Физиология женской репродуктивной системы наиболее приближенный препараты. Репродуктивная система человека. Анатомия и физиология женской репродуктивной системы. Общие положения, половая дифференциация

4371 0

Яичник (ovarium, oophorori) - парный орган женской репродуктивной системы и одновременно железа внутренней секреции (рис. 1).

Масса яичника в норме не превышает 5-8 г, размеры составляют 2,5-5,5 см в длину, 1,5-3,0 см в ширину и до 2 см в толщину.

Яичник состоит из двух слоев: коркового вещества, покрытого белочной оболочкой, и мозгового. Корковое вещество образовано фолликулами различной степени зрелости.

Рис. 1. Яичник: процессы, происходящие в течение овуляторного цикла

Основными стероидными гормонами, секретируемыми яичниками, являются эстрогены и прогестерон , а также аидрогены . Эстрогены представлены эстрадиолом, эстроном и эстриолом. Эстрадиол (Е2) секретируется преимущественно клетками гранулезы. Эстрон (Е1) образуется путем периферической ароматизации эстрадиола; эстриол (Е3) синтезируется яичниками в следовых количествах; основным источником эстриола является гидроксилирование эстрадиола иэстрона в печени.

Основным прогестагенным гормоном (прогестином) является прогестерон , который секретируется преимущественно желтым телом. Основным яичниковым андрогеном, который секретируется клетками теки, является андростендион. В норме большая часть андрогенов в женском организме имеет надпочечниковое происхождение. Исходными соединениями для синтеза эстрогенов и прогестерона является холестерин. Биосинтез половых гормонов происходит аналогично биосинтезу кортикостероидов. Стероидные гормоны яичников так же, как и надпочечников, практически не накапливаются в клетках, а секретируются в процессе синтеза.

В кровеносном русле значительная часть стероидов связывается с транспортными белками: эстрогены - с глобулином, связывающим половые гормоны (ГСПГ), прогестерон - с кортизолсвязывающим глобулином (транскортином). Механизм действия эстрогенов, прогестинови андрогенов аналогичен таковому у других стероидных гормонов.

Основными метаболитами эстрогенов являются катехолэстрогены (2-оксиэстрон, 2-метоксиэстрон, 17-эпистриол), обладающие слабой эстрогенной активностью; основным метаболитом прогестерона является прегнандиол.

До начала пубертатного периода в яичниках происходит независимый от гонадотропинов очень медленный рост первичных фолликулов. Дальнейшее развитие зрелых фолликулов возможно лишь под действием гормонов гипофиза: фолликулостимулирующего (ФСГ) и лютеинизирующего (ЛГ), продукция которых, в свою очередь, регулируется гонадолиберином гипоталамуса. В овариальном цикле различают две фазы - фолликулярную и лютеиновую, которые разделены двумя событиями - овуляцией и менструацией (рис. 2).

Рис. 2. Циклические изменения в репродуктивной системе у женщины на протяжении менструального цикла

В фолликулярной фазе секреция ФСГ гипофизом стимулирует процессы роста и развития первичных фолликулов, а также выработку эстрогенов клетками фолликулярного эпителия. Предовуляторный выброс гонадотропинов определяет сам процесс овуляции. Овуляторный выброс ЛГ и в меньшей степени ФСГ обусловлен сенсибилизацией гипофиза к действию гонадолиберина и связан с резким падением уровня эстрадиола в течение 24 ч, предшествующих овуляции, а также с существованием механизма положительной обратной связи сверхвысоких концентраций эстрогенов и уровня ЛГ.

Под влиянием овуляторного увеличения уровня ЛГ происходит формирование желтого тела, которое начинает продуцировать прогестерон. Последний ингибирует рост и развитие новых фолликулов, а также участвует в подготовке эндометрия к внедрению оплодотворенной яйцеклетки. Плато сывороточной концентрации прогестерона соответствует плато ректальной (базальной) температуры (37,2-37,5 °С), что лежит в основе одного из методов диагностики произошедшей овуляции. Если в дальнейшем оплодотворение не происходит, через 10-12 дней наступает регресс желтого тела, если же оплодотворенная яйцеклетка внедрилась в эндометрий и образующаяся бластула стала синтезировать хорионический гонадотропин (ХГ), желтое тело становится желтым телом беременности.

Длительность овариального (менструального) цикла в норме варьирует от 21 до 35 дней. Самым распространенным считается 28-дневный цикл, существующий в течение длительного времени только у 30-40 % женщин. В менструальном цикле различают три периода, или фазы: менструальная (фаза десквамации эндометрия), которой заканчивается предыдущий цикл, постменструальная (фаза пролиферации эндометрия), предменструальная (функциональная, или секреторная фаза). Границей между двумя последними фазами является овуляция. Отсчет дней менструального цикла начинается с первого дня менструации.

Дедов И.И., Мельниченко Г.А., Фадеев В.Ф.
Эндокринология

    Общие положения, половая дифференциация

    Физиология мужской половой системы.

    Физиология женской половой системы.

      Строение и функции женской половой системы

      Овариально-менструальный цикл.

    Нервная регуляция репродуктивных функций.

    Физиология беременности.

    1. Оплодотворение

      Беременность

    Физиология плода.

    Физиология женского организма во время родов и послеродовой период.

    1. Лактация

  1. Общие положения, половая дифференциация

Пол - совокупность генетических, морфологических, физиологи­ческих, психологических и социально-личностных особенностей организма, которые определяют его специфическое участие в процессах воспроизведения.

Органы и ткани, выполняющие данные функции, а также регулирующие их механизмы (нервные и гумораль­ные) составляют репродуктивную систему. Конечный ре­зультат ее деятельности - воспроизведение здорового потомства.

Репродуктивные функции: половая дифференцировка; половое созревание; созревание половых клеток; половая мотивация, половое поведение; половой акт; оплодотворение; беременность; роды; лактация; выхаживание и воспитание потомства.

Таким образом, репродуктивная система обеспечивает воспроизведение полноценного потомства. У новорожден­ного ребенка она несовершенна, однако постепенно чело­век проходит через различные стадии полового развития, характеризующиеся различным уровнем функциониро­вания репродуктивной системы.

Половая дифференциация

Первичные половые клетки – гоноциты обособляются в клетках зародыша на 6-ой неделе развития. Они переносятся в область будущих половых желез сначала с током крови по эмбриональным кровеносным сосудам, а затем движутся самостоятельно. На этой стадии мужские и женские гоноциты практически одинаковы. Попав в зачатки половых желез, гоноциты обоих полов усиленно размножаются и у зародыша развивает­ся пара недифференцированных зачатков гонад - поло­вых складок. Половая дифференцировка опреде­ляется составом половых хромосом . Если в генотипе плода содержится Y -хромосома , начинается активный синтез тестостерона . Он взаимодействует со специальными рецепторами в клет­ках-мишенях и стимулирует развитие мужской половой си­стеме. При нарушении чувствительности этих рецепто­ров или извращении выработки тестостерона на фоне мужского генотипа половая система развивается по жен­скому типу. Отсутствие тестостерона также позволяет зачаткам развиваться по женскому типу.

Таким образом, гонады изначально закладываются вне зависимости от пола эмбриона. Решающим фактором раз­вития становится Y-хромосома, которая отвечает за син­тез тестостерона. При наличии тестостерона зачатки раз­виваются по мужскому типу, при отсутствии - по жен­скому.

Половые органы развиваются из двух структур: Мюллерова и Вольфова протоков. На ранних стадиях они есть у всех эмбрионов вне за­висимости от пола. Под действием андрогенов у плода мужского пола из Вольфова протока развиваются прида­ток яичка, семявыносящий проток, семенной пузырек . У плода женского пола Вольфов проток дегенерирует, а из Мюллерова протока развиваются яйцевод, матка, шейка матки и верхняя часть влагалища.

    Физиология мужской половой системы

Мужские половые органы подразделяют на наружные (мошонка, половой член ) и внутренние (яички с придатками, семявыносящие протоки, предстательная железа, бульбоуретральные железы, семенные пузырьки и семявыносящие протоки ).

Яичко - парный орган уплощённо-овальной формы, длиной 4 см и диаметром 2,5 см. Яичко с придатком находится в мошонке - мешке, расположенном вне брюшной полости непосредственно за половым членом. Основную массу яичка составляют извитые канальцы , содержащие сперматогенный эпителий . Извитые канальцы, подходя к средостению яичка, превращаются в прямые канальцы , которые в свою очередь переходят в канальцы сети , располагающиеся непосредственно в средостении яичка . Прямые и извитые канальцы служат для выведения сперматозоидов, образуемых в процессе сперматогенеза . В интерстиции между извитыми семенными канальцами располагаются эндокриноциты яичка - клетки Сертоли и клетки Лейдига.

Функции клеток Сертоли : трофическая (обеспечение развивающихся гамет питательными веществами), фагоцитоз избыточной цитоплазмы сперматид и дегенерирующих половых клеток, ароматизация андрогенов (превращение тестостерона в эстрогены, что необходимо для локальной регуляции эндокринных функций яичек), секреция жидкости и связывающего андрогены белка (необходимы для образования сперматозоидов в семенных канальцах) и эндокринная (синтез ингибинов, тормозящих вместе с тестостероном образование ФСГ). Важная функция клеток Сертоли - создание гематотестикулярного барьера, многослойного препятствия между кровью и паренхимой яичек.

Функции клеток Лейдига – выработка андрогенов (тестостерон , дигидротестостерон , дегидроэпиандростерон , андростендион и некоторых других ).

Сперматогенез осуществляется исключительно в извитых семенных канальцах яичка. На поперечных срезах яичка видны сперматоциты на различных стадиях созревания. У мужчин процесс сперматогенеза продолжается 65-70 дней. Сперматогонии в мужском организме продолжают делиться с начала полового созревания до старости. Новый цикл начинается через одинаковые временные интервалы, поэтому вдоль каждого канальца можно увидеть клетки на разных стадиях развития. Именно таким образом поддерживается продолжительная непрерывная продукция сперматозоидов. Каждые сутки их образуется около 2×10 8 .

Сперматозоиды - клетки небольшого размера, диаметр их составляет 1-2 мкм. Форма их хорошо приспособлена для перемещения и взаимодействия с яйцеклеткой. В результате мейоза из каждого сперматогония образуется четыре одинаковых сперматозоида. В головке сперматозоида находится ядро , содержащее гаплоидное число хромосом. Оно прикрыто акросомой , представляющей собой особую ограниченную мебраной структуру, содержащую гидролитические ферменты . Ферменты способствуют проникновению сперматозоида в яйцеклетку непосредственно перед оплодотворением.

Жидкость, эякулируемая во время полового акта (эякулят) - сперма, содержит сперматозоиды и секреторную жидкость добавочных желёз мужской половой системы (семенных пузырьков, простаты и бульбоуретральных желез). В семенной жидкости на долю сперматозоидов приходится 5% объёма, 95% - на секреты добавочных желёз. Количество эякулята при каждом совокуплении составляет 3,5 (2–6) мл, каждый миллилитр содержит примерно 120 млн. сперматозоидов (население России 144 млн.). Для обеспечения фертильности (оплодотворяющей способности) в каждом миллилитре спермы должно быть не менее 20 млн. сперматозоидов (в том числе 60% нормальной морфологии и свыше 50% подвижных). После эякуляции максимальная продолжительность жизни сперматозоидов в половых путях женщины составляет около 48 часов. В то же время при температуре ниже –100 ° C сперматозоиды сохраняют фертильность годами.

Придаток яичка имеет форму запятой, прилежит к заднебоковой поверхности яичка и состоит из чрезвычайно и хаотично извитой трубочки длиной до 6 м. Начинаясь от головки придатка, расположенной на верхнем полюсе яичка, он формирует тело и хвост придатка. В нижней части хвоста придатка он переходит в прямой семявыносящий проток .

Семявыносящий проток - продолжение канальца придатка яичка - 45-сантиметровая трубка, которая отходит от нижнего конца придатка. Семявыносящий проток проникает в брюшную полость, где подходя к семенным пузырькам проток соединяется с протоком семенных пузырьков , формируя короткий (2,5 см) семявыбрасывающий проток , впадающий в простатическую часть уретры.

Семенные пузырьки - две сильно извитых трубочки длиной до 15 см, расположенные у основания мочевого пузыря.Они секретируют вязкий, желтоватого цвета секрет, который разжижает сперму, содержит фруктозу, соли аскорбиновой и лимонной кислот - т.е. вещества, обеспечивающие сперматозоиды энергетическим запасом, повышающие их выживаемость и функциональную активность.

Предстательная железа (простата )- железисто-мышечный орган размерами 2-4 см, окружающий начальный отдел мужского мочеиспускательного канала. Паренхима предстательной железы состоит из 30–50 разветвлённых трубчато-альвеолярных желёз. Протоки желёз открываются в простатическую часть мочеиспускательного канала. Секрет железы принимает участие в разжижении семени и способствует его прохождению по мочеиспускательному каналу при эякуляции. Слабощелочная реакция секрета (содержит бикарбонат, pH 7,5) нейтрализует кислотность других компонентов семенной жидкости и таким образом увеличивает подвижность, а значит фертильность (оплодотворяющуюя способность) сперматозоидов. Простата выполняет и эндокринные функции, синтезируя БАВ, подавляющие секрецию тестостерона.

За пределами предстательной железы в уретру открываются бульбоуретральные (куперовы) железы. Вязкий слизистый секрет, выделяемый ими в период полового возбуждения, служит для смазки уретры перед эякуляцией с целью улучшения «скольжения» спермы и нейтрализации остатков мочи.

В теле полового члена располагаются кавернозное и губчатое тела. В губчатом теле полового члена залегает мочеиспускательный канал, заканчивающийся на головке полового члена. Переполнение каверозных тел кровью приводит к значительному увеличению размеров полового члена и его распрямлению - эрекции.

    Физиология женской половой системы

    1. Строение и функции женской половой системы

Женская половая система состоит из парных яичников и маточных труб , матки , влагалища , наружных половых органов , а также молочных желёз . Органы различны по строению и функциям. Так, молочные железы необходимы для вскармливания ребёнка .

