов, фибронектин, имеющий ключевое значение в процессе адгезии. Макрофаги продуцируют пироген, который воздействует на центр терморегуляции, что способствует повышению температуры, необходимому для борьбы с инфекцией. Еще одна из важных функций макрофага – «представление» чужеродных антигенов. Поглощенный антиген расщепляется в лизосомах, его фрагменты, выйдя из клетки и взаимодействуя на ее поверхности с молекулой HLA‑DR‑подобного белка образуют комплекс, выделяющий интерлейкин I, который поступает к лимфоцитам, что обеспечивает в последствии иммунный ответ.

Помимо перечисленных, макрофаги обладают еще рядом важных функций, например, продуцирование тканевого тромбопластина, который помогает при свертывании крови.

Макрофаг многоликий и вездесущий

Сто тридцать лет назад замечательный русский исследователь И.И. Мечников в опытах на личинках морских звезд из Мессинского пролива сделал удивительное открытие, круто изменившее не только жизнь самого будущего Нобелевского лауреата, но и перевернувшее тогдашние представления об иммунной системе.

Втыкая в прозрачное тело личинки розовый шип, ученый обнаружил, что занозу окружают и атакуют крупные амебоидные клетки. И если чужеродное тело было небольшим, эти блуждающие клетки, которые Мечников назвал фагоцитами (от греч. пожиратель), могли полностью поглотить пришельца.

Долгие годы считалось, что фагоциты выполняют в организме функции «войск быстрого реагирования». Однако исследования последних лет показали, что благодаря своей огромной функциональной пластичности эти клетки еще и «определяют погоду» многих метаболических, иммунологических и воспалительных процессов, как в норме, так и при патологии. Это делает фагоциты перспективной мишенью при разработке стратегии лечения ряда тяжелых заболеваний человека

В зависимости от своего микроокружения тканевые макрофаги могут выполнять и различные специализированные функции. Например, макрофаги костной ткани – остеокласты, также занимаются выведением из кости гидроксиапатита кальция. При недостаточности этой функции развивается мраморная болезнь – кость становится чрезмерно уплотненной и при этом хрупкой.

Но самым, пожалуй, удивительным свойством макрофагов оказалась их огромная пластичность, т. е. способность изменять свою транскрипционную программу («включение» тех или иных генов) и свой облик (фенотип). Следствием этой особенности является высокая разнородность клеточной популяции макрофагов, среди которых присутствуют не только «агрессивные» клетки, встающие на защиту организма-хозяина; но и клетки с «полярной» функцией, отвечающие за процессы «мирного» восстановления поврежденных тканей.

Липидные «антенны»

Своей потенциальной «многоликостью» макрофаг обязан необычной организации генетического материала – так называемому открытому хрома­тину. Этот не до конца изученный вариант структуры клеточного генома обеспечивает быстрое изменение уровня экспрессии (активности) генов в ответ на различные стимулы.

Выполнение макрофагом той или иной функции зависит от характера получаемых им стимулов. Если стимул будет распознан как «чужой», то происходит активация тех генов (и соответственно функций) макрофага, которые направлены на уничтожение «пришельца». Однако макрофаг могут активировать и сигнальные молекулы самого организма, которые побуждают эту иммунную клетку участвовать в организации и регуляции обмена веществ. Так, в условиях «мирного времени», т. е. при отсутствии патогена и обусловленного им воспалительного процесса, макрофаги участвуют в регуляции экспрессии генов, отвечающих за мета­болизм липидов и глюкозы, дифференцировку клеток жировой ткани.

Интеграция между взаимоисключающими «мирным» и «военным» направлениями работы макрофагов осуществляется путем изменения активности рецепторов клеточного ядра, представляющих собой особую группу регуляторных белков.

Среди этих ядерных рецепторов следует особо выделить так называемые липидные сенсоры, т. е. белки, способные взаимодействовать с липидами (например, окисленными жирными кислотами или производными холестерина) (Смирнов, 2009). Нарушение работы этих чувствительных к липидам регуляторных белков в макро­фагах может быть причиной системных обмен­ных нарушений. Например, дефицит в макрофагах одного из этих ядерных рецепторов, обозначаемых как PPAR-гамма, приводит к развитию диабета 2 типа и дисбалансу липидного и углеводного обмена во всем организме.

Клеточные метаморфозы

В разнородном сообществе макрофагов на основе базовых характеристик, определяющих их принципиальные функции, выделяют три основных клеточных субпопуляции: макрофаги М1, М2 и Мox, которые участвуют, соответственно, в процессах воспаления, восстановления поврежденных тканей, а также защите организма от окислительного стресса.

«Классический» макрофаг М1 формируется из клетки-предшественника (моноцита) под действием каскада внутриклеточных сигналов, запускающихся после распознавания инфекционного агента с помощью специальных рецепторов, расположенных на поверхности клетки.

Образование «пожирателя» М1 происходит в результате мощной активации генома, сопровождаемой активацией синтеза более чем сотни белков – так называемых факторов воспаления. К ним относятся ферменты, способствующие генерации свободных радикалов кислорода; белки, привлекающие в очаг воспаления другие клетки иммунной системы, а также белки, способные разрушать оболочку бактерий; воспалительные цитокины – вещества, обладающие свойствами активировать иммунные клетки и оказывать токсическое действие на остальное клеточное окружение. В клетке активируется фагоцитоз и макрофаг начинает активно разрушать и переваривать все, что встретится на его пути (Шварц, Свистельник, 2012). Так появляется очаг воспаления.

Однако уже на начальных этапах воспалительного процесса макрофаг М1 начинает активно секретировать и противовоспалительные субстанции – низкомолекулярные липидные молекулы. Эти сигналы «второго эшелона» начинают активировать вышеупомянутые липидные сенсоры в новых «рекрутах»-моноцитах, прибывающих в очаг воспаления. Внутри клетки запускается цепь событий, в результате которых активирующий сигнал поступает на определенные регуляторные участки ДНК, усиливая экспрессию генов, отвечающих за гармонизацию обмена веществ и одновременно подавляя активность «провоспалительных» (т. е. провоцирующих воспаление) генов (Душкин, 2012).

