Как называются клеточные структуры, изображенные на картинке? Какова функция клеточной структуры изображенной на рисунке

особенности живой клетки зависят от функционирования биологических мембран

А.избирательная проницаемость

Б. ионный обмен

В. Поглощение и удерживание воды

Г. Изоляция от окружающей среды и
связь с ней

Какая
органелла связывает клетку в единое целое, осуществляет транспорт веществ,
участвует в синтезе жиров, белков, сложных углеводов:

Б.комплекс Гольджи

В.наружная клеточная мембрана

Какое
строение имеют рибосомы:

А. одномембранное

Б. двухмембранное

В. Немембранное

Как
называют внутренние структуры митохондрий:

А. граны

Б. матрикс

В. Кристы

Какие
структуры образованы внутренней мембраной хролопласта:

А. строма

Б.тилакоиды гран

В. Кристы

Г. Тилакоиды стромы

Для каких
организмов характерно ядро:

А. для эукариотов

Б. для прокариотов

Различаются
ли по химическому составу хромосомы и хроматин:

Где
расположена центромера на хромосоме:

А. на первичной перетяжке

Б. на вторичной перетяжке

Какие
органеллы характерны только для растительных клеток:

Б.митохондрии

В. Пластиды

Что
входит в состав рибосом:

Б.липиды

1. Главная заслуга Р. Гука в биологии заключается в том, что он:

а) сконструировал первый микроскоп; б) открыл микроорганизмы; в) открыл клетку; г) сформулировал положения клеточной теории.

2. Клеточная стенка грибов содержит:

а) хитин; б) муреин; в) целлюлозу; г) гликоген.

3. На мембранах гранулярной ЭПС располагаются:

а) митохондрии; б) хлоропласты; в) рибосомы; г) лизосомы.

4. Аминокислоты в молекуле белка соединены посредством:

а) ионной связи; б) пептидной связи; в) водородной связи.

5. Какие пластиды содержит пигмент хлорофилл:

а) хлоропласты; б) лейкопласты; в) хромопласты.

6. Как называются внутренние структуры митохондрий?

а) граны; б) матрикс; в) кристы; г) строма.

7. Синтез белка происходит в:

А) аппарате Гольджи; б) рибосомах; в) гладкой ЭПС; г) лизосомах.

8. Растения, грибы, животные – это эукариоты, так как их клетки:

а) не имеют оформленного ядра; б) не делятся митозом; в) имеют оформленное ядро;

г) имеют ядерную ДНК, замкнутую в кольцо.

9. Какие органоиды клетки образуются из концевых пузырьков комплекса Гольджи?

а) лизосомы; б) пластиды; в) митохондрии; г) рибосомы.

10. Граны хлоропластов состоят из: а) стромы; б) крист; в) тилакоидов; г) матрикса.

11. Белки, входящие в состав плазматической мембраны, выполняют функцию:

а) структурную; б) рецепторную; в) ферментативную; г) все указанные.

12. Основным местом хранения наследственной информации у бактерий является:

а) нуклеоид; б) ядро; в) мезосома; г) центриоль.

Часть В. Задание 2. Выберите три правильных ответа.

1.Аппарат Гольджи встречается в клетках:

А) животных; б) бактерий; в) грибов; г) растений; д) вирусов; е) синезеленых водорослей.

2. В живых организмах цитоплазматическая мембрана может быть покрыта:

а) гликокаликсом; б) матриксом; в) клеточной стенкой; г) слизистой капсулой; д) клеточной пленкой; е) клеточной оболочкой.

3.К мембранным органоидам эукариотической клетки не относятся:

а) лизосомы; б) вакуоли; в) клеточный центр; г) рибосомы; д) жгутики; е) включения.

4. В клетке ДНК содержится в:

А) ядре; б) митохондриях; в) хлоропластах; г) ЭПС; д) лизосомах; е) аппарате Гольджи.

Часть В. Задание 3. Установите соответствие.

1.Между органоидом клетки и его строением.