Яичники являются половой железой женщин. Они расположены в полости малого таза. Средние размеры яичников у женщин зрелого возраста: длина - 3-4 см, ширина - 2-2,5, масса - 6-8 г. В яичнике различают маточный и трубный концы. Трубный конец обращен к воронке маточной (фаллопиевой) трубы. Функции яичников - герминативная (овогенез, овуляция) и эндокринная (синтез и секреция эстрогенов, прогестерона, релаксинов и ингибинов).

Матка имеет грушевидную форму, обращена узким концом в верхний отдел влагалища. В матке различают дно , тело , шейку и полость . Полость матки рожавшей женщины на фронтальном разрезе имеет треугольную форму. В верхних углах этого треугольника находятся отверстия, открывающиеся в маточные трубы , в нижнем углу - перешеек ведущий в полость канала шейки матки . Шейка матки конической или цилиндрической формы. В нижнем ее конце канал открывается во влагалище . Функция маточных труб - транспортная (продвижение овулировавшей яйцеклетки в полость матки, оплодотворение), матки - вынашивание плода , канал шейки матки и влагалище - родовые пути ,

Оглавление темы "Таз с акушерской точки зрения. Физиология женской репродуктивной системы.":
1. Таз с акушерской точки зрения. Полость малого таза.
2. Размеры плоскости широкой части малого таза. Размеры плоскости узкой части малого таза.
3. Проводная ось таза. Угол наклонения таза.

5. Яичники. Циклические изменения в яичниках. Примордиальный, преантральный, антральный, доминантный фолликул.
6. Овуляция. Желтое тело. Женские гормоны синтезируемые в яичниках (эстрадиол, прогестерон, андрогены).
7. Циклические изменения в слизистой оболочке матки (эндометрии). Фаза пролиферации. Фаза секреции. Менструация.
8. Роль ЦНС в регуляции менструаций. Нейрогормоны (лютеинизирующий гормон (ЛГ), фолликулостимулирующий гормон (ФСГ).
9. Типы обратной связи. Роль системы обратной связи в регуляции менструальной функции.
10. Базальная температура. Симптом зрачка. Кариопикнотический индекс.

Репродуктивная функция женщин осуществляется прежде всего благодаря деятельности яичников и матки, так как в яичниках созревает яйцеклетка, а в матке под влиянием гормонов, выделяемых яичниками, происходят изменения по подготовке к восприятию оплодотворенного плодного яйца, репродуктивный период характеризуется способностью организма женщины к воспроизводству потомства; продолжительность данного периода от 17-18 до 45-50 лет.
Репродуктивному, или детородному, периоду предшествуют следующие этапы жизни женщины: внутриутробный; новорожденности (до 1 года); детства (до 8-10 лет); препубертатного и пубертатного возраста (до 17-18 лет). Репродуктивный период переходит в климактерический, в котором различают пременопаузу, менопаузу и постменопаузу.

Менструальный цикл - одно из проявлений сложных биологических процессов в организме женщины. Менструальный цикл характеризуется циклическими изменениями во всех звеньях репродуктивной системы, внешним проявлением которых является менструация.

Рекомендуем к просмотру обучающее видео: Рис. Циклические изменения в органах репродуктивной системы в течение менструального цикла.
I - гонадотропная регуляция функции яичников;
ПДГ - передняя доля гипофиза;
II - содержание в эндометрии реиепторов к эстрадиолу - РЭ (1,2,3; сплошная линия) и прогестерону - РП (2,4,6; пунктирная линия);
III - циклические изменения эндометрия;
IV - цитология эпителия влагалища;
V - базальная температура;
VI - натяжение цервикапьной слизи.

Менструации - это кровянистые выделения из половых путей женщины, периодически возникающие в результате отторжения функционального слоя эндометрия в конце двухфазного менструального цикла. Первая менструация (menarhe) наблюдается в возрасте 10-12 лет, но в течение 1-1,5 года после этого менструации могут быть нерегулярными, а затем устанавливается регулярный менструальный цикл.

Первый день менструации условно принимается за первый день менструального цикла . Следовательно, продолжительность цикла составляет время между первыми днями двух последующих менструаций. Для 60 % женщин средняя продолжительность менструального цикла составляет 28 дней с колебаниями от 21 до 35 дней. Величина кровопотери в менструальные дни 40-60 мл, в среднем 50 мл. Продолжительность нормальной менструации от 2 до 7 дней.

Форма матки грушевидная, уплощенная в переднезаднем направлении. От верхнебоковых краев матки отходят широкие маточные связки, в которых располагаются маточные (фаллопиевы) трубы и яичники (рис.1). Анатомически в матке различают дно, тело и шейку.

Дно – часть матки, расположенная выше отхождения маточных труб. Тело треугольной формы, суживается к перешейку. Полость матки также треугольной формы, в верхних углах расположены два отверстия, открывающиеся в маточные трубы, в нижнем углу расположен перешеек – сужение, ведущее в полость канала шейки матки (рис.2).

Стетоскоп также можно использовать, чтобы избежать слуха. Уролог - это что-то вроде мужского гинеколога, кроме хирургии почек и мочевых путей. В медицине нет операции, которая сделала бы это для страдающего человечества как простатэктомия. Каждое ненужное слово бесполезно.

Большие любят, малыши только размножаются. Женщина любит человека, а не того, кем он является. Импотенция по-прежнему является лучшим контрацептивом. Природа сохраняет виды, очень мало заботится о личности. Причиной многих женских болезней является человек.

Беременность - это специфическая инфекция, передаваемая птицами. Для рождения, сделайте умный взгляд. Имейте в виду, что ваше лицо, как правило, первое, что видит ребенок. Мы стареем так быстро, что ночью, когда происходит тишина, мы слышим, как работают артерии.

Шейка матки является относительно узким нижним сегментом матки. У девочек и девушек имеет коническую форму, у взрослой женщины цилиндрическую. Выделяют влагалищную часть (portio vaginalis cervicis - эктоцервикс), цервикальный канал (canalis cervicalis uteri – эндоцервикс) и перешеек. В шейке матки имеются два отверстия: внутренний зев – отверстие в верхнем отделе, расположенное на границе тела и шейки матки, и наружный зев – отверстие в нижнем отделе, открывающееся во влагалище.

Сердце похоже на неотапливаемые пельмени сливы. Кардиолог, у него нет самого сердца, он хочет заменить пациентов насосом. Современная трилогия: ожирение - диабет - упрочнение. Пациенты с внутривенным питанием всегда лежат на противоположном конце коридора.

Имейте в виду, что даже бактерии смотрят на нас с другой стороны микроскопа. Если бы мы действительно знали, как и из чего состоит наше тело, мы не смеем двигаться. Селезенка имеет аналогичную функцию государственного нотариуса. Меня всегда презирали военные дела.

Работа невролога заключается в том, чтобы исследовать, будет ли человек в определенный момент ранен мышцей в совершенно другом месте, где никто, кроме невролога, не будет ожидать. Язвы желудка являются заразной болезнью. Те, у кого уже есть, делают это с другими.

Влагалищная часть шейки матки округлой формы, поверхность ее гладкая, в центре расположен наружный зев. У нерожавших женщин он маленький, округлой или поперечно-овальной формы (рот маленькой рыбки). После родов наружный зев приобретает форму поперечной щели. Канал шейки матки узкий, расширен в средней части. На передней и задней поверхности имеются два продольных гребня, от которых отходят под углом складки слизистой оболочки, пальмовидные складки. Эти образования придают каналу причудливый вид и названы деревом жизни.

Мозжечок - мозжечок

Тот, кто терзает глаз, больше не интересуется будущим английского флота. Кстати, вы верите в среднее ухо? Физиолог объяснит, почему лягушка не нуждается в плоде, хотя большинство людей это делает. Является ли мазохизм неспособностью испытать восторг иначе, чем боль или способность получать удовольствие от боли?

Мозг - это аппарат, по которому мы думаем, что думаем. Косметика занимается ухода за кожей до тех пор, пока поставщик ухода за кожей не войдет в нее. Определения и цели, положение в системе биологических наук, важность преподавания и исследований в фармацевтических областях, клетка как основная единица организма, клеточная популяция - системы тканей-органов. Ткани: их развитие и дифференциация в онтогенезе, основы типологии-эпителия и железы, соединительная ткань и трофическая ткань, мышечная ткань, нервная ткань. Анатомическая номенклатура, топографические отношения на теле, система движения, общая наука о костях и мышцах, их связь и механика, скелет человека, топография мышечных групп. Сосудистая система. Почечная и мочевая дренаж, надпочечников, мужская половая структура , структура женских половых органов, оплодотворение и формирование зародышевой линии, механизмы дифференциации и детерминации, критические и чувствительные периоды развития - значимость для тератологии, фетоплацентарной единицы. Нервная система - центральная нервная система. Структура и течение спинномозговых нервов, построение и течение автономных нервов, структура и нейронный путь зрительного аппарата, структура и нейронный путь слуховой системы, кожевенное и адское строительство. Определение, содержание физиологии, гомеостаза, состава человеческого тела, переноса мембран, состава крови, ее свойств, групп крови, плазмы, свертывания крови, лимфы. Почечные кровотечения, гломерулярные и трубчатые функции нефронов, активность мочевых путей, состав и свойства мочи, регуляция функции почек, функциональные тесты на почках. Физиология эндокринных желез. Мужская и женская репродуктивная система, гормональная регуляция, беременность, кровообращение и фетальное дыхание, роды, лактация. Физиология пищеварительной системы . Физиология пищеварительного тракта , печени, поджелудочной железы, желчного пузыря, переваривание и абсорбция питательных веществ. Белки, липиды, углеводы, витамины, минералы в питании, рациональное питание. Физиология органов чувств. Система визуально-слухового обонятельного вкуса, нервно-мышечная передача, мышечное сокращение, мышечная работа, электрофизиология мышечной деятельности. Физиология центральной и периферической нервной системы. Рефлекс, рецептор и нервные волокна, синапс, вегетативная нервная система, деятельность спинного мозга позвоночника, спинной мозг спинного мозга, мостовидный протез, мозжечок, средний мозг, средний мозг, конечный мозг.

  • Цитология и общая гистология.
  • Морфология систем органов.
  • Физиология системы кровообращения.
  • Легочная вентиляция, диффузия, перфузия, дыхательный механизм, контроль дыхания.
  • Физиология выделительной системы.
Гениталии представляют собой набор органов, которые позволяют воспроизводить и, следовательно, существование вида.

Влагалище – мышечно-эластичная трубка, расположенная в малом тазу, верхней частью охватывает шейку матки, а нижним открывается в половую щель.

Слизистая оболочка тела матки состоит из стромы и однослойного цилиндрического эпителия, врастающего в строму с образованием простых трубчатых желез. Слизистая оболочка перешейка сходна со слизистой оболочкой тела матки и представлена большим числом клеток соединительной ткани и единичными простыми неветвящимися железами. Слизистая оболочка тела и перешейка претерпевает циклические изменения в течение менструального цикла.

Смотреть фильм: «Как часто мы занимаемся сексом?»

Мужская репродуктивная система состоит из внутренних органов , т.е. яичек, эпидидимиса, семенных пузырьков, фолликулярных эпителиальных желез, эякуляторного протока, предстательной железы и уретры-трубчатых желез. Внешние органы включают мошонку и пенис.

Построение мужских гениталий

Ядро находится в мошонке. Он покрыт снаружи серозной мембраной и внутри эпителиальной мембраны, которая переходит в перегородку, отделяющую ядра от яичек. Именно в этих долях ядра находятся в ядре. Сначала они запутаны, но в области ниши ядра они проходят прямо в протоки и проходят в эпидидимальные канальцы.

Стенка шейки матки состоит преимущественно из коллагеновой ткани, строма слизистой оболочки содержит много эластических волокон. Железы эндоцервикса трубчатые, ветвящиеся, их не считают истинными железами, так как их строение на всем протяжении одинаково. Железы содержат секрет в виде густой стекловидной слизи, имеющей щелочную реакцию. Щелочная реакция способствует сохранению жизнеспособности сперматозоидов, их продвижению в полость матки. Секреция слизи в овуляцию увеличивается, секрет заполняет цервикальный канал и образует так называемую пробку Кристеллера, которая благодаря бактерицидным свойствам и механически препятствует проникновению в канал и полость матки микробов. Если железы закупориваются, а слизь продолжает накапливаться, образуются Наботовы кисты, которые могут выпячиваться на поверхность шейки.

Между канальцами находятся клетки, ответственные за производство мужских половых гормонов. В ядре находится сперматогенный эпителий, который состоит из сперматид и сперматогонии - мужских репродуктивных клеток - спермы. Нервы придерживаются яичек вдоль их спины. Некроз - это трубочки, которые образуют несколькометровый шнур, который содержит реснички, которые отвечают за подвижность сперматозоидов. Питает хранилище спермы до достижения полной зрелости.

Оттуда сперма идет в таз, а за пределами мочевого пузыря входит в устьичный канал, где они соединяются с семенной пузырьковой трубкой и образуют канал выброса. Он расположен вблизи дна мочевого пузыря и используется для производства веществ, которые являются источником энергии для спермы.

Слизистая оболочка канала предствалена цилинрическим слизепродуцирующим эпителием, присутствуют единичные реснитчатые клетки, их число с возрастом значительно уменьшается.

Слизистая оболочка эктоцервикса и влагалища выстланы многослойным плоским неороговевающим эпителием. В норме в репродуктивном возрасте эпителий состоит из множества рядов, условно разделенных на три слоя: базальный, промежуточный, поверхностный. Только нижний (базальный) слой клеток связан с базальной мембраной, клетки в нем располагаются в один ряд. Слой молодых клеток, расположенный над базальным, состоящий из нескольких рядов (нижняя часть промежуточного слоя). Называют парабазальным. Размер клеток по мере созревания увеличивается. Размер ядер уменьшается (рис.3)

Эякуляционная трубка и предстательная железа

Инъекционная трубка расположена внутри простаты. Его ширина сужается в устье уретры. Луковичные и трубчатые железы ответственны за секрецию предякулата из уретры, секрецию, которая защищает сперму до кислой среды уретры и влагалища. Это кожаный мешок, расположенный в области вульвы. В мошонке есть яички.

Пенис сочетает функцию мужской репродуктивной системы и мочевого тракта. Он используется как для удаления мочи из мочевого пузыря, так и для введения спермы в половые органы женщины, что является решением пениса. Кожа, покрывающая пенис, тонкая и полупрозрачная, а крайняя плоть - крайнюю плоть .