Так в результате альтернативной активации образуются макрофаги М2, которые завершают воспалительный процесс и способствуют тканевому восстановлению. Популяцию М2 макрофагов можно, в свою очередь, разделить на группы в зависимости от их специализации: уборщики мертвых клеток; клетки, участвующие в реак­ции приобретенного иммунитета, а также макрофаги, секретирующие факторы, которые способствуют замещению погибших тканей соединительной тканью.

Еще одна группа макрофагов – Мох, формируется в условиях так называемого окислительного стресса, когда в тканях возрастает опасность повреждения их свободными радикалами. Например, Мох составляют около трети всех макрофагов атеросклеротической бляшки. Эти иммунные клетки не только сами устойчивы к повреждающим факторам, но и участвуют в анти­оксидантной защите организма(Gui et al ., 2012).

Пенистый камикадзе

Одной из самых интригующих метаморфоз макрофага является его превращение в так называемую пенистую клетку. Такие клетки были обнаружены в атеро­склеротических бляшках, а свое название получили из-за специфического внешнего вида: под микроскопом они напоминали мыльную пену. По сути, пенистая клетка – это тот же макрофаг М1, но переполненный жировыми включениями, преимущественно состоящими из водонерастворимых соединений холестерина и жирных кислот.

Была высказана гипотеза, ставшая общепринятой, что пенистые клетки образуются в стенке атеросклеротических сосудов в результате неконтролируемого поглощения макрофагами липопротеинов низкой плотности, переносящих «плохой» холестерин. Однако впоследствии было обнаружено, что накопление липидов и драматическое (в десятки раз!) возрастание скорости синтеза ряда липидов в макрофагах можно спровоцировать в эксперименте только лишь одним воспалением, без всякого участия липопротеинов низкой плотности (Душкин, 2012).

Это предположение подтвердилось клиническими наблюдениями: оказалось, что превращение макрофагов в пенистую клетку происходит при разнообразных заболеваниях воспалительной природы: в суста­вах – при ревматоидном артрите, в жировой ткани – при диабете, в почках – при острой и хронической недостаточности, в ткани мозга – при энцефалитах. Однако понадобилось около двадцати лет исследований, чтобы понять, как и зачем макрофаг при воспалении превращается в клетку, нафаршированную липидами.

Оказалось, что активация провоспалительных сигнальных путей в М1 макрофагах приводит к «выключению» тех самых липидных сенсоров, которые в нормальных условиях контролируют и нормализуют липидный обмен (Душкин, 2012). При их «выключении» клетка и начинает накапливать липиды. При этом образующиеся липидные включения представляют собой вовсе не пассивные жировые резервуары: входящие в их состав липиды обладают способностью усиливать воспалительные сигнальные каскады. Главная цель всех этих драматических изменений – любыми средствами активировать и усилить защитную функцию макрофага, направленную на уничтожение «чужих» (Melo, Drorak, 2012).

Однако высокое содержание холестерина и жирных кислот дорого обходится пенистой клетке – они стимулируют ее гибель путем апоптоза, запрограммированной клеточной смерти. На внешней поверхности мембраны таких «обреченных» клеток обнаруживается фосфолипид фосфатидилсерин, в норме расположенный внутри клетки: появление его снаружи является своеобразным «похоронным звоном». Это сигнал «съешь меня», который воспринимают М2 макрофаги. Поглощая апоптозные пенистые клетки, они начинают активно секретировать медиаторы заключительной, восстановительной стадии воспаления.

Фармакологическая мишень

Воспаление как типовой патологический процесс и ключевое участие в нем макрофагов является, в той или иной мере, важной составляющей в первую очередь инфекционных заболеваний, вызванных различными патологическими агентами, от простейших и бактерий до вирусов: хламидиальные инфекции, туберкулез, лейшманиоз, трипаносомоз и др. Вместе с тем макрофаги, как уже упоминалось выше, играют важную, если не ведущую, роль в развитии так называемых метаболических заболеваний: атеросклероза (главного виновника сердечно-сосудистых заболеваний), диабета, нейродегенеративных заболеваний мозга (болезнь Альцгеймера и Паркинсона, последствия инсультов и черепно-мозговых травм), ревматоидного артрита, а также онкологических заболеваний.

Разработать стратегию управления этими клетками при различных заболеваниях позволили современные знания о роли липидных сенсоров в формировании различных фенотипов макрофага.

Так, оказалось, что в процессе эволюции хламидии и туберкулезные палочки научились использовать липидные сенсоры макрофагов, чтобы стимулировать не опасную для них альтернативную (в М2) активацию макрофагов. Благодаря этому поглощенная макрофагом туберкулезная бактерия может, купаясь как сыр в масле в липидных включениях, спокойно дожидаться своего освобождения, а после гибели макрофага размножаться, используя содержимое погибших клеток в качестве пищи (Melo, Drorak, 2012).

Если в этом случае использовать синтетические акти­ваторы липидных сенсоров, которые препятствуют образованию жировых включений и, соответственно, предотвращают «пенистую» трансформацию макрофага, то можно подавить рост и понизить жизнеспособность инфекционных патогенов. По крайней мере в экспериментах на животных уже удалось в разы снизить обсемененность легких мышей туберкулезными бациллами, используя стимулятор одного из липидных сенсоров или ингибитор синтеза жирных кислот (Lugo-Villarino et al ., 2012).

Еще один пример – такие болезни, как инфаркт миокарда, инсульт и гангрена нижних конечностей, опаснейшие осложнения атеросклероза, к которым приводит разрыв так называемых нестабильных атеросклеротических бляшек, сопровождаемый моментальным образованием тромба и закупоркой кровеносного сосуда.

Формированию таких нестабильных атеросклеротических бляшек и способствует макрофаг М1/пенистая клетка, который продуцирует ферменты, растворяющие коллагеновое покрытие бляшки. В этом случае наиболее эффективная стратегия лечения – превращение нестабильной бляшки в стабильную, богатую коллагеном, для чего требуется трансформировать «агрессивный» макрофаг М1 в «умиротворенный» М2.

Экспериментальные данные свидетельствуют, что подобной модификации макрофага можно добиться, подавляя в нем продукцию провоспалительных факто­ров. Такими свойствами обладает ряд синтетических активаторов липидных сенсоров, а также природные вещества, например, куркумин – биофлавоноид, входя­щий в состав корня куркумы, хорошо известной индийской пряности.