Органоиды клетки Строение органоидов

1) вакуоли А) имеют в своем составе одну мембрану

2) митохондрии Б) имеют в своем составе две мембраны

3) клеточный центр В) не имеют мембранного строения

4) рибосомы

5) лизосомы

2. Между строением и особенностями жизнедеятельности митохондрий и хлоропластов.

Особенности органоидов Органоиды

1) внутренняя мембрана образует кристы А) митохондрии

2) имеют граны из тилакоидов Б) хлоропласты

3) внутреннее пространство заполнено стромой

4) внутреннее пространство заполнено матриксом

5) окисляют органические вещества с образованием АТФ

6) фотосинтез

Часть С. Дайте полный, развернутый ответ.

С 1. Каково строение нуклеотидов ДНК и РНК? Как нуклеотиды соединяются в одну полинуклеотидную цепь?

С 2. На какие группы делятся все элементы клетки? По какому принципу?

С 3. Сколько содержится Т, А, Ц нуклеотидов в отдельности во фрагменте молекулы ДНК, если в нем обнаружено 660 Г, которые составляют 22% от их общего количества. Какова длина и масса этого фрагмента ДНК?
Помогите пожалуйста

Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма . Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана . Каждая клетка животных, растений, ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение , сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы . Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.
Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи . Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение : окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом

Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из ).
Митохондрии . Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.
Хромопласты . Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр . Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.

Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Строение и функции растительной клетки

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Строение растительной клетки

Строение и функции органоидов растительной клетки

Органоид Рисунок Описание Функция Особенности

Клеточная стенка или плазматическая мембрана

Бесцветная, прозрачная и очень прочная

Пропускает в клетку и выпускает из клетки вещества.

Клеточная мембрана полупроницаемая

Цитоплазма

Густое тягучее вещество

В ней располагаются все другие части клетки

Находится в постоянном движении

Ядро (важная часть клетки)

Округлое или овальное

Обеспечивает передачу наследственных свойств дочерним клеткам при делении

Центральная часть клетки

Сферической или неправильной формы

Принимает участие в синтезе белка

Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок

Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.

По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль

Пластиды

Хлоропласты

Используют световую энергию солнца и создают органические из неорганических

Форма дисков, отграниченных от цитоплазмы двойной мембраной

Хромопласты

Образуются в результате накопления каротиноидов

Жёлтые, оранжевые или бурые

Лейкопласты

Бесцветные пластиды

Ядерная оболочка

Состоит из двух мембран (наружная и внутренняя) с порами

Отграничивает ядро от цитоплазмы

Даёт возможность осуществляться обмену между ядром и цитоплазмой

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Теперь перейдем к внутреннему содержимому. Внутренняя мембрана хлоропласта образует целую сеть достаточно упорядоченных мембран. Мембраные пузыречки похожи на монетки. Один самостоятельный пузыречек — это тилакоид (оранжевая стрелочка), стопка тилакоидов — это грана. Длинный вытянутый тилакоид (часто соединяющий несколько гран) называют ламелой (зеленая стрелочка). Хлоропласт (вместе с митохондрией) имеет особенность строения, заключающуюся в наличии собственной ДНК. В этой молекуле ДНК содержатся гены с информацией о белках-ферментах, участвующих в фотосинтезе. И эти ферменты синтезируются на месте, т.е. в самом хлоропласте, а значит есть рибосомы. В результате фотосинтеза образуется глюкоза и из нее может здесь же синтезироваться крахмал (зерна крахмала можно увидеть под сиреневой стрелочкой) и липидные капли (на рисунке под синей стрелочкой). Внутреннее жидкое содержимое хлоропласта называют стромой.

Соответственно, правильный ответ: 1 — грана, 2 — ДНК, 3 — рибосомы (скорее всего, но так как рисунок не совсем четкий, то может и имеется ввиду строма).

9. На каком рисунке изображена митохондрия?