Строение многослойного плоского эпителия влагалища и влагалищной части шейки матки зависит от гормонального состояния женщины, фазы менструального цикла. В менструальном цикле различают 4 фазы: менструальную, фолликулиновую (эстрогенную, пролиферативную), овуляторную и лютеиновую (прогестиновую, секреторную). Эти фазы связаны с созреванием яйцеклетки, которое регулируется гонадотропными гормонами гипоталамо-гипофизарной системы (передней доли гипофиза). Под действием ФСГ в яичнике растет и созревает фолликул (рис.4).

Сексуальная система должна выполнять чрезвычайно важные задачи. Он ответственен не только за производство женских гормонов, но и за продукцию ооцитов, за развитие плода и перерыва. Из-за его большой ответственности неудивительно, что женская сексуальная система иногда начинает дрожать.

Мыши - структура, функция и болезнь

Мыши играют важную роль в функционировании репродуктивной системы женщины. Это только внутри нее, это яйцеклетка яйцо яйцо, которое ее матка защищает и питает в течение следующих 9 месяцев. Они также обеспечивают важные нерепродуктивные функции, особенно в костях, мышцах, коже, кроветворной системе, центральной нервной системе. Место производства андрогенов - это гонады, как мужские, так и женские, надпочечниковые и коры брюшной полости . Андрогены - это стероиды, производные.

Растущий фолликул выделяет эстрогеновые гормоны, определенное количество которых тормозит продукцию ФСГ и стимулирует выделение ЛГ. ЛГ совместно с ФСГ подготавливает фолликул к овуляции, а после разрыва фолликула (овуляции), если беременность не наступила, способствует превращению его в желтое тело.

Также неправильно связывать здоровье женщины только с ее репродуктивной функцией, что приводит к поиску причин всех патологий только при изменении половой системы. В настоящее время он борется с этим убеждением. Медленное развитие так называемого. секс-медицина.

Их действие не ограничивается функционированием репродуктивной системы. С первого по последние месяцы они защищают сердце женщины и кровеносные сосуды от менингококковой инфекции. Обеспечивает увлажнение кожи и слизистых оболочек. Или уролог. Если у вас есть возможность лечиться в профессиональной клинике бесплодия, вы можете воспользоваться ею. Все консультанты, а также профессиональная лаборатория.

Наиболее подвержен гормональным воздействиям эпителий влагалища, поэтому на изучение состава этого эпителия основаны гормональная цитологическая диагностика (см. Гормональная цитологическая диагностика).

Цилиндрический эпителий канала переходит в плоский в так называемой зоне стыка, расположенной у девочки на влагалищной порции шейки матки, у женщины репродуктивного возраста – на уровне наружного зева. Зона стыка под действием гормональных и других воздействий может перемещаться на влагалищную порцию шейки матки. Появление цилиндрического эпителия на влагалищной порции шейки называется эктопией. Под действием содержимого влагалища участок эктопии подвергается физиологическим изменениям, метаплазии в плоский эпителий (рис.6).

1 – зрелый эпителий. На поверхности зрелые клетки поверхностного слоя с пикнотичными ядрами

2 – эпителий созревает до промежуточного слоя, на поверхности зрелые промежуточные клетки

3 – эпителий созревает до промежуточного слоя, на поверхности незрелые промежуточные клетки

Стенд ничего не связывает. Возможно, это не грибковая инфекция, и вам нужно будет менять лекарства - например, антибактериальные. Кровотечение из репродуктивной системы является злокачественным. После того, как вы провели какое-либо исследование, вы можете исключить его, не менее, если кровотечение происходит после каждого отношения, и нет тенденции останавливаться. Желательно посетить гинеколога, провести лабораторный тест.

Не нашли то, что искали? Репродуктивные органы самки помещаются в таз и включают яичники, яйцеводы, матку и влагалище. Они изображены на рисунке ниже. Передне-задняя проекция показывает диаграмму женской репродуктивной системы. Вид сбоку показывает положение женских репродуктивных органов относительно мочевого пузыря и прямой кишки.

4 - 5 - эпителий созревает только до парабазального слоя, на поверхности парабазальные клетки

Рис.5. Разные стадии созревания многослойного плоского эпителия

А- до полового созревания (зона стыка расположена в цервикальном канале)

Б – В – во время полового созревания (зона стыка смещается на влагалищную часть шейки матки)

Схема женских половых путей. Поперечное сечение женского полового тракта, иллюстрирующее пространственную и ректальную связь мочевого пузыря. Яйца - это ровный орган. Они расположены по обе стороны от матки, рядом с боковой стенкой таза. Яйца ответственны за оогенез и циклическую овуляцию у женщин после полового созревания. Яичники демонстрируют эндокринные эффекты, состоящие в производстве гормонов эстрогена и прогестерона, которые контролируют созревание фолликулов и готовят матку для принятия оплодотворенной яйцеклетки.

Резюме этапов развития яйцеклетки и связанных с ней гормонов. Самки - это два провода длиной около 10 см, через которые яйцеклетка переносится с поверхности яичника в полость матки. Воронкообразный рот фаллопиевой трубки окружает поверхность яичника и играет роль в движении яйца к фаллопиевой трубке. Яйцо-клетка транспортируется по фаллопиевой трубке через нежные перистальтические движения фаллопиевой трубки и однослойный эпителиальный свиток трубчатого эпителия, выстилающий фаллопиевую трубку. Слизистая оболочка фаллопиевой трубки морщинистая, что обеспечивает правильные условия для оплодотворения яйцеклетки.

Г – цилиндрический эпителий на влагалищной части замещается метаплазированным

Д – кольпоскопическая картина шейки матки у многорожавшей женщины

Рис.6. Расположение цилиндрического эпителия и зоны стыка в шейке матки

Сформировавшееся желтое тело под действием ЛГ гипофиза выделяет прогестерон. Существует тесная взаимосвязь между гормонами яичника и надпочечника, яичника и щитовидной железы.

Эстрогены стимулируют полное созревание многослойного плоского неороговевающего эпителия до поверхностных клеток. Прогестерон тормозит созревание, и если его вырабатывается много, клетки созревают только до промежуточного слоя. В период постменопаузы, в связи со снижением выработки половых гормонов, эпителий подвергается атрофии (рис.5).

Цилиндрический эпителий на влагалищной части замещается метаплазированным. Участок метаплазированного эпителия носит название зоны трансформации, или зоны превращения. У женщин репродуктивного возраста зона стыка, как правило представлена участками естественной зоны стыка, участками зоны трансформации, метаплазированным эпителием. Зона трансформации может располагаться на влагалищной части шейки матки, а может (полностью или частично) уходить в цервикальный канал. У женщин в постменопаузе зона стыка и зона трансформации чаще всего располагается в цервикальном канале. Зона трансформации является наиболее опасной с точки зрения возможности патологических, в том числе неопластических изменений.

Метаплазированный плоский эпителий (рис.7) развивается не из зрелых цилиндрических, а из подцилиндрических, так называемых резервных клеток. В норме обычно резервные клетки не обнаруживаются в гистологических и цитологических препаратах. Резервноклеточная гиперплазия является первым этапом плоскоклеточной метаплазии. Под слоем цилиндрических клеток появляются один, два и более слоев клеток герминативного типа, которые напоминают клетки базального слоя плоского эпителия без четких клеточных границ.

Зрелый метаплазированный эпителий морфологически практически неотличим от "естественного" плоского, представлен всеми слоями, типичными для многослойного плоского неороговевающего эпителия.

А - цилиндрический эпителий

Б – под слоем цилиндрического эпителия появляется слой подцилиндрических (резервных) клеток

В – резервные клетки размножаются, цилиндрические слущиваются с поверхности

Г – этап незрелой плоскоклеточной метаплазии: определяются четкие границы резервных клеток и постепенно формируется 3-4 слоя клеток, сходных с многослойным плоским неороговевающим эпителием

Д – этап созревающей плоскоклеточной метаплазии. На поверхности эпителиального пласта клетки средних размеров с небольшими ядрами

Е - этап зрелой плоскоклеточной метаплазии. Клетки на поверхности эпителиального пласта сходны с промежуточными клетками плоского эпителия

Ж - этап зрелой плоскоклеточной метаплазии. Клетки на поверхности эпителиального пласта практически неотличимы от "естественных" клеток поверхностного слоя плоского эпителия

Рис.7. Этапы плоскоклеточной метаплазии

Татарчук Т.Ф., Сольский Я.П., Регеда СИ., Бодрягова О.И.

Рисунок 1. Функциональная структура репродуктивной системы

ЛЯ правильной клинической оценки нейроэндокринных нарушений в организме женщины и, соответственно, определения принципов и методов их патогенетической терапии необходимо прежде всего знание пятизвеньевой регуляции репродуктивной системы, основной функцией которой является воспроизводство биологического вида (рис. 1).

Глава 1. Анатомия и физиология репродуктивной системы женщины 9

Регуляция функции репродуктивной системы определяется гипоталамо-гипофизарным звеном, которое, в свою очередь, посредством нейромедиато-ров и нейротрансмиттеров контролируется корой головного мозга (Lakoski J.M., 1989).

Гипоталамус является своеобразными биологическими часами организма, то есть системой саморегулирования и автоматизации нейрорегуляторных процессов, которая реализует информацию, поступающую из внешней и внутренней среды организма, обеспечивая тем самым внутренний гомеостаз, необходимый для нормального течения физиологических процессов. Именно гипоталамус является тем ключевым звеном, координирующим деятельность гипоталамо-гипофизарно-яичникового комплекса, функция которого регулируется как нейропептидами ЦНС, так и яичниковыми стероидами по механизму обратной связи (Wildt L., 1989; Sopelak V.M., 1997).

Учитывая достаточно хорошую освещённость в современной литературе периферического звена репродуктивной системы, а также увеличение роли всё возрастающих психоэмоциональных нагрузок в механизмах развития дис-гормональных нарушений, мы сочли целесообразным более подробно остановиться на некоторых аспектах участия надгипоталамических структур в регуляции репродуктивной системы.

Как известно, мозг состоит из двух типов клеток: из нейронов, составляющих 10% всех клеток мозга и из глии - астроцитов и олигодендритов, составляющих, соответственно, остальные 90%.

Развитие нейронов и глии происходит из нейроэпителиального предшественника - стволовой клетки, в результате развития которой происходит синтез 2-х клеточных линий: нейрональных клеток-предшественников, из которых возникают различные типы нейронов, и глиальных клеток-предшественников, из которых в дальнейшем развиваются астроциты и олигодендро-циты (Lakoski J.M., 1989; Sopelak V.M., 1997).

Нейроны - это высокодифференцированные клетки с четкими размерами, формой и внутриклеточными органеллами. Как и все другие клетки, за исключением эритроцитов, нейроны имеют тело клетки, в центре которого располагается ядро, окруженное различным объемом цитоплазмы.

От поверхности нейронов ответвляются воспринимающие отростки - дендриты и единственный главный передающий отросток - аксон, который простирается к своим специфическим синаптическим клеткам-мишеням и может значительно варьировать по длине (Sopelak V.M., 1997).

Ключевой процесс жизнедеятельности нейрона концентрируется в цитоплазме тела клетки (она также называется перикарионом), и затем продукты нейронального синтеза транспортируются в аксоны и дендриты. Двухсторонний транспорт между участками тела клетки и дистальными отростками обеспечивает целостность нейронной функции и является постоянным энергетически-зависимым слаженным процессом.

10 Эндокринная гинекология

Клетки глии (от английского слова glue - клей) первоначально рассматривали как поддерживающие клетки мозга, но исследования последних лет определили их важную функциональную роль в регуляции жизнедеятельности нейронов. Этот класс ненейронных клеточных элементов, в 9 раз превышающий количество нейронов, фактически обеспечивает взаимодействие между ними.

Наиболее многочисленные глиальные клетки названы астроцитами, благодаря их мультиотростковым очертаниям. Эти клетки характеризуются уникальной экспрессией глиального фибриллярного кислотного протеина и расположены между наружной поверхностью сосудов, нейронами и их соединениями (рис. 2). Отростки астроцитов направляются от нейронов к капиллярам, где они формируют периваскулярное основание.

Рисунок 2. Взаимосвязь нейронов, астроцитов и олигодендроцитов (Yen S.S.C., 1999)

Капиллярное основание астроцитов охватывает около 85% капилляров человеческого мозга и формирует гемато-энцефалический барьер.


Глава 1. Анатомия и физиология репродуктивной системы женщины 11

Другой важный класс клеток глии - олигодендроциты (клетки с малым количеством коротких и толстых отростков), которые формируют миелино-вую оболочку аксонов, что позволяет нейронам осуществлять свой эффект быстро и без ослабления на длинных расстояниях в пределах нервной системы. Олигодендроциты также содержат ферменты стероидного генеза Р450 и продуцируют прегнанолон из холестерола.

Определение в ткани мозга ферментов стероидогенеза явилось одним из открытий, способствующим раскрытию механизмов участия ЦНС в регуляции репродуктивной функции и, что не менее важно, объясняющих изменения в ЦНС под влиянием изменений гормонального гомеостаза.

Секреция нейроактивных стероидов в астроцитах выше, чем в олигоденд-роцитах и нейронах, в связи с чем следует более детально остановиться на характеристике именно этих клеток.

Свойства астроцитов различны и ещё до конца не изучены, хотя уже сейчас существуют доказательства того, что астроциты являются паракринными клетками для нейронов:

В астроцитах выявлено наличие инсулиноподобного фактора роста (ИФР), содержание которого увеличивается к периоду полового созревания, а также растёт при лечении эстрогенами;

Питуициты, как тип астроцитов, являются главными ненейронными клеточными элементами в нейрогипофизе и играют важную роль в контроле выброса окситоцина и вазопрессина из нейросекреторных нервных окончаний;

Присутствие в астроцитах рецепторов лютеинизирующего гормона (ЛГ) и человеческого хорионического гонадотропина (ХГ) предполагает, что ЛГ и ХГ могут влиять на функцию глиальных клеток и, соответственно, на процессы развития и функционирование мозга;

Астроциты способны продуцировать множество иммуномодулирующих молекул, таких как интерлейкины (ИЛ-1, ИЛ-2, ИЛ-6), туморнекрозный фактор а, трансформирующий фактор роста-ос, интерферон и простагландин Е, при этом пролактин индуцирует митогенез и экспрессию цитокинов в астроцитах;

Астроциты, как и нейроны, способны продуцировать кортикотропин-ри-лизинг фактор связывающий протеин (КРФ-СП), широко представленный в мозге. Стероиды, такие как дексаметазон, гидрокортизон и, в меньшей степени, дегидроэпиандростерон, угнетают выброс КРФ-СП из астроцитов;

Астроциты гипоталамического происхождения секретируют трансформирующий фактор роста а и (3, который стимулирует генную экспрессию го-надотропин-рилизинг гормонов (Гн-РГ) в нейронах, при этом гипоталамичес-кие астроциты примерно в 4 раза активнее, чем астроциты коры в отношении синтеза дегидроэпиандростерона (ДГЭА).