Нужно добавить, что такая трансформация макрофагов актуальна при ожирении и диабете 2 типа (большая часть макрофагов жировой ткани имеет М1 фенотип), а также при лечении нейродегенеративных заболеваний мозга. В последнем случае в мозговых тканях происходит «классическая» активация макрофагов, что приводит к повреждению нейронов и накоплению токсичных веществ. Превращение М1-агрессоров в мирных дворников М2 и Mox, уничтожающих биологический «мусор», может в ближайшее время стать ведущей стратегией лечения этих заболеваний (Walace, 2012).

С воспалением неразрывно связано и раковое перерождение клеток: например, имеются все основания считать, что 90 % опухолей в печени человека возникает как следствие перенесенных инфекционных и токсических гепатитов. Поэтому с целью профилактики раковых заболеваний необходимо контролировать популяцию М1 макрофагов.

Однако не все так просто. Так, в уже сформированной опухоли макрофаги преимущественно приобретают признаки статуса М2, который содействует выживанию, размножению и распространению самих раковых клеток. ­Более того, такие макрофаги начинают подавлять противораковый иммунный ответ лимфоцитов. Поэтому для лечения уже образовавшихся опухолей разрабатывается другая стратегия, основанная на стимулировании у макрофагов признаков классической М1-активации (Solinas et al ., 2009).

Примером такого подхода служит технология, разработанная в ново­сибирском Институте клиниче­ской иммунологии СО РАМН, при которой макрофаги, полученные из крови онкобольных, культивируют в присутствии стимулятора зимозана, который накапливается в клетках. Затем макрофаги вводят в опухоль, где зимозан освобождается и начинает стимулировать классическую активацию «опухолевых» макрофагов.

Сегодня становится все более очевидно, что соединения, вызывающие мета­морфозы макрофагов, оказывают выраженное атеропротективное, антидиабетическое, нейропротективное действие, а также защищают ткани при аутоиммунных заболеваниях и ревматоидном артрите. Однако такие препараты, имеющиеся на сегодня в арсенале практикующего врача, – фибраты и производные тиазолидона, хотя и снижают смертность при этих тяжелых заболеваниях, но при этом имеют выраженные тяжелые побочные действия.

Эти обстоятельства стимулируют химиков и фармакологов к созданию безопасных и эффективных аналогов. За рубежом – в США, Китае, Швейцарии и Израиле уже проводятся дорогостоящие клинические испытания подобных соединений синтетического и природного происхождения. Несмотря на финансовые трудности, российские, в том числе и новосибирские, исследователи также вносят свой посильный вклад в решение этой проблемы.

Так, на кафедре химии Новосибирского государственного университета было получено безопасное соединение TS-13, стимулирующее образование Мox фагоцитов, которое обладает выраженным противовоспалительным эффектом и оказывает нейропротективное действие в экспериментальной модели болезни Паркинсона (Дюбченко и др., 2006; Зенков и др., 2009).

В Новосибирском институте органической химии им. Н. Н. Ворожцова СО РАН созданы безопасные антидиабетические и противоатеросклеротические препараты, действующие сразу на несколько факторов, благодаря которым «агрессивный» макрофаг М1 превращается в «мирный» М2 (Dikalov et al ., 2011). Большой интерес вызывают и растительные препараты, получаемые из винограда, черники и других растений с помощью механохимической технологии, разработанной в Институте химии твердого тела и механохимии СО РАН (Dushkin, 2010).

С помощью финансовой поддержки государства можно в самое ближайшее время создать отечественные средства для фармакологических и генетических манипуляций с макрофагами, благодаря которым появится реальная возможность превращать эти иммунные клетки из агрессивных врагов в друзей, помогающих организму сохранить или вернуть здоровье.

Литература

Душкин М. И. Макрофаг/пенистая клетка как атрибут воспаления: механизмы образования и функциональная роль // Биохимия, 2012. T. 77. C. 419-432.

Смирнов А. Н. Липидная сигнализация в контексте атерогенеза // Биохимия. 2010. Т. 75. С. 899-919.

Шварц Я. Ш., Свистельник А. В.Функциональные фенотипы макрофагов и концепция М1-М2-поляризации. Ч. 1 Провоспалительный фенотип. // Биохимия. 2012. Т. 77. С. 312-329.

Авторы

Сарбаева Н.Н., Пономарева Ю.В., Милякова М.Н.

В соответствии с «М1/М2» парадигмой выделяют два подтипа активированных макрофагов – классически активированные (М1) и альтернативно активированные (М2), которые экспрессируют различные рецепторы, цитокины, хемокины, факторы роста и эффекторные молекулы. Однако данные последних лет указывают на то, что в ответ на изменение сигналов микроокружения, макрофаги могут проявлять уникальные свойства, не позволяющие отнести их ни к одному из этих подтипов.

Макрофаги играют главную роль в реакции организма на имплантируемый материал – катетеры, стенты, эндопротезы, дентальные имплантаты. Макрофаги фагоцитируют частицы износа поверхности суставных протезов, инициируют воспаление в зоне протезирования и остеолиз, управляют процессами образования фиброзной капсулы вокруг инородных тел. Представлен краткий обзор факторов, вызывающих миграцию, адгезию и активацию макрофагов, анализ их функциональных характеристик на различных поверхностях, включая биодеградирующие и не деградирующие материалы in vivo и in vitro.

Введение

Современную медицину в настоящее время невозможно представить без применения имплантируемых изделий, устанавливаемых в организм на различные сроки с целью восстановления анатомии и функции утраченных или пораженных патологическим процессом органов и тканей. Биосовместимость синтетических материалов или тканеинженерных конструкций является основной проблемой, влияющей на результаты таких имплантаций. Реакция на протезирующий материал развивается в следующей последовательности: альтерация тканей, инфильтрация клетками острого, затем хронического воспаления с формированием грануляционной ткани и фиброзной капсулы. Степень выраженности этих реакций определяет биосовместимость имплантируемого изделия. Макрофаги играют главную роль в реакции организма на устанавливаемый материал – катетеры, стенты, эндопротезы, дентальные имплантаты и др.