На третьем рисунке, уже знакомый нам (достаточно узнаваемый) хлоропласт. Вспоминаем, что митохондрия имеет две мембраны и безошибочно выбираем правильный — четвертый ответ. На рисунке под цифрой 4 хорошо видно, что мембран две и внутренняя мембрана органоида впячивется внутрь, образуя складки — кристы. Посмотрим на все многообразие изображений митохондрий . Попутно вспомним, что у митохондрий тоже есть собственная ДНК и рибосомы.

Что же изображено на первом и втором рисунке? Под номером 1 рибосома во время трансляции, на ее фоне мы можем видеть две тРНК и цепочку из аминокислот, которая пока прикреплена к одной из тРНК. Под номером 2 аппарат (комплекс) Гольджи. Не самое удачное, на мой взгляд, изображение этого органоида, но мы должны быть готовы ко всему, поэтому идем по ссылке и наслаждаемся многообразием изображений аппарата Гольджи . Вспоминая попутно, что это одномембранный органоид, который по мимо всего прочего образует лизосомы (мембранные пузырьки сверху органоида на рисунке).

Самое главное чем отличаются прокариоты от эукариот — отсутствие (у прокариот) или наличие (у эукариот) оформленного ядра, т.е. ядерной оболочки вокруг наследственной информации. А — бактерия (относится к прокариотам), Б — хламидоманада (эукариоты). У бактерии кольцевая ДНК (синяя стрелочка), расположенная в цитоплазме, у хламидоманады оформленное ядро с ядрышком (оранжевая стрелочка). Так же можно добавить, что у эукариот есть различные органоиды. В частности у хламидоманады хроматофор, вакуоль и светочувствительный глазок. А у прокариот из органоидов есть только рибосомы.

На рисунке изображен эндо цитоз — поступление веществ внутрь клетки (экзоцитоз наоборот). Процесс этот происходит с помощью плазматической мембраны и благодаря ее пластичности и текучести (а так же несомненно благодаря цитоскелету). Эндоцитоз делят на два разных процесса: фагоцитоз — поступление твердых веществ либо клеток (соответственно, фагоцитоз изображен на рис. А) и пиноцитоз — поступление жидкости (рис. Б). Бактерия будет переварена (разрушена) клеткой.

12. Определите тип и фазу деления клетки, изображенной на рисунке. Какие процессы происходят в этой фазе?

Первым делом надо понять митоз это или мейоз. Два важных момента, на которые нужно обратить внимание. Первое: нет признаков кроссинговера, т.е. хроматиды хромосом нарисованы однородными. Второе: здесь видно четко две пары гомологичных хромосом — две большие и две маленькие. это значит, что редукции наследственного материала не произошло. Значит — это митоз. Фаза — метафаза, так как хромосомы выстроились вдоль экватора по одной линии (так называемая метафазная пластинка).

Процессы: хромосомы, состоящие из двух хроматид, выстраиваются вдоль экватора. К центромерам хромосом прикрепляются нити веретена деления.

13. Какие стадии гаметогенеза обозначены на рисунке буквами А, Б и В? Какой набор хромосом имеют клетки на каждой из этих стадий? К развитию каких специализированных клеток ведёт этот процесс?

Если воспринимать на рисунке под буквой А все пространство до первой горизонтальной линии, то несомненно — это стадия размножения. На этой стадии происходит деление клетки путем митоза, набор хромосом <<2n4c>>. Под буквой Б обозначена стадия роста. Клетка увеличивается в размере, накапливает вещества и энергию для финальной стадии. Под буквой В стадия созревания. На этой стадии происходит мейоз и количество хромосом уменьшается. Набор хромосом становится <>.

Результатом гаметогенеза становится образования гамет, т.е. половых клеток (несомненно специализированных клеток).

Тема «Клетка»

Вариант 1

Часть 1

1. Уменьшение числа и размеров митохондрий в клетках дрожжей вызывает

1) прекращение деления клеток 2) нарушение энергетического обмена 3) прекращение синтеза белков 4) образование новых видов дрожжей

2. В состав какого органоида клетки входят растительные пигменты?

1) митохондрия 2) хлоропласт 3) комплекс Гольджи 4) вакуоль

3. Как называют изображённую на рисунке клеточную структуру?