Астроциты также могут участвовать в регуляции нейротрансмиттерного уровня глутамата, обеспечивающего возбуждающий эффект, и у-аминомасля-ной кислоты (ГАМК), играющей ключевую роль в достижении анксиолитиче-ского (успокаивающего) эффекта.

12 Эндокринная гинекология

В настоящее время выделены 3 главные химические формы трансмиттеров: аминокислоты, моноамины и нейропептиды.

Аминокислоты действуют в качестве трансмиттеров как возбуждающе, так и угнетающе. В возбуждающих соединениях трансмиттерных субстанций ключевыми являются ацетилхолин, а также глутамат и аспартат. Ингибитор-ные соединения регулируются такими аминокислотами, как ГАМК и глицин.

Моноамины, как трансляторы, состоят из катехоламинергических (адреналин, норадреналин и допамин) и серотонинергических трансмиттеров. Так, тирозин поступает из кровотока внутрь катехоламиновых нейронов и является субстратом, из которого тирозин-гидроксилаза катализирует синтез допа. Трансформация допа в допамин происходит с помощью аминокислоты декар-токсилазы (АКД). Допамин-(3 оксидаза (ДВО) в норадренергических нейронах трасформирует допамин в норадреналин (НА).

ДА и НА высвобождаются в синаптическую щель, где они быстро связываются с постсинаптическими рецепторами. В плазме избыток трансмиттеров претерпевает либо метаболическую инактивацию с помощью катехол-О-ме-тилтрансферазы (КОМТ), либо обратный захват пресинаптическими рецепторами, где они претерпевают метаболическую деградацию с помощью моно-аминооксидазы (МАО), формируя дегидроксифенилэтилгликоль (ДОФЭГ).

Пептидные трасмиттеры. Пептид-содержащие нейроны гипоталамуса были первоначально описаны как нейросекреторные нейроны, но позже стало известно, что практически все гипоталамические нейропептиды проецируются во многие области мозга. Они обеспечивают нейротрансмиттерные функции в регуляции приема пищи, пищевого и сексуального поведения (табл. 1).

Отдельно следует остановиться на роли оксида азота в центральной и периферической нервной системе, открытие которого радикально изменило существовавшие ранее взгляды на синаптическую трансмиссию. Хотя имеются существенные доказательства того, что оксид азота функционирует как ней-ротрансмиттер, следует отметить, что это необычный трансмиттер, т.к. он является лабильным газом, который не может храниться в синаптических пузырьках. Оксид азота синтезируется из L-аргинина с помощью оксидазот-синтетазы и из нервных окончаний попадает путем простой диффузии, а не путем экзоцитоза как остальные нейротрансмиттеры (рис. 3). Более того, оксид азота не претерпевает обратимых реакций с рецепторами, как все остальные обратимые нейротрансмиттеры, а формирует ковалентные соединения с несколькими потенциальными мишенями, которые включают ферменты, такие как изонилатциклаза и другие молекулы.

: Действие обратимых нейротрансмиттеров ограничено пресинаптическим выбросом или ферментной деградацией, в то время как действие оксида азота обеспечивается диффузией вдали от мишеней или формированием кова-лентных соединений с супероксидным анионом.

Формирование оксида азота из аргинина в мозге катализируется с помощью оксидазот-синтетазы в присутствии кислорода с НАДФ как кофермента

Глава 1. Анатомия и физиология репродуктивной системы женщины 13

Таблица 1 Пептидные трансмиттеры в ЦНС

(по Yen S.S.C., 1999 с изменениями и дополнениями)


и тетрагидробиопротеина как кофактора. Относительно роли оксида азота в центральной регуляции репродуктивной системы, следует отметить, что N0 является нейротрансмиттером, регулирующим выброс Гн-РГ.

Нейростероиды. Открытие в гипоталамусе локального синтеза эстрогенов (Naftollin et al, 1975) позволило предположить, что мозгу свойственна функция стероидогенеза. В 1981 г. в мозге взрослых крыс-самцов обнаружено наличие прегнанолона и прегнанолона-сульфата, а также дегидроэпиандростерона (ДГЭА) и дегидроэпиандростерона сульфата (ДГЭА-С). Это привело к открытию механизмов биосинтеза стероидов в ЦНС, названных нейростероидами.

В человеческом мозге нейростероиды, как и нейротрансмиттеры, обнаружены у мужчин и у женщин старше 60 лет. ДГЭА, прегнанолон и прогестерон присутствуют во всех участках мозга, при этом их концентрация в мозге в несколько раз выше, чем в плазме.

В мозге выявлено также наличие ДГЭА-сульфаттрансферазы и сульфа-тазы, следовательно можно предположить, что синтез ДГЭА-С происходит непосредственно в мозге.

14 Эндокринная гинекология


Рисунок З. Формирование оксида азота в мозге (Yen S.S.C., 1999)

Стероидогенный фактор-1 (СФ-1) - тканеспецифический ядерный рецептор - регулирует гены нескольких ферментов стероидогенеза и широко представлен в человеческом мозге, включая компоненты лимбической системы.

Нейростероиды играют чрезвычайно важную роль во всех процессах жизнедеятельности организма, они модулируют активность ГАМК-рецепторов, глутамат-рецепторов, влияют на когнитивную функцию, оказывают трофическое действие на нервную ткань (способствуют миелинизации), модулируют выработку рилизинг-гормонов в гипоталамусе (Yen S.S.C., 1999).


Рисунок 4. Сагиттальный разрез гипоталамо-гипофизарного соединения (Solepak V.M., 1997)

Гипоталамус - это часть диэнцефалон, лежащая под третьим желудочком между зрительным перекрестом и срединным возвышением, которая соединяется с задней долей гипофиза посредством гипофизарного ствола, а также соединяется с парными сосцевидными телами (рис. 4).

Глава 1. Анатомия и физиология репродуктивной системы женщины 15

Гипоталамус взаимосвязан с ЦНС и гипофизом посредством множества циркуляторных и нейронных связей. Он состоит из нервных клеток, сгруппированных в ядра. Клетки, сгруппированные в паравентрикулярные и супраоп-тические ядра гипоталамуса, продолжаются до задней доли гипофиза, где происходит высвобождение вазопрессина, окситоцина и нейрофизинов. При этом супраоптические и паравентрикулярные ядра имеют прямую нейронную связь с задней долей гипофиза. Супраоптические ядра секретируют главным образом вазопрессин, а паравентрикулярные - окситоцин, который транспортируется по нервным окончаниям в заднюю долю (Sopelak V.M., 1997).

Другие ядра продуцируют рилизинг- и ингибиторные факторы (Гн-РГ, ТРГ, соматостатин, кортикотропин-рилизинг гормон (КРГ), которые транспортируются в переднюю долю гипофиза по кровеносной портальной системе и контролируют секрецию передней доли гипофиза.


Рисунок 5. Сагиттальный срез гипофиза (Solepak V.M., 1997)

Функциональные связи с передней долей гипофиза представлены системой гипоталамо-гипофизарных кровеносных сосудов (Wildt L., 1989). Гипоталами-ческие гормоны попадают в переднюю долю через медиальное возвышение и гипоталамо-портальный кровоток. Гипоталамус также имеет интрагипотала-мические нейронные соединения, афферентные волоконные соединения со средним мозгом и лимбической системой, эфферентные волоконные соединения со средним мозгом и лимбической системой, а также с задней долей гипофиза. Гипоталамические факторы транспортируются по нервным волокнам в срединное возвышение, где они проникают через стенки капилляров гипофиза (рис. 5). Эти факторы влияют на эндокринные клетки гипофиза и обеспечивают специфические гормональные ответы (Yen S.S.C., 1999).

16 Эндокринная гинекология

Говоря о регуляции репродуктивной системы, следует подчеркнуть, что под влиянием рилизинг-гормонов гипоталамуса осуществляется синтез гонадотропных гормонов в гипофизе. Местом синтеза гипофизотропных рилизинг-гормонов (либеринов), представляющих по химической природе декапептиды, являются именно аркуатные ядра медиобазального гипоталамуса. Выработка рилизинг-гормонов происходит в определенном пульсирующем ритме, названном цирхоральным.

Для обеспечения нормальной секреции гонадотропинов достаточно поддержания стабильной частоты выброса физиологических количеств Гн-РГ. Изменение частоты выброса Гн-РГ меняет не только количество ЛГ и ФСГ, выделяемых гипофизом, но и их соотношение, в то время как даже десятикратное повышение концентрации Гн-РГ ведет только к небольшому повышению выделения ФСГ и никак не меняет секреции ЛГ (Halvorson L.M. et al., 1999).

Так, повышение ритма ведет к значительному повышению выброса ФСГ и к снижению выброса ЛГ. В лютеиновую фазу прогестерон через эндогенные опиаты урежает частоту пульсового генератора, причем данное действие определяется не концентрацией прогестерона, а длительностью его воздействия. Эстрадиол, действуя на гипоталамус и на гонадотропы (увеличение плотности рецепторов Гн-РГ), повышает амплитуду волны ЛГ/ФСГ.

Частота выброса Гн-РГ у человека составляет 1 выброс в 70-90 минут и соответствует целому ряду биоритмов (чередованию фаз сна, колебанию скорости клубочковой фильтрации и желудочной секреции, частоте приливов во время климакса и т.д). Частотная модуляция информации обеспечивает быстроту и надежность регуляции репродуктивной системы и ее устойчивость к помехам.

Пульсовой генератор ритма - аркуатное ядро гипоталамуса в физиологических условиях получает информацию о выделении гонадотропинов гипофизом по системе короткой обратной связи, так как специальные сфинктеры регулируют градиенты давлений в воротной системе кровотока, и часть крови из гипофиза поступает обратно в гипоталамус, что обеспечивает очень высокую местную концентрацию гормонов гипофиза в гипоталамусе (Yen S., 1999).

Синтез и секреция ЛГ и ФСГ в гипофизе осуществляются одними и теми же клетками (Halvorson L.M. et al., 1999). На поверхности гонадотрофов имеются рецепторы к Гн-РГ, плотность которых зависит от уровня стероидных гормонов в крови и от концентрации Гн-РГ. Соединение Гн-РГ с рецептором вызывает массивное поступление ионов кальция внутрь клетки, что через несколько минут ведет к выбросу запаса ЛГ и ФСГ в кровоток. Кроме того, Гн-РГ вызывает стимуляцию синтеза ЛГ и ФСГ и поддерживает целостность гонадотрофов (Wildt L., 1989).

Важная роль в регуляции функции желез внутренней секреции принадлежит гипофизу. Он лежит в турецком седле в основании мозга, состоит из передней (аденогипофиз), промежуточной и задней (нейрогипофиз) долей. Промежуточная доля у человека практически отсутствует. Гипофиз соединяется с гипоталамусом через гипофизарный ствол (см. рис. 5).

Глава 1. Анатомия и физиология репродуктивной системы женщины I?

Передняя доля гипофиза складывается из пяти различных типов клеток, различающихся по иммунологическим и ультраструктурным характеристикам. Эти клетки в передней доле продуцируют 6 известных гормонов:

Адренокортикотропный гормон (АКТГ), или кортикотропин;

Тиреотропный гормон (ТТГ), или тиреотропин;

Гонадотропные гормоны: фолликулостимулирующий (ФСГ), или фолли-тропин, и лютеинизирующий (ЛГ), или лютропин;

Соматотропный гормон (СТГ), или гормон роста;

Пролактин.

Первые 4 гормона регулируют функции так называемых периферических желез внутренней секреции, а соматотропин и пролактин действуют непосредственно на ткани-мишени (Halvorson L.M. et al., 1999).

Гормон роста и пролактин продуцируются двумя типами клеток - соматотрофами и лактотрофами (маммотрофы), принадлежащими к ацидофильной серии. АКТГ и другие фракции молекул проопиомелатокортина, такие как р-липотропин и эндорфины синтезируют тиротрофами, а ЛГ и ФСГ - гонадотрофами, принадлежащими к базофильной серии.

Гонадотрофы составляют 10-15% от клеточного состава передней доли гипофиза и располагаются вблизи лактотрофов. Эта особенность локализации позволяет предположить, что между двумя видами этих клеток имеются пара-кринные взаимоотношения (Sopelak V.M., 1997).

Как уже упоминалось, секреция этих шести гормонов передней доли контролируется гипоталамическими рилизинговыми и ингибиторными факторами, которые секретируются в гипоталамусе и попадают в гипофиз через гипо-таламо-гипофизарные портальные сосуды. Однако на продукцию тропных гормонов могут влиять и другие субстанции, синтезируемые как в центральных (Р-эндорфины), так и в периферических (эстрадиол) отделах репродуктивной системы (Halvorson L.M. et al., 1999).

Нейрогипофиз включает гипофизарный ствол (см. рис. 5), нейральную долю и срединное возвышение (специальная невральная ткань в основании гипоталамуса, формирующая главный регион для переноса гипофиз-регулирую-щих нейросекретов в переднюю долю гипофиза). Два гормона задней доли гипофиза (вазопрессин и окситоцин) накапливаются в гранулах с соответствующими нейрофизинами, транспортируются по аксонам и собираются в терминальных отделах аксонов, где они хранятся до соответствующих импульсов, которые вызывают их выброс. Нейропептиды освобождаются из секреторных гранул путем экзоцитоза. Этот процесс включает растворение мембран нейросекреторных гранул и небольшого участка клеточной мембраны на окончании аксона. Содержимое гранул попадает в межклеточное пространство, а оттуда - в кровоток (Sopelak V.M., 1997) .