Морфология макрофагов

Макрофаги – это гетерогенная клеточная популяция. Макрофаг имеет неправильную, звездчатую, многоотростчатую форму, складки и микроворсинки на поверхности клеток, обилие эндоцитозных микровезикул, первичных и вторичных лизосом. Округлое или эллипсовидное ядро расположено центрально, гетерохроматин локализован под ядерной оболочной. Структурные особенности клетки во многом зависят от ее органной и тканевой принадлежности, а также от функционального статуса. Так, для клеток Купфера характерен гликокаликс, альвеолярные макрофаги содержат ламеллярные (сурфактантные) тельца, хорошо развитый комплекс Гольджи, шероховатый эндоплазматический ретикулум и множество митохондрий, в то время как в клетках микроглии митохондрии немногочисленны. В цитоплазме перитонеальных и альвеолярных макрофагов присутствует большое количество липидных телец, содержащих субстраты и ферменты генерации простагландинов . Адгезирующиеся и движущиеся макрофаги формируют короткоживущие, содержащие актин структуры – подосомы – в виде плотной центральной части с радиально отходящими от них микрофиламентами. Подосомы могут сливаться, формируя структуры более высокого порядка – розетки, которые эффективно разрушают белки подлежащего внеклеточного матрикса .

Функции макрофагов

Макрофаги фагоцитируют чужеродный материал и клеточно-тканевый детрит, стимулируют и регулируют иммунный ответ, индуцируют воспалительную реакцию, участвуют в репаративных процессах и обмене компонентов внеклеточного матрикса. Многообразие осуществляемых функций объясняет экспрессию этими клетками большого числа рецепторов, связанных с плазматической мембраной, внутриклеточных и секретируемых. Рецепторы врожденного иммунитета РRR (pattern-recognition receptors, образ-распознающие рецепторы) активируются широким спектром лигандов (исключение – CD163), обеспечивая узнавание высоко консервативных структур большинства микроорганизмов, так называемых PAMP (pathogen-associated molecular patterns, патоген-ассоциированные образы) и схожих с ними эндогенных молекулярных структур DAMP (damage-associated molecular patterns), образующихся в результате повреждения и гибели клеток, модификации и денатурации белковых структур внеклеточного матрикса. Большинство из них опосредует эндоцитоз и элиминацию потенциально опасных эндогенных и экзогеннных агентов, однако вместе с тем, многие из них выполняют сигнальные функции, регулируя синтез провоспалительных медиаторов, способствуя адгезии и миграции макрофагов (табл.) .

На плазматической мембране моноцитов/макрофагов экспрессируются также специализированные рецепторы, связывающие один или несколько близких по строению лигандов: Fc-фрагмент иммуноглобулина G, факторы роста, кортикостероиды, хемокины и цитокины, анафилотоксины и костимулирующие молекулы. Функции многих из этих рецепторов опосредованы не только связыванием лигандов, но и взаимодействием с другими рецепторами (C5aR-TLR, MARCO-TLR, FcγR-TLR), что обеспечивает тонкую регуляцию синтеза прои противовоспалительных медиаторов . Особенностью макрофагальной рецепторной системы является наличие рецепторов-ловушек провоспалительных цитокинов и хемокинов (Il-1R2 на М2а макрофагах; CCR2 и CCR5 на М2с макрофагах), активация которых блокирует внутриклеточную передачу соответствующего провоспалительного сигнала. Экспрессия клеточных рецепторов видо-, органо- и тканеспецифична и зависит от функционального статуса макрофагов. Детально изученные клеточные рецепторы макрофага приведены в таблице.

Миграция моноцитов/макрофагов

Тканевые макрофаги происходят преимущественно из моноцитов крови, которые мигрируют в ткани и дифференцируются в различные популяции. Миграция макрофагов направляется хемокинами: ССL2 CCL3, CCL4, CCL5, CCL7, CCL8, CCL13, ССL15, ССL19, CXCL10, CXCL12; факторами роста VEGF, PDGF, TGF-b; фрагментами системы комплемента; гистамином; белками гранул полиморфноядерных лейкоцитов (ПМЯЛ); фосфолипидами и их производными.

На начальных этапах воспалительного ответа ПМЯЛ организуют и модифицируют сеть хемокинов путем секреции CCL3, CCL4 и CCL19 и выброса преформированных в гранулы азуросидина, белка LL37, катепсина G, дефензинов (НNP 1-3) и протеиназы 3, которые обеспечивают адгезию моноцитов к эндотелию, тем самым проявляя свойства хемоаттрактантов. Кроме того, белки гранул ПМЯЛ индуцируют секрецию хемокинов и другими клетками: азуросидин стимулирует продукцию CCL3 макрофагами, а протеиназа-3 и HNP-1 вызывают синтез ССL2 эндотелием. Протеиназы ПМЯЛ способны активировать многие хемокины белковой природы и их рецепторы. Так, протеолиз ССL15 катепсином G многократно усиливает его аттрактивные свойства. Апоптозные нейтрофилы привлекают моноциты через сигналы, предположительно, опосредованные лизофосфатидилхолином .

Любое повреждение тканей приводит к аккумуляции макрофагов. В зоне травмы сосудов кровяной сгусток и тромбоциты выделяют TGF-β, PDGF, CXCL4, лейкотриен B4 и IL-1, обладающие выраженными хемоаттрактивными свойствами в отношении моноцитов/макрофагов . Поврежденные ткани являются источником так называемых аларминов, к которым относятся компоненты разрушенного внеклеточного матрикса, белки теплового шока, амфотерин, АТФ, мочевая кислота, IL-1a, IL-33, митохондриальная ДНК клеточного детрита и др. Они стимулируют оставшиеся жизнеспособными клетки поврежденных тканей и эндотелий кровеносных сосудов к синтезу хемокинов, некоторые из них являются прямыми факторами хемотаксиса . Инфицирование тканей приводит к появлению так называемых патогенассоциированных молекул: липополисахаридов, углеводов клеточной стенки и нуклеиновых кислот бактерий. Связывание их мембранными и внутриклеточными рецепторами макрофагов запускает процесс экспрессии генов хемокинов, обеспечивающих дополнительное рекрутирование фагоцитов .