1) ядро 2) вакуоль 3) лизосома 4) митохондрия

4. Как называется полужидкая среда клетки, в которой расположено ядро?

1) вакуоль 2) цитоплазма 3) лизосома 4) клеточный сок

5. Какова функция клеточной структуры, изображённой на рисунке?

1) биосинтез белка 2) синтез крахмала 3) защита от внешних воздействий 4) хранение генетической информации

1) хромопласт 2) ЭПС 3) комплекс Гольджи 4) лизосома

Какое понятие следует вписать на место пропуска в этой таблице?

1) синтез АТФ 2) синтез белка 3) выведение веществ из клетки 4) хранение информации

8. Установите соответствие между процессом и органоидом, в котором этот процесс происходит. Для этого к каждому элементу первого столбца подберите позицию из второго столбца. Впишите в таблицу цифры выбранных ответов.

Часть 2

1. Клетка гриба отличается от растительной клетки отсутствием

1) клеточной стенки 2) пластид 3) эндоплазматической сети 4) ядра

2. Клетка гриба отличается от животной клетки наличием

1) клеточной стенки 2) митохондрий 3) пластид 4) ядра

3. Бактерии отличаются от одноклеточных зелёных водорослей отсутствием

1) ядра 2) цитоплазмы 3) жгутиков 4) клеточной оболочки

4. Гетеротрофами не являются

1) грибы 2) животные 3) болезнетворные бактерии 4) одноклеточные водоросли

5. Укажите органоиды, характерные только для растительной клетки. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны .

1) эндоплазматическая сеть 2) хлоропласты 3) клеточная оболочка 4) ядро 5) рибосомы 6) центральная вакуоль

Тема «Клетка»

Вариант 2

Часть 1

1. Какую из перечисленных клеточных структур имеют в своём составе клетки всех организмов?

1) цитоплазматическую мембрану 2) хлоропласт 3) митохондрию 4) ядро

2. Как называют изображённый клеточный органоид?

1) рибосома 2) лизосома 3) хлоропласт 4) митохондрия

3. Какая из перечисленных клеточных структур НЕ является органоидом?

1) включение 2) вакуоль 3) лизосома 4) клеточный центр

4. Как называют органоид клетки, который по выполняемой функции напоминает пищеварительную систему многоклеточного животного?

1) аппарат Гольджи 2) митохондрия 3) лизосома 4) ядро

5. Как называют изображённый на рисунке клеточный органоид?

1) ядро 2) хлоропласт 3) митохондрия 4) комплекс Гольджи

6. В приведённой ниже таблице между позициями первого и второго столбца имеется взаимосвязь. Какое понятие следует вписать на место пропуска в этой таблице?

1) ядро 2) митохондрия 3) рибосома 4) хлоропласт

7. В приведённой ниже таблице между позициями первого и второго столбца имеется взаимосвязь.

Какое понятие следует вписать на место пропуска в этой таблице?

1) ЭПС 2) хлоропласт 3) рибосома 4) ядро

8. Установите соответствие между строением клетки и её видом: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца .

Часть 2

1. Бактериальная клетка отличается от растительной клетки отсутствием

1) клеточного ядра 2) клеточной стенки 3) нуклеиновых кислот 4) оболочки клетки

2. Характерный признак царства Грибов –

1) наличие хитина в клеточной оболочке 2) ограниченный рост 3) отсутствие в клетках ядра 4) автотрофный тип питания

3. Что характерно для автотрофных организмов?

1) живут без пищи 2) способны синтезировать органические вещества из неорганических 3) потребляют готовые органические вещества 4) поедают друг друга

4. В состав клеток растений, в отличие от грибов, входят

1) ядра 2) крупные центральные вакуоли 3) митохондрии 4) рибосомы

5. Укажите органоиды, характерные для животной клетки. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны.

1) клеточная оболочка 2) ядро 3) центральная вакуоль 4) пластиды 5) клеточная мембрана 6) митохондрия