Регуляция репродукции и функция гонад осуществляются преимущественно гонадотропными гормонами, секретируемыми аденогипофизом, а именно ФСГ, ЛГ и пролактином. ФСГ - вызывает пролиферацию гранулезных

Эндокринная гинекология

Клеток, стимулирует рост фолликулов. ЛГ - активизирует синтез андрогенов и совместно с ФСГ способствует овуляции. Секреция ФСГ и ЛС регулируется гонадотропин-рилизинг гормоном по механизму обратной связи и зависит также от уровня эстрогенов и андрогенов. Гонадолиберин (люлиберин) секрети-руется пульсами с частотой от 1 пульса в час до 1-2 пульсов за сутки. Контроль секреции гонадолиберина осуществляется половыми и другими гормонами, многочисленными нейротрансмиттерами ЦНС, включая катехоламины, опиат-ные гормоны и др. Гонадолиберин взаимодействует с рецепторами, расположенными на мембранах гонадотрофов, и для активации рецептора требуется обязательное наличие трех первых аминокислот. Агонисты гонадолиберина (бузерилин, нафарелин, леупролид и др.) оказывают свой эффект посредством взаимодействия с теми же мембранными рецепторами (Halvorson L.M., 1999).

Пролактин угнетает продукцию гонадотропных гормонов. Угнетающее действие на выделение ЛГ оказывают также глюкокортикоиды.

По химической структуре ЛГ и ФСГ - гликопротеиды, состоящие из двух полипептидных субъединиц а и р. а-субъединица этих гормонов является общей для каждого гликопротеида и имеет одинаковую последовательность аминокислот, Р-субъединица отличается среди гликопротеидов по последовательности расположения входящих в неё аминокислот. Именно Р-субъединица отвечает за гормональную специфичность. Обе субъединицы по отдельности биологически неактивны. Образование гетеродимеров является обязательным условием для проявления биологической активности (Halvorson L.M., 1999).

Период полураспада гонадотропинов, циркулирующих в крови, имеет прямое отношение к компоненту сиаловых кислот в молекуле гормона. Доказано, что десиалирование укорачивает период полураспада и биологическую активность гонадотропинов. ФСГ находится в крови в свободной форме и период его полураспада составляет 55-60 мин, а ЛГ - 25-30 мин. В репродуктивном возрасте ежедневное высвобождение ЛГ составляет 500-1100 мМЕ, в постменопаузе скорость образования ЛГ увеличивается и его количество составляет до 3000-3500 мМЕ в день (Sopelak V.M., 1997).

Подобно стероидам, гонадотропины оказывают биологический эффект на ткани-мишени посредством активации специфических рецепторов. Однако в отличие от стероидных гормонов, рецепторы гонадотропинов связаны с мембраной клеток-мишеней. Поверхностные клеточные рецепторы к пептидным гликопротеиновым гормонам являются белками, входящими в структуру клеточной мембраны. После связывания с гонадотропином мембранные рецепторы стимулируют выработку растворимых внутриклеточных мессенджеров, которые, в свою очередь, обеспечивают клеточный ответ (Halvorson L.M., ChinW.W., 1999).

Регуляторами выработки ФСГ, согласно современным представлениям, помимо гипоталамических либеринов являются ингибин и активин, которые продуцируются гранулёзными и лютеиновыми клетками яичников, а также клетками цитотрофобласта (Hopko Ireland et al, 1994).

Глава 1. Анатомия и физиология репродуктивной системы женщины 19

Ингибин состоит из двух субъединиц аир. ФСГ влияет на синтез и выделение ингибина по принципу обратной связи. Комбинация ос-субъединицы с (3-субъединицей приводит к супрессии ФСГ, а комбинация двух (3-субъеди-ниц приводит к образованию активина и, таким образом, к стимуляции ФСГ.

Влияние на синтез и выделение ФСГ оказывает также фоллистатин, выделенный из фолликулярной жидкости. Фоллистатин является гликопротеидом, который подобно ингибину уменьшает высвобождение ФСГ в культуре гона-дотропных клеток гипофиза. Кроме того, он имеет высокую аффинность к связыванию активина и менее выраженную к связыванию ингибина. Установлено, что фоллистатин и активин А являются компонентами аутокринно-па-ракринной системы фолликула и участвуют в регуляции различных функций клеток внутренней оболочки граафова пузырька (Grome N., O"Brien ML, 1996).

Существуют 3 типа секреции гонадотропинов: тонический, циклический и эпизодический, или пульсирующий (Halvorson L.M., Chin W.W., 1999).

Тоническая, или базальная, секреция гонадотропинов регулируется посредством отрицательной обратной связи, а циклическая - механизмом положительной обратной связи с участием эстрогенов.

Пульсирующая секреция обусловлена активностью гипоталамуса и высвобождением гонадолиберинов.

Развитие фолликула в первой половине цикла осуществляется благодаря тонической секреции ФСГ и ЛГ. Повышение секреции эстрадиола приводит к торможению образования ФСГ. Развитие фолликула зависит от количества рецепторов к ФСГ в клетках гранулезной зоны, причем синтез этих рецепторов, в свою очередь, стимулируется эстрогенами.

Та^им образом, ФСГ приводит к синтезу в определенном фолликуле эстрогенов, которые, увеличивая количество рецепторов к ФСГ, способствуют его накоплению (путем связывания его рецепторами), дальнейшему созреванию фолликула и увеличению секреции эстрадиола. Другие фолликулы в это время подвергаются атрезии. Концентрация эстрадиола в крови достигает максимума в предовуляторный период, что приводит к высвобождению большого количества гонадолиберина и последующего пика высвобождения ЛГ и ФСГ. Предовуляторное повышение ЛГ и ФСГ стимулирует разрыв граафова пузырька и овуляцию (Hurk Van Den R., 1994).

ЛГ является основным регулятором синтеза стероидов в яичниках. Рецепторы к ЛГ локализуются на лютеальных клетках, и влияние ЛГ опосредуется через стимуляцию аденилатциклазы и внутриклеточного повышения уровня цАМФ, который непосредственно или через посредников (протеинкиназа и др.) активирует ферменты, участвующие в биосинтезе прогестерона. Под влиянием ЛГ в яичниках увеличивается количество холестерина, необходимого для синтеза гормонов. Одновременно повышается активность ферментов семейства цитохромов Р450, отщепляющего боковую цепь в молекуле холестерина. При более длительном влиянии ЛГ стимулирует экспрессию и синтез других ферментов (ЗВ-гидроксистероидная дегидрогеназа,

20 Эндокринная гинекология

17а-гидроксилаза), участвующих в синтезе прогестерона и других стероидов. Таким образом, в желтом теле под влиянием ЛГ усиливаются процессы стеро-идогенеза на участке конверсии холестерина в прегнанолон (Yen S., 1999).

Регуляция секреции гонадотропинов обеспечивается за счёт "короткой" и "ультракороткой" цепей обратной связи. Так, повышение уровня ЛГ и ФСГ приводит к торможению их синтеза и высвобождения, а повышенная концентрация гонадолиберина в гипоталамусе угнетает его синтез и высвобождение в портальную систему гипофиза (Sopelak V.M., 1997).

На высвобождение гонадолиберина оказывают влияние также катехолами-ны: дофамин, адреналин и норадреналин. Адреналин и норадреналин стимулируют высвобождение гонадолиберина, тогда как дофамин оказывает такое же действие только у животных, которым предварительно вводились стероидные гормоны. Холецистокинин, гастрин, нейротензин, опиоиды и соматоста-тин угнетают высвобождение гонадолиберина (Yen S., 1999).

Адренокортикотропный гормон оказывает стимулирующее действие на кору надпочечников. За счет повышения синтеза белка (цАМФ-зависимая активация) происходит гиперплазия коркового вещества надпочечников. АКТГ усиливает синтез холестерина и скорость образования прегнанолона из холестерина. В большей степени его влияние выражено на пучковую зону, что приводит к увеличению образования глюкокортикоидов, в меньшей - на клубочковую и сетчатую зоны, поэтому он не оказывает значительного воздействия на продукцию минералокортикоидов и половых гормонов.

Вненадпочечниковые эффекты АКТГ заключаются в стимуляции липолиза (мобилизует жиры из жировых депо и способствует окислению жиров), увеличении секреции инсулина и соматотропина, накоплении гликогена в клетках мышечной ткани, гипогликемии, что связано с повышенной секрецией инсулина, усилении пигментации за счет действия на пигментные клетки меланофоры.

Соматотропный гормон принимает участие в регуляции процессов роста и физического развития, оказывая стимулирующее действие на образование белков в организме, синтеза РНК и транспорта аминокислот из крови в клетки.

Основная биологическая роль пролактина - рост молочных желез и регуляция лактации. Это осуществляется путём стимуляции синтеза белка - лактальбумина, жиров и углеводов молока. Пролактин регулирует также образование желтого тела и выработку им прогестерона, влияет на водно-солевой обмен организма, задерживая воду и натрий в организме, усиливает эффекты альдостерона и вазопрессина, повышает образование жира из углеводов.

Гормоны задней доли гипофиза образуются в гипоталамусе. В нейрогипо-физе происходит их накопление. В клетках супраоптического и паравентри-кулярного ядер гипоталамуса осуществляется синтез окситоцина и антидиуретического гормона. Синтезированные гормоны путем аксонального транспорта с помощью белка-переносчика нейрофизина по гипоталамо-гипофизар-ному тракту транспортируются в заднюю долю гипофиза. Здесь происходит депонирование гормонов и в дальнейшем их выделение в кровь.

Глава 1. Анатомия и физиология репродуктивной системы женщины 21

Антидиуретический гормон (АДГ), или вазопрессин, осуществляет в организме две основные функции. Антидиуретическое его действие заключается в стимуляции реабсорбции воды в дистальном отделе нефрона. Это действие осуществляется благодаря взаимодействию гормона со специфическими рецепторами, что приводит к повышению проницаемости стенки канальцев, ее реабсорбции и концентрированию мочи. Повышение реабсорбции воды при этом происходит также за счёт активация гиалуронидазы в клетках канальцев, что приводит к усилению деполимеризации гиалуроновой кислоты, в результате чего и увеличивается объем циркулирующей жидкости.

В больших дозах (фармакологических) АДГ суживает артериолы, в результате чего повышается артериальное давление. Поэтому его также называют вазопрессином. При его физиологических концентрациях в крови это действие не имеет существенного значения. Увеличение выброса АДГ, которое происходит при кровопотере, болевом шоке, осуществляет сужение сосудов, имеющее в этих случаях адаптивное значение.

Повышение выработки АДГ происходит при уменьшении объема внеклеточной и внутриклеточной жидкости, снижении артериального давления, увеличении осмотического давления крови, при активации ренин-ангиотензино-вой и симпатической нервной системы.

Окситоцин избирательно действует на гладкую мускулатуру матки, вызывая ее сокращения при родах. Этот процесс осуществляется за счёт связывания со специальными окситоциновыми рецепторами, расположенными на поверхностной мембране клеток. Под влиянием высоких концентраций эстрогенов резко возрастает чувствительность рецепторов к окситоцину, чем и объясняется повышение сократительной активности матки перед родами.

Участие окситоцина в процессе лактации заключается в усилении сокращения миоэпителиальных клеток молочных желез, за счёт чего увеличивается выделение молока. Увеличение секреции окситоцина, в свою очередь, происходит под влиянием импульсов от рецепторов шейки матки, а также меха-норецепторов сосков грудной железы при кормлении грудью.

Следующий уровень репродуктивной системы - яичники, в которых происходит стероидо- и фолликулогенез в ответ на циклическую секрецию гонадотропинов и под влиянием факторов роста (ФР).

Яичник - парный орган женской репродуктивной системы и одновременно железа внутренней секреции. Яичник состоит из двух слоев: коркового вещества, покрытого белочной оболочкой, и мозгового вещества. Отдельно рассматривается участок ворот яичника, лишенный тека-лютеиновых клеток стромы, содержащий зернистые клетки, которые отвечают за выработку яичниковых андрогенов.

Корковое вещество образовано фолликулами различной степени зрелости (от примордиальных до атрезирующихся), расположенными в соединительнотканной строме.

Процесс фолликулогенеза происходит в яичнике непрерывно и регулируется гонадотропинами путём взаимодействия с яичниковыми рецепторами (Sopelak V.M., 1997).

22 Эндокринная гинекология

Одновременно в каждом яичнике выявляется несколько десятков фолликулов, находящихся в различных стадиях роста и созревания. Общее число фолликулов к рождению составляет около 2 млн. Их число сокращается в 8-10 раз к моменту установления менструального цикла, не превышая 30-40 тыс. Только около 10% фолликулов проходит полный цикл развития от премордиаль-ного до овуляторного и превращается в желтое тело. Остальные подвергаются атрезии и обратному развитию (Hurk Van Den R. et al., 1994).

В ходе превращения первичного фолликула в зрелый завершается первое деление мейоза, в результате чего высвобождается однонаправительное (полярное) тельце и образуется овоцит. Прозрачная оболочка достигает максимального развития, превращаясь в лучистый венец, покрытый 1-2 слоями хаотично лежащих фолликулярных клеток. В фолликуле образуется полость, которая достигает максимального размера перед овуляцией. Слой фолликулярных клеток под действием факторов роста кровеносных сосудов стромы превращается в два слоя: внутреннюю и наружную теку фолликула. Дальнейшее увеличение количества фолликулярной жидкости ведет к переполнению полости фолликула и его разрыву - овуляции. После овуляции овоцит, окруженный лучистым венцом, попадает из брюшной полости в воронку маточной трубы и далее - в ее просвет. Здесь завершается второе деление мейоза и образуется зрелая яйцеклетка, готовая к оплодотворению (Yen S., 1999).

Овариальный цикл состоит из двух фаз - фолликулярной и лютеино-вой, которые разделены овуляцией и менструацией.

В фолликулярной фазе под влиянием ФСГ, секретируемым гипофизом, совместно с различными факторами роста происходит стимуляция роста и развития одного или нескольких примордиальных фолликулов, а также диф-ференцировка и пролиферация клеток гранулезы. ФСГ также потенцирует активность 17-(3-гидроксистероидной дегидрогеназы и ароматазы, которые необходимы для образования эстрадиола в клетках гранулезы через активацию цАМФ, и таким образом стимулирует процессы роста и развития первичных фолликулов, выработку эстрогенов клетками фолликулярного эпителия. Эст-радиол же, в свою очередь, повышает чувствительность клеток гранулезы к действию ФСГ. Рецепторы к ФСГ относятся к группе мембранных рецепторов, имеющих 7 трансмембранных фрагментов. Наряду с эстрогенами секре-тируются небольшие количества прогестерона. Из множества начинающих рост фолликулов окончательной зрелости достигнет только 1, реже - 2-3.