Активация макрофагов

Макрофаги активируются под действием множества сигнальных молекул, вызывающих их дифференцировку в различные функциональные типы (рис. 1). Классически активированные макрофаги (М1 фенотип) стимулируются IFNg, а также IFNg совместно с LPS и TNF. Их основные функции – уничтожение патогенных микроорганизмов и индукция воспалительной реакции. Поляризация в М1 направлении сопровождается секрецией провоспалительных медиаторов. Они экспрессируют рецепторы к IL-1 – IL-1R1, TLR и костимулирующие молекулы, активация которых обеспечивает амплификацию воспалительного ответа. Наряду с провоспалительными цитокинами макрофаги секретируют и антивоспалительный цитокин – IL-10, при характерном высоком соотношении IL-12/IL-10 . Бактерицидные свойства М1 макрофагов определяются продукцией свободных радикалов азота и кислорода, генерируемых iNOS и НАДФН-оксидазным комплексом . Являясь эффекторными клетками в реакции организма на бактериальную инфекцию, они, в то же время, подавляют адаптивный иммунный ответ за счет торможения пролиферации стимулированных Т-клеток. Секретируемый М1 макрофагами IL-12 играет ключевую роль в Тх1 поляризации, а IL-1b и IL-23 направляют иммунный ответ по Тх17 пути. . Исследования последних лет показали, что М1 макрофаги помимо провоспалительных проявляют репаративные свойства: секретируют VEGF, стимулирующий ангиогенез и образование грануляционной ткани .

Альтернативная активация макрофагов (М2 фенотип) наблюдается при стимуляции их интерлейкинами, глюкокортикоидами, иммунными комплексами, агонистами TLR и др. Они мигрируют в зоны инвазии гельминтами, скапливаются в локусах фиброза, в заживающих ранах кожи и неопластических образованиях. М2 макрофаги способны к активной пролиферации in situ. Они проявляют большую по сравнению с М1 макрофагами способность к фагоцитозу и экспрессируют большее количество связанных с ним рецепторов: СD36 – рецептор скавенджер апоптозных клеток; CD206 – маннозный рeцептор; CD301 – рецептор остатков галактозы и N-ацетилглюкозамина; СD163 – рецептор к гемоглобин-гаптоглобиновому комплексу. Для макрофагов этого типа характерно низкое отношение IL-12/IL-10 .

Альтернативно активированные макрофаги подразделяют на подтипы: М2а, М2b и М2с. Примером М2а фенотипа макрофагов являются клетки, скапливающиеся вокруг личинок гельминтов и простейших, аллергены которых индуцируют иммунный Тх2 ответ, сопровождающийся продукцией IL-4 и IL-13 . Они не секретируют значительные количества провоспалительных цитокинов, синтезируют особый спектр хемокинов и мембранных рецепторов . Считается, что для них характерен синтез IL-10 , однако in vitro макрофаги не всегда продуцируют этот цитокин и могут проявлять высокую транскрипционную активность генов IL-12 и IL-6 . Важной характеристикой этой популяции является синтез антагониста рецептора IL-1 (IL-1ra), который, связываясь с IL-1, блокирует его провоспалительное действие .

М2а макрофаги подавляют воспалительную реакцию, блокируя формирование М1 популяции через цитокины рекрутированных ими Тх2-лимфоцитов, либо за счет вырабатываемого хемокина ССL17, который совместно с IL-10 ингибирует дифференцировку макрофагов в М1 направлении . Клетки М2а фенотипа считают типичными репаративными макрофагами. Синтезируемый ими хемокин CCL2 является хемоаттрактантом предшественников миофибробластов – фиброцитов , они секретируют факторы, обеспечивающие ремоделирование соединительной ткани .

Поляризация в направлении М2b осуществляется стимуляцией рецептора к Fcg вместе с агонистами ТLR и лигандами к рецептору IL-1. Функционально они близки к М1 макрофагам, продуцируют провоспалительные медиаторы и монооксид азота (NO), но вместе с тем для них характерен высокий уровень синтеза IL-10 и сниженная продукция IL-12 . М2b макрофаги усиливают продукцию антител. Синтезируемый ими хемокин ССL1 способствует поляризации лимфоцитов в Тх2 направлении . М2с макрофаги обладают супрессивными свойствами – тормозят активацию и пролиферацию СD4+-лимфоцитов, вызванную антигенной стимуляцией и способствуют элиминации активированных Т-клеток . In vitro М2с подтип получают стимуляцией мононуклеарных фагоцитов глюкокортикоидами, IL-10, TGF-β, простагландином Е2 и др. Они не обладают бактерицидной активностью, продуцируют незначительное количество цитокинов, секретируют факторы роста и некоторые хемокины . М2с макрофаги экспрессируют рецепторы фагоцитоза и многих провоспалительных хемокинов, которые, предположительно, служат не для возбуждения соответствующих сигналов, а являются ловушками провоспалительных медиаторов, блокируя их функции .

Характер активации макрофагов не является жестко детерминированным и стабильным. Показана возможность трансформации М1 фенотипа в М2 при изменении спектра стимулирующих цитокинов и вследствие эффероцитоза. После поглощения апоптозных клеток макрофаги резко снижают синтез и секрецию медиаторов воспаления ССL2, ССL3, CXCL1, CXCL 2, TNF-a, MG-CSF, IL-1b, IL-8 и многократно усиливают продукцию TGF-b . Обратная трансформация М2 фенотипа в М1 предполагается при развитии ожирения.

Многие авторы ставят под сомнение существование в организме двух четко различимых популяций макрофагов М1 и М2. Сочетание признаков классической и альтернативной активации характерно для макрофагов кожных ран человека. Так, наряду с типичными для M1 макрофагов цитокинами TNF-a и IL-12, они демонстрируют синтез маркеров М2 макрофагов: IL-10, СD206, СD163, CD36 и рецепторов к IL-4 . Отличный от М1/М2 тип макрофагов с выраженной фибринолитической активностью обнаружен в печени мышей на модели обратимого фиброза и в ткани печени человека при циррозе. В них экспрессируются гены аргиназы 1, маннозных рецепторов и IGF, они секретируют ММП-9, ММП-12, проявляют выраженную способность к пролиферации и фагоцитозу, но не синтезируют IL-10, IL-1ra, TGF-b . Особая популяция макрофагов формируется в селезенке мыши при инфицировании микобактериями. Они тормозят пролиферацию Т-лимфоцитов и секрецию ими как Тх1, так и Тх2 цитокинов, стимулируя поляризацию в Тх17. направлении. Супрессивные макрофаги обладают уникальным фенотипом – экспрессируют гены активные в М1 макрофагах – IL-12, IL-1b, IL-6, TNF-a, iNOS и одновременно гены CD163, IL-10, маннозных рецепторов и других маркеров М2 макрофагов .