Предовуляторный выброс гонадотропинов определяет сам процесс овуляции. Объем фолликула быстро увеличивается параллельно с истончением стенки фолликула, связанным с повышенной активностью протеолитических ферментов и гиалуронидазы, выделяемых полиморфно-ядерными лейкоцитами.

Наблюдающееся в течение 2-3 дней, предшествующих овуляции, значительное увеличение уровня эстрогенов обусловлено гибелью большого числа зрелых фолликулов с высвобождением фолликулярной жидкости. Высокие концентрации эстрогенов по механизму отрицательной обратной связи инги-бируют секрецию ФСГ гипофизом. Овуляторный выброс ЛГ и в меньшей

Глава 1. Анатомия и физиология репродуктивной системы женщины 23

Степени ФСГ связан с существованием механизма положительной обратной связи сверхвысоких концентраций эстрогенов и уровня ЛГ, а также с резким падением уровня эстрадиола в течение 24 ч, предшествующих овуляции.

Нейрогормональная регуляция менструального цикла схематически представлена на рисунке 6.

I Овуляция


Рисунок 6. Нейрогормональная регуляция менструального цикла

Овуляция яйцеклетки происходит лишь в присутствии ЛГ или хориони-ческого гонадотропина. Более того, ФСГ и ЛГ выступают как синергисты в период развития фолликула, и в это время тека-клетки активно секретируют эстрогены.

Механизм разрушения коллагенового слоя стенки фолликула - гормонально-зависимый процесс, в основе которого лежит адекватность фолликулярной фазы. Предовуляторный выброс ЛГ стимулирует повышение концентрации прогестерона к моменту овуляции. Благодаря первому пику прогестерона повышается эластичность фолликулярной стенки, таким образом ФСГ, ЛГ и прогестерон совместно стимулируют активность протеолити-ческих ферментов: активаторы плазминогена, секретируемые клетками гра-нулезы, способствуют образованию плазмина, плазмин вырабатывает различные коллагеназы, простагландины Е и F2ot способствуют вытеснению скопления клеточной массы овоцита. Для того, чтобы не произошла преждевременная лютеинизация неовулирующего фолликула, в яичнике должно вырабатываться определенное количество активина (Speroff L. et al., 1994).

После овуляции отмечается резкое снижение уровня ЛГ и ФСГ в сыворотке крови. С 12-го дня второй фазы цикла отмечается 2-3-дневное повышение уровня ФСГ в крови, которое инициирует созревание нового фолликула, тогда как концентрация ЛГ в течение всей второй фазы цикла имеет тенденцию к снижению.

Полость совулировавшего фолликула спадается, а стенки его собираются в складки. Вследствие разрыва сосудов в момент овуляции в полость постовуля-торного фолликула происходит кровоизлияние. В центре будущего желтого тела появляется соединительнотканный рубец - стигма (Speroff L. et al., 1994).

24 Эндокринная гинекология

Овуляторный выброс ЛГ и последующее за ним поддержание высокого уровня гормона в течение 5-7 дней активирует процесс пролиферации и железистого метаморфоза клеток зернистой зоны (гранулезы) с образованием лю-теиновых клеток, т.е. наступает лютеиновая фаза (фаза желтого тела) овари-ального цикла (Erickson G.F., 2000).

Эпителиальные клетки зернистого слоя фолликула интенсивно размножаются и, накапливая липохромы, превращаются в лютеиновые клетки; сама оболочка обильно васкуляризуется. Стадия васкуляризации характеризуется быстрым размножением эпителиальных клеток гранулезы и интенсивным врастанием между ними капилляров. Сосуды проникают в полость постову-ляторного фолликула со стороны thecae internae в лютеиновую ткань в радиальном направлении. Каждая клетка желтого тела богато снабжена капиллярами. Соединительная ткань и кровеносные сосуды, достигая центральной полости, заполняют ее кровью, окутывают последнюю, ограничивая от слоя лютеиновых клеток. В желтом теле - один из самых высоких уровней кровотока в организме человека. Формирование этой уникальной сети кровеносных сосудов заканчивается в течение 3-4 дней после овуляции и совпадает с периодом расцвета функции желтого тела (Bagavandoss P., 1991).

Ангиогенез состоит из трех фаз: фрагментации существующей базальной мембраны, миграции эндотелиальных клеток и их пролиферации в ответ на митогенный стимул. Ангиогенная активность находится под контролем основных ростовых факторов: фактора роста фибробластов (ФРФ), эпидермального фактора роста (ЭФР), фактора роста тромбоцитов (ФРТ), инсулиноподобного фактора роста-1 (ИФР-1), а также цитокинов, таких как тумор некротического фактора (ТНФ) и интерлейкинов (ИЛ-1; ИЛ-6) (Bagavandoss P., 1991).

С этого момента желтое тело начинает продуцировать значительные количества прогестерона. Прогестерон временно инактивирует положительный механизм обратной связи, и секреция гонадотропинов контролируется только негативным влиянием зстрадиола. Это приводит к снижению уровня гонадотропинов в середине фазы желтого тела до минимальных значений (Erickson G.F., 2000).

Прогестерон, синтезируемый клетками желтого тела, ингибирует рост и развитие новых фолликулов, а также участвует в подготовке эндометрия к внедрению оплодотворенной яйцеклетки, снижает возбудимость миометрия, подавляет действие эстрогенов на эндометрий в секреторной фазе цикла, стимулирует развитие децидуальной ткани и рост альвеол в молочные железах. Плато сывороточной концентрации прогестерона соответствует плато ректальной (базальной) температуры (37,2-37,5°С), что лежит в основе одного из методов диагностики произошедшей овуляции и является критерием оценки полноценности лютеиновой фазы. В основе повышения базальной температуры лежит снижение под воздействием прогестерона периферического кровотока, что уменьшает теплопотерю. Увеличение его содержания в крови совпадает с повышением базальной температуры тела, которая является индикатором овуляции (McDonnel D.P., 2000).

Глава 1. Анатомия и физиология репродуктивной системы женщины 25

Прогестерон, являясь антагонистом эстрогенов, ограничивает их пролифера-тивный эффект в эндометрии, миометрии и эпителии влагалища, вызывая стимуляцию секреции железами эндометрия секрета, содержащего гликоген, уменьшая строму подслизистого слоя, т.е. вызывает характерные изменения эндометрия, необходимые для имплантации оплодотворенной яйцеклетки. Прогестерон снижает тонус мышц матки, вызывает их расслабление. Кроме того, прогестерон вызывает пролиферацию и развитие молочных желез и в период беременности способствует угнетению процесса овуляции (O"Malleu B.W., Strott G.A., 1999).

Продолжительность этой фазы развития фолликула различна: если оплодотворения не произошло, то через 10-12 дней наступает регресс менструального желтого тела, если же оплодотворенная яйцеклетка внедрилась в эндометрий и образующаяся бластула стала синтезировать хорионический гонадотропин (ХГ), то желтое тело становится желтым телом беременности.

Клетками гранулезы желтого тела секретируется полипептидный гормон релаксин, который принимает важное участие в период родов, вызывая релаксацию связок таза и расслабление шейки матки, а также увеличивает синтез гликогена и задержку воды в миометрии, уменьшая при этом его сократительную способность. В период обычного менструального цикла секреция его повышается сразу после пика высвобождения ЛГ и остается определяемым в период менструации. В течение беременности циркулирующий уровень релаксина выше в конце I триместра по сравнению со II и III триместрами.

Если не произошло оплодотворение яйцеклетки, желтое тело переходит в стадию обратного развития, что сопровождается менструацией. Лютеиновые клетки подвергаются дистрофическим изменениям , уменьшаются в размерах, при этом наблюдается пикноз ядер. Соединительная ткань, врастая между распадающимися лютеиновыми клетками, замещает их, и желтое тело постепенно превращается в гиалиновое образование - белое тело {corpus albicans) (Sopelak V.M., 1997).

С точки зрения гормональной регуляции, период регресса желтого тела характеризуется выраженным снижением уровней прогестерона, эстрадиола и ингиби-на А. Падение уровня ингибина А устраняет его блокирующий эффект на гипофиз и секрецию ФСГ. В то же время прогрессирующее снижение концентрации эстрадиола и прогестерона способствует быстрому повышению частоты секреции Гн-РГ, и гипофиз освобождается от торможения отрицательной обратной связи. Снижение уровней ингибина А и эстрадиола, а также возрастание частоты импульсов секреции Гн-РГ обеспечивают преобладание секреции ФСГ над ЛГ. В ответ на повышение уровня ФСГ окончательно формируется пул антральных фолликулов, из которых в дальнейшем будет выбран доминантный фолликул. Простагландин F2a, окситоцин, цитокины, пролактин и радикалы 02 обладают лютеолитическим эффектом, что может быть основанием для развития недостаточности желтого тела при наличии воспалительного процесса в придатках.

Длительность овариального (менструального) цикла в норме варьирует от 21 до 35 дней.

Менструация происходит на фоне регресса желтого тела. К ее окончанию уровни эстрогенов и прогестерона достигают своего минимума. На этом фоне происходят

26 Эндокринная гинекология

Активация тонического центра гипоталамуса и гипофиза и повышение секреции преимущественно ФСГ, активирующего рост фолликулов. Повышение уровня эс-традиола ведет к стимуляции пролиферативных процессов в базальном слое эндометрия, что обеспечивает адекватную регенерацию эндометрия (рис. 7).


Рисунок 7. Звенья регуляции нормального менструального цикла (Sopelak V., 1997)

Глава 1. Анатомия и физиология репродуктивной системы женщины 27

Яичниковый стероидогенез проходит в клетках эпителия, выстилающих полость фолликула, в клетках внутренней теки и значительно меньше в строме. Фолликулярные эпителиоциты, стромальная и тека-ткань синтезируют прогестерон, тестостерон, дегидротестостерон, эстрон и эстрадиол (Erickson G.F., 2000).

Эстрогены представлены эстрадиолом, эстроном и эстриолом. Биологически наиболее активен эстрадиол, 95% которого образуется в фолликуле, и уровень его в крови является показателем созревания фолликула. Эстрадиол (Е2) секретируется преимущественно клетками гранулезы, а также, в меньших количествах, желтым телом. Эстрон (Е,) образуется путем периферической ароматизации эстрадиола. Основным источником эстриола (Е3) является гидро-ксилирование эстрадиола и эстрона в печени (O"Malleu B.W., Strott G.A., 1999).

Секретируемые в кровь эстрогены конъюгируются сексстероидсвязываю-щим глобулином (СССГ) и в меньшей степени альбуминами крови. СССГ иначе называется эстрадиол-тестостерон-связывающим глобулином. Уже само название указывает на повышенное сродство этого белка к андрогенам. Уровень глобулина, связывающего половые гормоны, в сыворотке крови женщин почти в 2 раза выше по сравнению с его концентрацией в крови мужчин. Эстрогены и их метаболиты конъюгируются в печени с глюкуроновой и серной кислотами и экскретируются с желчью и мочой (McDonnel D.P., 2000).

Кроме уже упомянутого влияния на половые органы, гипофиз и гипоталамус, эстрогены обладают анаболическим свойством, усиливают обмен костной ткани и ускоряют созревание костей скелета, с чем связано прекращение роста при наступлении полового созревания, с одной стороны, и развитие юве-нильного остеопороза у девочек при задержке полового развития - с другой.

В больших дозах эстрогены способствуют задержке натрия и воды в организме вплоть до развития отеков. Влияют также на обмен липидов, снижая уровень холестерина в крови.

Прогестерон секретируется желтым телом, а также корой надпочечников и яичками, где используется как предшественник для биосинтеза кортикостерои-дов и андрогенов. Прогестагены и глюкокортикоиды имеют сходную химическую структуру, поэтому прогестероновые и глюкокортикоидные рецепторы имеют перекрёстно-связывающие свойства. В сыворотке крови прогестерон связывается транскортином, который, как известно, связывает и глюкокортикоиды. По данным некоторых исследований, способность прогестерона связываться транскортином даже превышает соответствующую у кортикостероидов. В печени прогестерон связывается глюкуроновой кислотой и в конъюгированном состоянии экскретируются с мочой (McDonnel D.P., 2000). Однако более подробно влияние эстрогенов и прогестерона на органы-мишени изложено в разделе "Принципы применения половых стероидных гормонов в клинической практике и их системные эффекты".

Андрогены у женщин секретируются клетками стромы яичников, главным образом в виде андростендиона, причем в надпочечниках его образуется в 3 раза больше, чем в яичниках. Андростендион в периферических тканях конвертируется в тестостерон. В яичниках образуется в незначительных

28 Эндокринная гинекология

Количествах также тестостерон, дигидротестостерон, дегидроэпиандросте-рон. Приблизительно около 1/4 тестостерона, который секретируется в организме женщины, образуется в яичниках. Остальное его количество секретируется надпочечниками или образуется в тканях на периферии путем конверсии из андростендиона (McDonnel D.P., 2000).

Биологическое действие стероидов в тканях-мишенях связано с наличием в них специфических рецепторов (рис. 8). Стероиды путем диффузии проходят мембрану клетки и в цитоплазме связываются со специфическими рецепторами. Стероидные рецепторы представляют собой относительно большие белки с высокой связывающей способностью к определённым гормонам. Однако возможно связывание этих рецепторов с другими стероидами данной группы (например, с синтетическими агонистами и антагонистами). Цито-плазматические рецепторы присутствуют не во всех, а только в клетках тканей, чувствительных к данному виду гормона. Рецепторно-стероидный комплекс, образование которого зависит от нескольких факторов, включая температуру, перемещается в ядро, где на хроматине имеются специальные участки, связывающие эти комплексы. Комплекс рецептор-стероид становится активированным, после чего возможно его связывание с акцепторным ядерным белком, расположенным на ДНК. Последнее взаимодействие ведет к синтезу большого количества специфических РНК и соответствующих белков, росту и развитию соответствущих органов (молочные железы, матка и др.) и тканей (O"Malleu B.W., Strott G.A., 1999).


Рисунок 8. Механизм действия стероидных гормонов на ткани-мишени (Cowan B.D., 1997)

Количество молекул рецепторов для различных стероидных гормонов колеблется от 5000 до 20 000 на клетку. Рецепторы к эстрогенам связывают мно-

Глава 1. Анатомия и физиология репродуктивной системы женщины 29

Гие естественные и синтетические эстрогенные стероиды с одинаковой аффинностью. Считается, что рецепторы к эстрогенам и прогестерону представляют собой две субъединицы, каждая из которых связывает молекулу гормона, о чём более подробно изложено в клинической главе "Принципы применения половых стероидных гормонов в клинической практике".

Каждая из субъединиц а и Р взаимодействует с хроматином и обеспечивает дальнейшую активацию специфических генов и РНК-полимераз.

Биологическое действие гормона связано не только с количественными колебаниями его в сыворотке крови, но и с состоянием рецепторного звена, причем количество рецепторов подвержено значительным колебаниям. Экспериментальные исследования показали, что у новорожденных крыс ткани-мишени содержат незначительное количество рецепторов к эстрогенам. На 10-й день жизни количество рецепторов возрастает, и после этого срока введение экзогенных эстрогенов вызывает их увеличение. Эстрогены стимулируют образование рецепторов не только к эстрогенам, но и к прогестерону. Количество рецепторов не только зависит от уровня циркулирующего в крови гормона, но и находится под генетическим контролем. Так, полное отсутствие рецепторов к андрогенам наблюдается при синдроме тестикуляр-ной феминизации (McDonnel D.P., 1999).


Рисунок 9. Химическая структура стероидных гормонов (Sopelak V., 1997)

Анализ химической структуры основных половых стероидных гормонов показывает, что все они являются производными прогестерона, причем эстрогены между собой отличаются лишь количеством имеющихся в их структуре гидроксирадикалов (рис. 9).

30 Эндокринная гинекология

Субстанцией для всех стероидных гормонов является холестерин липопро-теидов низкой плотности (ЛПНП). В стероидогенезе участвуют гонадотропины (ФСГ и ЛГ), а также ферментные системы (ароматазы). Вначале образуется прегнанолон в результате отщепления боковой цепи холестерина. В дальнейшем возможно два пути метаболических превращений прегнанолона, заканчивающихся образованием тестостерона, получивших по положению двойной ненасыщенной связи в образующихся соединениях названия м- и л5-путей метаболизма. Преимущественное образование половых стероидов происходит по Л5-пути. В его ходе образуются последовательно 17а-гидроксипрегнанолон, дегидроэпиандростерон (ДГЭА), андростендион. По Л4-пути образуются прогестерон, 17а-гидроксипрогестерон, андростендион. Замыкает оба пути А4,5-изомераза. Далее происходит ароматизация тестостерона или андростендиона с образованием, соответственно, эстрадиола или эстрона (рис. 10).


Примечание: ГСД - Зр-гидроксистероиддегидрогеназа, ДОК - дезоксикортикостерон

Рисунок 10. Биосинтез стероидов (Cowan B.D., 1997)

Большинство стероидогенных ферментов, превращающих холестерол в предшественники и в биологически активные стероиды, входят в группу ци-тохромов Р450. Цитохром Р450 - это генерический термин для многих окислительных ферментов (Bryan D., 1997). Существует около 200 типов цитохро-мов, из них в процесс стероидогенеза вовлечены пять (табл. 2).

Ферменты Р450, участвующие в процессе Т аблица 2

Стероидогенеза


Глава 1. Анатомия и физиология репродуктивной системы женщины 31

Периферическое звено репродуктивной системы представлено органами-мишенями, к которым относятся половые органы и молочные железы, а также кожа и ее придатки, кости, сосуды, жировая ткань. Клетки названных тканей и органов содержат рецепторы к половым гормонам, которые являются рецепторами цитоплазмы - цитозолрецепторами. Также рецепторы к половым гормонам обнаружены во всех структурах репродуктивной системы и, что особенно важно, в центральной нервной системе (McDonnel D.P., 2000).

Таким образом, репродуктивная система - это единая целостная система, все звенья которой взаимосвязаны как механизмом прямой, так и обратной связи.

Литература

1. Bagavandoss P, Wilks JW. Isolation and characterization of microvascular endothelial cells from developing corpus luteum. Biol. Reprod 1991; 44: 1132-1139.

2. Bryan D. Steroid biosintesis / Bryan D. Cowan, David B. Seifer Clinical reproductive medicine. Philadelphia-New York 1997: 11-20.

3. Cowan BD. Steroid Biosynthesis. Clinical reproductive medicine / Ed Cowan BD, Seifer DB. Philadelphia-New York: Lippincott-Raven Publishers 1997: 11-20.

4. Erickson GF. Ovarian anatomy and physiology. Menopause. Biology and pathobiology / Ed Lobo RA, Kelsey J, Marcus R. San Diego: Academic Press 2000: 13-32.

5. Gougeon A. Regulation of ovarian follicular development in primates: Facts and hypotesis. Endocr. Rev 1996; 17: 121-155.

6. Grome N, O"Brien M. Measurement of dimeric inhibin В thoughout menstrual cycle. J. Clin. Endocr. Metab 1996; 81: 1400-1405.

7. Halvorson LM, Chin WW. Gonadotropik hormones: byosintesis, secretion, receptors and action. Reproductive endocrinology / Ed Yen SSC, Jaffe RB, Barbieri RL, Philadelphia, USA 1999: 30-80.

8. Hopko Ireland, Janet L, Ireland JJ. Changes in expression of inhibin/activin and subunit messenger ribonucleic acids following increases in size and during different stages of differentiation or atresia of non-ovulatory follicles in cows. Biol Reprod 1994; 50: 492-501.

9. Hurk Van Den R, Dijkstra G, Hulshof SCJ, Vos PLAM. Micromorphology of antral follicles in cattle after prostaglandin-induced luteolysis, with particular reference to atypical granulosa cells. J Reprod Fertil 1994; 100: 137-142.

10. Lakoski JM. Cellular electrophysiologycal approaches to the central regulation of female reproductive aging. Neural control of reproductive function / Ed Lakoski JM, Perez-Polo JR, Rassin DK. New York: Liss 1989: 209-220.

11. McDonnel DP. Molekular pharmacology of estrogen and progesterone recetors. Menopause. Biology and pathobiology / Ed Lobo RA, Kelsey J, Marcus R. San Diego: Academic Press 2000: 3-12.

12. O"Malleu BW, Strott GA. Steroid Hormones: Metabolism and mechanism of action. Reproductive endocrinology / Ed Yen SSC, Jaffe RB, Barbieri RL, Philadelphia, USA 1999: 110-133.

13. Sopelak VM. Neuroregulation of the HPO Axis / Ed Bryan D. Cowan, David B. Seifer. Clinical reproductive medicine. Philadelphia-New York 1997: 3-10.

14. Sopelak VM. Regulation of the Ovarian-Menstrual Cycle / Ed Bryan D. Cowan, David B. Seifer. Clinical reproductive medicine. Philadelphia-New York 1997: 61-68.

32 Эндокринная гинекология

15. Speroff L, Glass NG, Kase. Clinical Gynecologic Endocrinology and Infertility 1994: 213-220.

16. Wildt L. Hypothalamus. Reproduktionsmedizin / Ed Hrsg. von Bettendorf G, Breckwoldt M.Stuttgart: Fischer 1989: 6-22.

17. Yen SSC. The human menstrual cycle: neuroendocrine regulation. Reproductive endocrinology / Ed Yen SSC, Jaffe RB, Barbieri RL. Philadelphia, USA 1999: 191-217.

Yen SSC. Neuroendocrinoloy of reproduction. Reproductive endocrinology / Ed Yen SSC, Jaffe RB, Barbieri RL. Philadelphia, USA 1999: 30-80.

Репродуктивная функция женщин осуществляется прежде всего благодаря деятельности яичников и матки, так как в яичниках созревает яйцеклетка , а в матке под влиянием гормонов, выделяемых яичниками, происходят изменения по подготовке к восприятию оплодотворенного плодного яйца . Репродуктивный период характеризуется способностью организма женщины к воспроизводству потомства; продолжительность данного периода от 17-18 до 45-50 лет. Репродуктивному, или детородному, периоду предшествуют следующие этапы жизни женщины: внутриутробный ; новорожденный (до 1 года); детства (до 8-10 лет); препубертатного и пубертатного возраста (до 17-18 лет). Репродуктивный период переходит в климактерический , в котором различают пременопаузу , менопаузу и постменопаузу .

Менструальный цикл - одно из проявлений сложных биологических процессов в организме женщины. Менструальный цикл характеризуется циклическими изменениями во всех звеньях репродуктивной системы, внешним проявлением которых является менструация .

Менструации - это кровянистые выделения из половых путей женщины, периодически возникающие в результате отторжения функци­онального слоя эндометрия в конце двухфазного менструального цикла. Первая менструация (menarhe ) наблюдается в возрасте 10-12 лет, но в течение 1 - 1,5 года после этого менструации могут быть нерегулярными, а затем устанавливается регулярный менстру­альный цикл .

Первый день менструации условно принимается за первый день менструального цикла. Следовательно, продолжительность цикла составляет время между первыми днями двух последующих менструаций. Для 60 % женщин средняя продолжительность менструального цикла составляет 28 дней с колебаниями от 21 до 35 дней. Величина кровопотери в менструаль­ные дни 40-60 мл, в среднем 50 мл. Продолжительность нормальной менструации от 2 до 7 дней.

Яичники . Во время менструального цикла в яичниках происходит рост фолликулов и созревание яйцеклетки , которая в результате становится го­товой к оплодотворению . Одновременно в яичниках вырабатываются поло­вые гормоны, обеспечивающие изменения в слизистой оболочке матки, способной воспринять оплодотворенное яйцо.

Половые гормоны (эстрогены , прогестерон , андрогены ) являются сте­роидами , в их образовании принимают участие фанулезные клетки фолли­кула, клетки внутреннего и наружного слоев. Половые гормоны , синтези­руемые яичниками, влияют на ткани- и органы-мишени. К ним относятся половые органы , в первую очередь матка , молочные железы , губчатое ве­щество костей , мозг , эндотелий и гладкие мышечные клетки сосудов , мио­кард , кожа и ее придатки (волосяные фолликулы и сальные железы) и др. Прямой контакт и специфическое связывание гормонов на клетке-мишени является результатом взаимодействия его с соответствующими рецепторами.

Биологический эффект дают свободные (несвязанные) фракции эстрадиола и тестостерона (1 %). Основная масса яичниковых гормонов (99 %) находится в связанном состоянии. Транспорт осуществляется специальными белками - стероидосвязывающими глобулинами и неспецифическими транспортными системами - альбуминами и эритроцитами .

Рисунок : Этапы развития доминантного фолликула.

а - примордиальный фолликул ; б - преантралъный фолликул ; в - антральный фол­ликул ; г - преовуляторный фолликул : 1 - овоцит , 2 - гранулезные клетки (зернис­тая зона ), 3 - тека-клетки , 4 - базальная мембрана .

Эстрогенные гормоны способствуют формированию половых органов , развитию вторичных половых признаков в период полового созревания. Андрогены оказывают влияние на появление оволосения на лобке и в подмы­шечных впадинах . Прогестерон контролирует секреторную фазу менструаль­ного цикла, подготавливает эндометрий к имплантации. Половые гормоны играют важную роль в процессе развития беременности и родов.

Циклические изменения в яичниках включают три основных процесса :

1. Рост фолликулов и формирование доминантного фолликула .

  1. Овуляция .
  2. Образование, развитие и регресс желтого тела.

При рождении девочки в яичнике находятся 2 млн фолликулов, 99 % которых подвергаются атрезии в течение всей жизни. Под процессом атрезии понимается обратное развитие фолликулов на одной из стадий его развития. Ко времени менархе в яичнике содержится около 200-400 тыс. фолликулов, из которых созревают до стадии овуляции 300-400.

Принято выделять следующие основные этапы развития фолликула: примордиальный фолликул , преантральный фолликул , антраль­ный фолликул , преовуляторный фолликул .

Примордиальный фоллику л состоит из незрелой яйцеклет­ки, которая расположена в фолликулярном и гранулезном (зернистом) эпи­телии. Снаружи фолликул окружен соединительной оболочкой (тека-клет­ки ). В течение каждого менструального цикла от 3 до 30 примордиальных фолликулов начинают расти, и из них формируются преантральные , или первичные , фолликулы.

Преантральный фолликул . С началом роста примордиальный фолликул прогрессирует до преантральной стадии, а овоцит увеличивается и окружается мембраной, называемой блестящей оболочкой (zona pellucida ). Клетки гранулезного эпителия подвергаются размножению, а слой теки образуется из окружающей стромы. Этот рост характеризуется повышением продукции эстрогенов. Клетки гранулезного слоя преантрального фолликула способны синтезировать стероиды трех классов, при этом эстрогенов син­тезируется гораздо больше, чем андрогенов и прогестерона.

Антральный , или вторичный, фолликул . Характеризуется дальнейшим ростом: увеличивается число клеток гранулезного слоя, продуцирующих фолликулярную жидкость . Фолликулярная жидкость накаплива­ется в межклеточном пространстве гранулезного слоя и образует полости. В этот период фолликулогенеза (8-9-й день менструального цикла) отме­чается синтез половых стероидных гормонов, эстрогенов и андрогенов.

Согласно современной теории синтеза половых гормонов, в тека-клетках синтезируются андрогены - андростендион и тестостерон . Затем андрогены попадают в клетки гранулезного слоя, и в них ароматизируются в эстрогены.

Доминантный фолликул . Как правило, один такой фолликул образуется из множества антральных фолликулов (к 8-му дню цикла). Он является самым крупным, содержит наибольшее число клеток гранулезного слоя и рецепторов к ФСГ, ЛГ. Доминантный фолликул имеет богато васкуляризированный тека-слой. Наряду с ростом и развитием доминантного преовуляторного фолликула в яичниках параллельно происходит процесс атрезии остальных (90 %) растущих фолликулов.