Эти исследования наглядно показывают, что формирующиеся в естественных условиях популяции макрофагов значительно отличаются от получаемых in vitro М1 и М2 популяций. Воспринимая множество активирующих сигналов, макрофаг отвечает «по запросу», секретируя медиаторы адекватно изменению окружающей среды, поэтому в каждом конкретном случае формируется свой фенотип, иногда, возможно, даже уникальный.

Реакция макрофагов на чужеродный материал

Контакт макрофагов с чужеродным материалом, как в виде мелких частиц, так и в виде обширных поверхностей, приводит к их активации. Одной из серьезных проблем в травматологии и ортопедии, связанной с реакцией на инородное тело, является развитие нестабильности сустава после эндопротезирования, которая выявляется, по некоторым данным, у 25–60% больных в первые годы после выполненной операции и не имеет тенденции к снижению .

Поверхность ортопедических протезов изнашивается с образованием частиц, инфильтрирующих мягкие ткани. Химические свойства материала определяют возможность опсонизации частиц белками плазмы крови и тип поверхностных рецепторов, инициирующих фагоцитоз. Так, полиэтилен, активирующий комплемент, подвергается опсонизации и «узнается» рецептором к комплементу СR3, в то время как частицы титана поглощаются клеткой через опсонин-независимый рецептор MARCO. Фагоцитоз макрофагами частиц металла, синтетических полимеров, керамики, гидроксиапатита запускает процесс синтеза провоспалительных медиаторов и индуктора остеокластогенеза RANKL. Секретируемый макрофагами ССL3 вызывает миграцию остеокластов, а IL-1b, TNF-a, ССL5 и PGE2 стимулируют их дифференцировку и активацию. Остеокласты резорбируют кость в зоне протезирования, но новообразование костной ткани подавлено, поскольку корпускулярный материал ингибирует синтез коллагена, тормозит пролиферацию и дифференцировку остеобластов и индуцирует их апоптоз . Вызванный частицами износа воспалительный ответ считается основной причиной остеолиза.

Контакт тканей с материалом, который не может быть фагоцитирован, инициирует каскад событий, известный под названием реакции организма на инородное тело, или тканевой реакции. Она заключается в адсорбции белков плазмы, развитии воспалительного ответа, первоначально острого, впоследствии хронического, пролиферации миофибробластов и фибробластов и формировании фиброзной капсулы, отграничивающей инородное тело от окружающих тканей. Основными клетками персистирующего воспаления на границе материал/ткань являются макрофаги, его выраженность определяет степень фиброза в зоне контакта. Интерес к исследованию тканевой реакции связан в первую очередь с широким применением синтетических материалов в различных областях медицины .

Адсорбция белков плазмы крови является первой стадией взаимодействия имплантируемых материалов с тканями организма. Химический состав, свободная энергия, полярность поверхностных функциональных групп, степень гидрофильности поверхности определяют количество, состав и конформационные изменения в связываемых белках, являющихся матриксом для последующей адгезии клеток, в том числе макрофагов. Наиболее значимыми в этом плане являются фибриноген, IgG, белки системы комплемента, витронектин, фибронектин и альбумин.

Слой фибриногена быстро образуется на практически всех чужеродных материалах. На гидрофобных поверхностях фибриноген образует монослой из прочно связанного, частично денатурированного белка, эпитопы которого открыты для взаимодействия с клеточными рецепторами. На гидрофильных материалах фибриноген чаще осаждается в виде рыхлого мультислойного покрытия, причем наружные слои слабо или практически не подвергаются денатурации, оставляя сайты связывания недоступными для клеточных рецепторов макрофагов и тромбоцитов .

Многие синтетические полимеры обладают способностью к сорбции компонентов системы комплемента и ее активации с формированием С3-конвертазного комплекса. Генерируемые им фрагменты С3а, С5а являются хемоаттрактантами и активаторами фагоцитов, iC3b выполняет роль лиганда рецептора клеточной адгезии. Запуск каскада активации возможен как по классическому (опосредованному адсорбированными молекулами JgG), так и по альтернативному путям . Последний инициируется связыванием компонента С3 поверхностями, несущими функциональные группы, например – ОН-, вызывающими его гидролиз. Альтернативный путь может включаться также после классического пути или вместе с ним за счет работы С3-конвертазы классического пути, генерирующей фиксирующиеся на поверхностях фрагменты С3b – пускового фактора амплификационной петли. Однако сорбция и даже начавшийся гидролиз С3 не всегда приводят к возникновению амплификационного сигнала. Например, С3 сильно сорбируется поливинилпирролидоном, однако протеолиз его на этой поверхности слабо выражен. Слабо активируют комплемент фторированные поверхности, силикон и полистирен. Для клеточных реакций на чужеродных поверхностях значение имеет не только активация системы комплемента, но опосредованное ее фрагментами связывание других белков.

Роль альбумина заключается в его способности связывать белки системы комплемента . Oн не способствует адгезии макрофагов и, в отличие от фибриногена, не индуцирует синтез ими TNF-a . На имплантированных материалах обычно обнаруживают фибронектин и витронектин – белки богатые RGD-последовательностями (участками из аминокислот ARG-GLY-ASP).

В отношении витронектина неизвестно, адсорбируется ли он непосредственно на поверхности материала или входит в состав фиксированного на нем инактивированного мебранноатакующего комплекса комплемента. Значимость его для развития тканевой реакции состоит в том, что он обеспечивает наиболее прочную и длительную адгезию макрофагов. Взаимодействие макрофагов с субстратом обеспечивают клеточные рецепторы к белкам-интегринам (avβ3, a5β1, CR3), богатым RGDпоследовательностями (табл.). Блокада адгезии макрофагов растворимыми RGD-миметиками, либо удаление с их поверхности рецептора CR3 снижает интенсивность тканевой реакции, уменьшая толщину формирующейся фиброзной капсулы .

Прикрепившиеся макрофаги сливаются, образуя многоядерные клетки (гигантские клетки инородных тел – ГКИТ). Индукторами этого процесса являются IFNg, IL-1, IL-2, IL-3, IL-4, IL-13 и GM-CSF, стимулирующие экспрессию маннозных рецепторов, которые играют важную роль в слиянии клеток . ГКИТ функционируют как макрофаги – обладают способностью к фагоцитозу, генерации радикалов кислорода и азота, синтезу цитокинов и факторов роста. Характер синтетической активности этих клеток зависит, по-видимому, от их «возраста»: на ранних этапах развития тканевой реакции экспрессируются IL-1a, TNF-a, а позднее происходит переключение на антивоспалительные и профиброгеннные медиаторы – IL-4, IL-10, IL-13, TGF-β .

Реакция макрофагов на чужеродные материалы исследуется в различных условиях in vitro и in vivo. В экспериментах in vitro принимается во внимание интенсивность их адгезии на изучаемой поверхности и образования ГКИТ, число «включающихся» генов, количество синтезируемых и секретируемых ферментов, цитокинов и хемокинов. В монокультурах мононуклеарных фагоцитов, адгезированных на различных поверхностях, происходит не поляризация их в М1 и М2 направлениях, а формирование макрофагов смешанного типа, секретирующих как про-, так и противовоспалительные медиаторы со сдвигом в сторону последних при длительном культивировании . Отсутствие «золотого стандарта» – стабильного контрольного материала, хорошо зарекомендовавшего себя при имплантации в живой организм, с которым можно было бы сравнивать тестируемые материалы, а также использование не стандартизированных клеточных линий макрофагов, разные способы их дифференцировки затрудняют сравнение результатов работ разных авторов. Тем не менее, исследования in vitro дают возможность судить о цитотоксичности материалов, определить реакцию макрофагов на их химическую модификацию. Ценные сведения были получены при изучении активации макрофагов на поверхности различных коллагенов – нативных и химически измененных. Нативные коллагены индуцируют in vitro синтез макрофагами сигнальных молекул, как стимулирующих воспалительный ответ (TNF-a, IL-6, IL-8, IL-1β, IL-12, CCL2), так и подавляющих его (IL-1ra, IL-10), а также матриксных металлопротеаз и их ингибиторов. . Провоспалительные свойства таких материалов зависят от способа децеллюляризации и стерилизации исходного сырья, в значительной степени изменяющих его характеристики. Полученные по разным технологиям коллагеновые эндопротезы из нативного коллагена по способности вызывать экспрессию провоспалительных цитокинов варьируют от практически инертных до высокоактивных . Прошивка коллагена различными химическими веществами изменяет характер реакции макрофагов. Обработка глутаральдегидом приводит к цитотоксичности, проявляющейся в повреждении цитоплазматической мембраны, нарушении адгезии, снижении жизнеспособности макрофагов. При этом продукция ими IL-6, TNF-a повышена, а синтез IL-1ra подавлен в сравнении с макрофагами, адгезированными нативным и прошитым карбодиимидом коллагеном. Обработка карбодиимидом обеспечивает оптимальные свойства коллагену, который не обладает цитотоксичностью, не вызывает существенного повышения секреции провоспалительных цитокинов и металлопротеаз и не подавляет синтез IL-10 и IL-1ra в сравнении с нативным .

С целью снижения тканевой реакции в коллагеновые материалы вводят компоненты межклеточного матрикса, нативные или модифицированные. J. Kajahn с соавт. (2012) создали in vitro имитацию провоспалительного микроокружения эндопротезов, что способствовало дифференцировке моноцитов в М1 направлении . В этих же условиях дополнительно сульфатированная гиалуроновая кислота, введенная в коллагеновый субстрат, снизила секрецию макрофагами провоспалительных цитокинов и повысила продукцию IL-10. По мнению авторов это свидетельствует о М2 поляризации макрофагов, способствующих регенерации и восстановлению функциональных свойств окружающих тканей. Реакция макрофагов на медленно деградируемые и стабильные материалы in vitro в целом однородна и аналогична реакции на биоматериалы, хотя некоторая специфичность ответа все же заметна. Титан, полиуретан, полиметилметакрилат, политетрафторэтилен являются слабыми индукторами медиаторов воспаления, хотя титан способствует более высокой секреции TNF-a и IL-10, чем полиуретан, а особенность полипропилена заключается в стимулировании продукции профиброгенного хемокина ССL18 . PEG, предлагаемый в качестве субстрата для переноса клеток, вызывает резкое, но быстро проходящее усиление экспрессии IL-1β, TNF-a, IL-12, однако его сополимеризация с олигопептидом клеточной адгезии улучшает биосовместимость материала, в значительной степени снижая экспрессию провоспалительных цитокинов .

Реакция макрофагов на различные материалы in vitro не в полной мере характеризует их поведение в организме. В монокультурах отсутствуют факторы взаимодействия с другими клеточными популяциями и не учитывается фенотипический полиморфизм – в естественных условиях к имплантату мигрируют не только моноцитарные предшественники, но и зрелые тканевые макрофаги, ответ которых может существенно отличаться от рекрутируемых из крови. Исследование секреторной активности макрофагов, окружающих инсталлированные в ткани животных и человека эндопротезы, представляет большую сложность. Основным методом, позволяющим характеризовать макрофаги на основании парадигмы М1-М2 in situ, стали данные иммуноцитохимии маркерных белков iNOS, CD206, CD163, CD80, CD86. Постулируется, что наличие этих маркеров у макрофагов in vivo определяет их поляризацию в М1 и М2 направлениях с синтезом соответствующих спектров цито- и хемокинов, но, учитывая возможность существования макрофагов смешанного типа , такая характеристика не вполне корректна.