Доминантный фолликул в первые дни менструального цикла имеет диаметр 2 мм, который в течение 14 дней к моменту овуляции увеличивается в среднем до 21 мм. За это время происходит 100-кратное увеличение объема фолликулярной жидкости. В ней резко возрастает содержание эстрадиола и ФСГ, а также определяются факторы роста.

Овуляция - разрыв преовулярного доминантного (третичного) фолликула и выход из него яйцеклетки. Ко времени овуляции в овоците про­исходит процесс мейоза . Овуляция сопровождается кровотечением из раз­рушенных капилляров, окружающих тека-клетки. Полагают, что овуляция происходит через 24-36 ч после формирования преовуляторного пика эст­радиола. Истончение и разрыв стенки преовуляторного фолликула проис­ходят под влиянием фермента коллагеназы . Определенную роль играют также простагландины F 2a и Ег, содержащиеся в фолликулярной жидкости; протеолитические ферменты, образующиеся в гранулезных клетках; окситоцин и релаксин .

После выхода яйцеклетки в полость фолликула быстро врастают образующиеся капилляры. Гранулезные клетки подвергаются лютеинизации : в них увеличивается объем цитоплазмы и образуются липидные включения . ЛГ, взаимодействуя с белковыми рецепторами гранулезных клеток, стиму­лирует процесс их лютеинизации. Этот процесс приводит к образованию желтого тела .

Желтое тело - транзиторная эндокринная железа , которая функционирует в течение 14 дней независимо от продолжительности менструаль­ного цикла. При отсутствии беременности желтое тело регрессирует .

Таким образом, в яичнике синтезируются основные женские половые стероидные гормоны - эстрадиол и прогестерон , а также андрогены .

В I фазу менструального цикла , который длится от первого дня менструации до момента овуляции, организм находится под влиянием эстроге­нов, а во II (от овуляции до начала менструации) к эстрогенам присоеди­няется прогестерон , выделяющийся клетками желтого тела. Первая фаза менструального цикла называется также фолликулиновой , или фолликуляр­ной , вторая фаза цикла - лютеиновой .

В течение менструального цикла в периферической крови отмечаются два пика содержания эстрадиола: первый - выраженный преовуляторный цикл, и второй, менее выраженный, - в середине второй фазы менструаль­ного цикла. После овуляции во второй фазе цикла основным является прогестерон, максимальное количество которого синтезируется на 4-7-й день после овуляции.

Циклическая секреция гормонов в яичнике определяет изменения в слизистой оболочке матки.

Циклические изменения в слизистой оболочке матки (эндометрии) . Эндо­метрий состоит из следующих слоев:

Базальный слой , который не отторгается во время менструации. Из его клеток в течение менструального цикла образуется слой эндометрия.
  1. Поверхностный слой , состоящий из компактных эпителиальных кле­ток, которые выстилают полость матки.
  2. Промежуточный , или спонгиозный, слой .

Последние два слоя составляют функциональный слой, подвергающийся основным циклическим изменениям в течение менструального цикла и отторгающийся в период менструации.

В I фазе менструального цикла эндометрий представляет собой тонкий слой, состоящий из желез и стромы. Выделяют следующие основные фазы изменения эндометрия в течение цикла :

1) фаза пролиферации ;

2) фаза секреции ;

3) менструация .

Фаза пролиферации . По мере увеличения секреции эстрадиола растущими фолликулами яичников эндометрий претерпевает пролиферативные изменения. Происходит активное размножение клеток базального слоя. Образуется новый поверхностный рыхлый слой с вытянутыми труб­чатыми железами. Этот слой быстро утолщается в 4-5 раз. Трубчатые железы, выстланные цилиндрическим эпителием, удлиняются.

Фаза секреции . В лютеиновую фазу яичникового цикла под вли­янием прогестерона увеличивается извилистость желез, а просвет их постепенно расширяется. Клетки стромы, увеличиваясь в объеме, приближаются друг к другу. Секреция желез усиливается. В просвете желез находят обиль­ное количество секрета. В зависимости от интенсивности секреции железы либо остаются сильно извитыми, либо приобретают пилообразную форму. Отмечается усиленная васкуляризация стромы. Различают раннюю, сред­нюю и позднюю фазы секреции.

Менструация . Это отторжение функционального слоя эндометрия . Тонкие механизмы, лежащие в основе возникновения и процесса менструа­ции, неизвестны. Установлено, что эндокринной основой начала менструа­ции является выраженное снижение уровней прогестерона и эстрадиола вследствие регрессии желтого тела.

Существуют следующие основные локальные механизмы, принимающие участие в менструации :

1) изменение тонуса спиральных артериол ;

2) изменение механизмов гемостаза в матке ;

3) изменения в лизосомной функции клеток эндометрия ;

4) регенерация эндометрия .

Установлено, что началу менструации предшествует интенсивное суже­ние спиральных артериол, приводящее к ишемии и десквамации эндомет­рия.

В течение менструального цикла изменяется содержание лизосом в клетках эндометрия. Лизосомы содержат ферменты, некоторые из которых участвуют в синтезе простагландинов. В ответ на снижение уровня прогес­терона усиливается выделение этих ферментов.

Регенерация эндометрия наблюдается с самого начала менструации. К концу 24-го часа менструации отторгается 2 /з функционального слоя эндометрия. Базальный слой содержит эпителиальные клетки стромы, яв­ляющиеся основой для регенерации эндометрия, которая обычно к 5-му дню цикла полностью завершается. Параллельно завершается ангиогенез с восстановлением целости разорванных артериол, вен и капилляров.

Изменения в яичниках и матке происходят под влиянием двухфазной деятельности регулирующих менструальную функцию систем: кора большо­го мозга , гипоталамус , гипофиз . Таким образом, выделяются 5 основных звеньев репродуктивной системы женщины: кора большого мозга , гипота­ламус , гипофиз , яичник , матка . Взаимосвязь всех звеньев репродуктивной системы обеспечивается наличием в них рецепторов как к половым, так и гонадотропным гормонам.

О роли ЦНС в регуляции функции репродуктивной систе­мы известно давно. Об этом сви­детельствовали нарушения овуля­ции при различных острых и хро­нических стрессах, нарушение менструального цикла при пере­мене климатогеографических зон, ритма работы; хорошо известно прекращение менструаций в ус­ловиях военного времени . У пси­хически неуравновешенных жен­щин, страстно желающих иметь ребенка, менструации также могут прекратиться.

В коре большого мозга и в экстрагипоталамических церебральных структурах (лимбической системе, гиппо-кампе, миндалине и др.) выявле­ны специфические рецепторы для эстрогенов, прогестерона и андрогенов. В этих структурах происходят синтез, выделение и метаболизм нейропептидов , нейротрансмиттеров и их рецепто­ров, которые в свою очередь из­бирательно влияют на синтез и выделение рилизинг-гормона ги­поталамуса .

Во взаимосвязи с половыми стероидами функционируют ней ротрансмиттеры : норадреналин , дофамин , гамма-аминомасляная кислота , ацетилхолин , серотонин и мелатонин . Норадреналин стимулирует выброс гонадотропин-рилизинг-гормона (ГТРГ ) из нейронов переднего гипоталаму­са. Дофамин и серотонин умень­шают частоту и снижают ампли­туду выработки ГТРГ в различ­ные фазы менструального цикла.

Нейропептиды (эндогенные опиоидные пептиды , нейропептид Y , кортикотропин-рилизинг-фактор и галанин) также влияют на функцию репро­дуктивной системы, а следовательно, на функцию гипоталамуса. Эндогенные опиоидные пептиды трех видов (эндорфины , энкефалины и динорфины ) способны связываться с опиатными рецепторами мозга. Эндогенные опиоидные пептиды (ЭОП ) модулируют влияние половых гормонов на содержание ГТРГ по механизму обратной связи, блокируют секрецию ги­пофизом гонадотропных гормонов, особенно ЛГ , посредством блокады се­креции ГТРГ в гипоталамусе.

Взаимодействие нейротрансмиттеров и нейропептидов обеспечивает в организме женщины репродуктивного возраста регулярные овуляторные циклы, влияя на синтез и выделение ГТРГ гипоталамусом.

В гипоталамусе имеются пептидергические нейронные клетки, которые секретируют стимулирующие (либерины ) и блокирующие (статины ) нейрогормоны - нейросекреция . Эти клетки обладают свойствами как ней­ронов, так и эндокринных клеток, и отвечают как на сигналы (гормоны), поступающие из кровотока, так и на нейротрансмиттеры и нейропептиды мозга. Нейрогормоны синтезируются в рибосомах цитоплазмы нейрона, а затем транспортируются по аксонам к терминалям.

Гонадотропин-рилизинг-гормон (либерин ) - нейрогормон, регулирующий гонадотропную функцию гипофиза, где синтезируются ФСГ и ЛГ. Рилизинг-гормон ЛГ (люлиберин ) выделен, синтезирован и подробно опи­сан. Выделить и синтезировать рилизинг-фолликулостимулирующий гор­мон, или фоллиберин , до настоящего времени не удалось.

Секреция гонадолиберина имеет пульсирующий характер: пики усиленной секреции гормона продолжительностью несколько минут сменяются 1- 3-часовыми интервалами относительно низкой секреторной активности. Час­тоту и амплитуду секреции гонадолиберина регулирует уровень эстрогенов.

Нейрогормон, который контролирует секрецию пролактина аденогипофизом, называется пролактинингибирующим гормоном (фактором), или дофамином .

Важным звеном в системе репродукции является передняя доля гипофиза - аденогипофиз , в котором секретируются гонадотропные гор­моны, фолликулостимулирующий гормон (ФСГ , фоллитропин ) лютеинизирующий гормон (ЛГ , лютропин ) и пролактин (Прл ), регулирующие функ­цию яичников и молочных желез. Все три гормона являются белковыми веществами (полипептидами ). Железой-мишенью гонадотропных гормонов является яичник.

Рисунок : Функция репродуктивной системы (схема).

РГЛГ - рилизинг-гормоны ; ОК - окситоцин ; Прл - пролактин ; ФСГ - фолликуло-стимулирующий гормон ; П - прогестерон ; Э - эстрогены ; А - андрогены ; Р - релак­син ; И - ингибин ; ЛГ - лютеинизирующий гормон .

В передней доле гипофиза синтезируются также тиреотропный (ТТГ ) и адренокортикотропный (АКТГ ) гормоны, а также гормон роста.

ФСГ стимулирует рост и созревание фолликулов яичника, способствует образованию рецепторов ФСГ и ЛГ на поверхности гранулезных клеток яичника, увеличивает содержание ароматаз в зреющем фолликуле и, стиму­лируя процессы ароматизации, способствует превращению андрогенов в эстрогены, стимулирует продукцию ингибина, активина и инсулиноподобного фактора роста-1, которые играют ингибирующую и стимулирующую роль в росте фолликулов.

Л Г стимулирует :

образование андрогенов в тека-клетках ;

овуляцию совместно с ФСГ ;

ремоделирование гранулезных клеток в процессе лютеинизации ;

синтез прогестерона в желтом теле .

Пролактин стимулирует рост молочных желез и лактацию, контролирует секрецию прогестерона желтым телом путем активации образования в них рецепторов к Л Г.

Синтез пролактина аденогипофизом находится под тоническим блокирующим контролем дофамина, или пролактинингибирующего фактора . Ингибиция синтеза пролактина прекращается во время беременности, лакта­ции. Основным стимулятором синтеза пролактина является тиролиберин, синтезируемый в гипоталамусе.

Циклические изменения в гипоталамо-гипофизарной системе и в яичниках взаимосвязаны и моделируются по типу обратной связи.

Выделяют следующие типы обратной связи :

1) "длинная петля " обратной связи - между гормонами яичника и ядрами гипоталамуса; между гормонами яичника и гипофизом;

2)"короткая петля " - между передней долей гипофиза и гипоталамусом;

3)"ультракороткая петля " - между ГТРГ и нервными клетками гипоталамуса.

Взаимосвязь всех указанных структур определяется наличием в них рецепторов к половым гормонам.

У женщины репродуктивного возраста имеется как отрицательная, так и положительная обратная связь между яичниками и гипоталамо-гипофи­зарной системой. Примером отрицательной обратной связи является усиле­ние выделения ЛГ передней долей гипофиза в ответ на низкий уровень эстрадиола в раннюю фолликулярную фазу цикла. Примером положитель­ной обратной связи является выброс ЛГ в ответ на овуляторный максимум содержания эстрадиола в крови .

О состоянии репродуктивной системы можно судить по оценке тестов функциональной диагностики: базальная температура , симптом зрачка и кариопикнотический индекс .

Базальная температура измеряется в прямой кишке утром , до подъема с постели. При овуляторном менструальном цикле базальная тем­пература повышается в лютеиновую фазу цикла на 0,4-0,6 °С и держится в течение всей второй фазы (см. рис.). В день менструации или за день до нее базальная температура снижается. При беременности повышение базальной температуры объясняется возбуждением терморегулирующего цент­ра гипоталамуса под влиянием прогестерона.


Рисунок : Ректальная температура при двухфазном цикле. М - менструация; ОВ - овуляция.

Симптом зрачка отражает изменения в слизи шейки матки. Под влиянием эстрогенов в шейке матки накапливается прозрачная стекловид­ная слизь, что обусловливает расширение наружного отверстия шейки матки. Максимальное количество слизи наблюдается в предовуляторные дни цикла, наружное отверстие становится темным, напоминает зрачок. Во вторую фазу цикла под влиянием прогестерона количество слизи уменьша­ется или же она полностью исчезает. Слизь имеет глыбчатое строение. Различают 3 степени симптома зрачка: +, ++, +++ .

Кариопикнотический индекс . Под влиянием гормонов яич­ников также происходят циклические изменения в слизистой оболочке влагалища, особенно в его верхней трети. В мазке из влагалища могут встречаться следующие виды клеток плоского многослойного эпителия : а) ороговевающие , б) промежуточные , в) базальные , или атрофические . Клетки первого типа начинают преобладать по мере нарастания секреции яичниками эстрогенов. На основании определения количественных соотно­шений клеточных элементов можно судить о степени насыщенности орга­низма эстрогенными гормонами или об их недостаточности. Максимальное число ороговевающих клеток выявляется в предовуляторные дни - 80-88 %, в раннюю фазу пролиферации - 20-40 %, в позднюю фазу секреции - 20-25 %.

Информация неполная? Попробуйте поиск от Google .