Тем не менее, эксперименты in vivo дают возможность проследить судьбу имплантированного материала и динамику реакции макрофагов в течение длительного периода, что особенно важно для пожизненно установленных эндопротезов и устройств. Наиболее изученными в данном аспекте являются деградирующие биоматериалы на основе коллагена. Первыми клетками воспаления, мигрирующими к таким материалам, являются ПМЯЛ, однако этот эффект транзиторный и популяция второй волны представлена макрофагами . Их реакция зависит от физико-химических свойств коллагена. Чем жестче химическая обработка, тем больше отличается коллаген от нативного, тем более «чужим» он становится для макрофага и тем сильнее выражена тканевая реакция. Установленные между мышечными слоями брюшной стенки крысы фрагменты имплантатов из медленно деградирующего прошитого коллагена способствуют формированию ГКИТ и инкапсуляции материала. Мигрирующие макрофаги, судя по экспрессии рецепторов ССR7 и CD206, можно отнести в ряде случаев к М1 фенотипу, но во многих случаях определить их принадлежность к известным фенотипам не представляется возможным.

С течением времени вокруг имплантата появляются М2 макрофаги, которые располагаются преимущественно в фиброзной капсуле . Эндопротезы из непрошитого коллагена свиньи, человека и быка и прошитый диизоцианатом коллаген овцы , быстро разрушающиеся в организме крысы, стимулируют новообразование полноценной соединительной и мышечной тканей. Они не способствуют образованию ГКИТ и не инкапсулируются. Часть мононуклеарных фагоцитов, скапливающихся на границе ткань/материал, не имеет маркеров М1/М2 фенотипа, часть содержит оба маркера, а часть является М2 макрофагами. Субпопуляция М1 макрофагов на таких имплантатах отсутствует . Гистоморфометрический анализ показал положительную корреляцию между количеством макрофагов, несущих маркеры М2 фенотипа на ранних этапах развивающейся тканевой реакции, и показателями успешного ремоделирования тканей в зоне имплантации .

Тканевая реакция на недеградируемые материалы существует в течение всего времени присутствия их в организме . Ее интенсивность модулируется физико-химическими свойствами материалов: в ряду полиэстер, политетрафторэтилен, полипропилен – первый полимер вызывает максимально выраженное воспаление и слияние макрофагов, последний – минимальное, а выраженность фиброза для всех перечисленных материалов положительно коррелирует с количеством ГКИТ на поверхности синтетических полимеров . Несмотря на большое количество работ, в которых исследована воспалительная реакция на различные материалы, характеристики аккумулирующихся на них макрофагов изучены недостаточно. M.T. Wolf и соавт. (2014) показали, что на нитях и между узлами полипропиленовой сетки, имплантированной в брюшную стенку крысы, скапливаются преимущественно макрофаги с маркерами М1 фенотипа (СD86+CD206-) .

Нанесенный на полипропилен гель из межклеточного матрикса соединительной ткани снижает число М1 макрофагов и ГКИТ и одновременно тормозит рост микрососудов. Это явление хорошо согласуется с результатами работ, демонстрирующими экспрессию ангиогенных факторов М1 макрофагами ран и подавление васкулогенеза при их блокаде . О синтетической активности макрофагов, спектре их биологически активных молекул, обеспечивающих тканевую реакцию, известно мало. У мыши на периферии зоны имплантации нейлоновой сетки скапливаются макрофаги, секретирующие IL-6 и ССL2, IL-13 и TGF-β и в то же время в популяции клеток, в том числе и в ГКИТ, адгезированных на волокнах эндопротеза, экспрессируются IL-4, IL-10, IL-13 и TGF-β . IL-4 и IL-13 – мощные профиброгенные медиаторы, они не только поляризуют макрофаги в М2а направлении, способствуя продукции факторов роста, но и через индукцию экспрессии фибробластами TGF-β, стимулируют синтез ими коллагена. Профиброгенным эффектом обладают также IL-10 и CCL2, обеспечивающие хемотаксис предшественников миофибробластов – фиброцитов . Можно предположить, что именно макрофаги создают среду, способствующую развитию фиброза вокруг недеградирующих материалов.

Образование фиброзной ткани может оказывать как негативное, так и позитивное влияние на результаты лечения пациентов. В герниологической практике фиброзная трансформация тканей, связанная с имплантацией полипропиленового эндопротеза, является одной из основных проблем (рис. 2, собственные данные), которая на фоне нерациональной оперативной тактики в 15–20% случаев приводит к развитию рецидивов грыж различных локализаций .

В последние годы особенно интенсивно развиваются технологии дентальной имплантации, основанные на интеграции установленных конструкций за счет развития соединительной ткани (рис. 3, собственные данные). Несмотря на то, что фиброинтеграция имплантатов рядом специалистов признается как допустимый вариант, поиск новых материалов, способствующих процессам остеоинтеграции, продолжается .

В этой связи существенное значение приобретают изучение клеточных популяций в зоне протезирования, разработка методов и подходов к блокированию чрезмерной воспалительной реакции с исходом в фиброз и стимуляция репаративной регенерации в месте имплантации различных материалов.

Заключение

Макрофаги – полиморфная популяция клеток, фенотип которых определяется сигналами микроокружения. Они играют решающую роль в реакции организма на чужеродный материал, используемый для эндопротезирования, катетеризации, стентирования и др. видов лечения. Характер реакции и степень ее выраженности зависят как от размера имплантируемого материала, так и от его физикохимических свойств и могут иметь как положительное, так и отрицательное значения для организма пациента. Для деградируемых материалов на основе коллагена показана зависимость типа активации макрофагов и скорости регенерации соединительной ткани от способа обработки коллагенового сырья. Это открывает широкие возможности для специалистов, разрабатывающих новые методы децеллюляризации тканей, химической модификации и стерилизации коллагеновых материалов в целях получения имплантатов для регенеративной медицины.

Проблемы, связанные с активацией макрофагов недеградирующими материалами, по-видимому, должны решаться иначе. Макрофаги, фагоцитирующие микрочастицы износа поверхности суставных эндопротезов, и макрофаги, мигрирующие к обширным поверхностям синтетических имплантов, инициируют длительно персистирующее воспаление, остеолиз в первом случае и фиброз во втором. Нивелирование этого эффекта, скорее всего, будет достигнуто путем блокады направленной миграции, адгезии и активации моноцитов/макрофагов, что потребует более глубоких знаний об этих процессах, чем те, которыми мы располагаем в настоящее время.