Вирусы против бактерий. Антибиотики против вирусов и бактерий: «за» и «против. Улучшение качества сна

Народный антибиотик – эхинацея – особенно эффективен при воспалении горла и в самом начале простуды

Народные средства на протяжении тысячелетий выполняли роль антибиотиков. При многих заболеваниях, причиной которых является рост бактерий, даже сейчас эффективны именно травы. Ведь за последние десятилетия возникло множество устойчивых к антибиотикам бактерий (возникли резистентные штаммы). Антибиотик уничтожает большинство бактерий, но не все. Оставшиеся имеющие более сильное сопротивление бактерии начинают сильно размножаться, постепенно создаются более сильные и устойчивые к антибиотикам колонии.

Бактериям трудно приспособиться к народным антибиотикам

Знаете ли вы, что больницы в Австралии используют эфирное масло эвкалипта в качестве дезинфицирующего средства? Оказывается, это народное средство является эффективным антибиотиком в отношении метициллин-резистентного
золотистого стафилококка. Вы когда-нибудь задумывались, почему народные средства, которые существуют на протяжении сотен тысяч лет, все еще способны функционируют как антибиотики? Почему они не потеряли свою эффективность, в то время как созданные человеком антибиотики перестали быть активными в отношении многих бактерий? Дело в том, что народные антибиотики состоят из сотен различных молекул в разных пропорциях. Бактериям гораздо проще приспосабливаться к синтетическому антибиотику, чем к экстракту целого растения.

Народные антибиотики долго использовали народные целители для лечения простуды и гриппа, очищения ран от инфекции и ускорения заживления ран. В наше время стало понятно, что для устойчивых к синтетическим антибиотикам бактерий нужна альтернатива – народные антибиотики.

Чем отличается народный антибиотик от синтетического?

Антибиотик – это препарат, который используется для лечения инфекций, вызванных бактериями и другими микроорганизмами. Первоначально антибиотик был веществом, действующим на один микроорганизм, который избирательно подавлял рост другого. Синтетические антибиотики обычно химически связаны с народными антибиотиками.

Травы в своем составе имеют антибиотики, которые защищают их корневые системы. Многие народные средства и травы действуют как антибиотики: мед, акация, алоэ, чеснок, лук, корень солодки, имбирь, шалфей, эхинацея, эвкалипт, желтокорень канадский, экстракт семян грейпфрута, можжевельник, полынь, лишайник уснея и многие другие.

Большинство синтетических антибиотиков представляет собой отдельное изолированное химическое вещество (пенициллин, тетрациклин и т.д.). Поэтому бактериям проще приспособиться к антибиотикам. В противоположность, народные антибиотики являются намного более сложными. К примеру, чеснок содержит более 33 соединений серы, 17 аминокислот и 10 других соединений; тысячелистник – более 120 соединений. Различные соединения в травах работают сообща, поэтому результат борьбы с бактериями гораздо лучше.

Алоэ – народный антибиотик против стафилококка и вирусов герпеса

Листья алоэ активны в отношении золотистого стафилококка, синегнойной палочки, вируса простого герпеса 1 и 2 типов. Наружное применение алоэ и меда самое эффективное для лечения ожогов, ускорения заживления ран и профилактики инфекции. Народный антибиотик алоэ применяется просто: нарежьте листья свежего растения, чтобы получить сок, а затем наносите гель алоэ на рану или ожог до полного выздоровления.

Чеснок – антибиотик против молочницы

Чеснок активен против туберкулеза, шигеллы дизентерии, золотистого стафилококка, синегнойной палочки, молочницы, кишечной палочки, стрептококка, сальмонеллы, возбудителя кампилобактериоза, протея (Protues merbilis), простого герпеса, гриппа B, ВИЧ и др. Чеснок рекомендуется применять в свежем виде, в капсулах, как настойку или добавлять в блюда. Начинать нужно с малых доз и постепенно увеличивать. Сырой чеснок может вызвать расстройство желудка и даже рвоту, поэтому нужно соблюдать осторожность. Небольшие, частые дозы этого народного антибиотика «работают» лучше, чем большие дозы (1/4 ч.л. сока чеснока при необходимости). Капсулы также могут лучше переноситься и их легче принимать. Совместное применение чеснока с разжижающими кровь препаратами усиливает действие последних.

Эхинацея – народный антибиотик против стафилококка и туберкулеза

Эхинацея активна в отношении золотистого стафилококка, стрептококка, микобактерии туберкулеза, аномальных клеток. Этот народный антибиотик особенно активен для Пап мазков, при воспалении горла и в самом начале простуды. Для лечения горла и простуды рекомендуется использовать настойку эхинацеи, по 30 капель с водой каждый час. Также вкусен и полезен чай с эхинацеей.

Солодка – народный антибиотик против стрептококка и стафилококка

Солодка активна против малярии, туберкулеза, сенной палочки, золотистого стафилококка, стрептококка, сальмонеллы, кишечной палочки, молочницы, вибриона холеры, дерматофита (Trichophyton mentagrophytes), возбудителя руброфитии, токсокароза. Солодка является мощным стимулятором иммунной системы и антибиотиком. Этот народный антибиотик хорошо работает с другими травами. Побочными эффектами солодки могут быть: высокое давление крови и задержка воды в организме. Полезен такой чай с солодкой: 1/2 ч.л. заварить 1 стаканом кипятка в течение 15 минут, принимать до трех раз в день.

В некоторых случаях народные антибиотики оказываются более эффективными, чем промышленные. В то время как к последним бактерии развивают резистентность, народные средства и травы остаются по-прежнему эффективными. Природа создала все необходимое для лечения человека. Важно пополнять знания о народных антибиотиках, разрабатывать схемы лечения.

Вы когда-нибудь задумывались зачем нужно было строить метро по всему миру почти двести лет назад? Ведь на поверхности не было транспортных пробок, а Генри Форд еще даже не запустил свой первый конвейер? Никто тогда и поверить не мог, что автомобиль станет доступен каждому, а метро уже было построено. А, возможно, его никто и не строил, а просто откопали?

Одним из интересных фактов, доказывающих что метро не строили, а откапывали является история строительства первого пневматического метро. Вот что говорят официальные источники по этому поводу.

В 1868 году компания "Пневмотранзит" во главе с изобретателем Альфредом Бичем начинает строить подземный тоннель для пневматических поездов.

Для постройки тоннеля он арендует подвал магазина одежды в Нью-Йорке, а работы ведутся ночью, так как официального разрешения от властей не было. Они убеждают всех, что строится маленький тоннель для пневмопочты. Для постройки они использовали, так называемый, проходческий щит Альфреда Бича, который соорудил сам изобретатель.

И уже через два года первые посетители зашли на подземную станцию.

Тоннель построили за очень короткий срок, всего за 2 года, за это время они пробурили 100 метров под землей, обложили все это кирпичом, построили подземную станцию с хорошей отделкой, установили 50 тонный компрессор и стали возить людей.

Но сроки слишком маленькие, даже по меркам современности. Илон Маск бы позавидовал такой скорости строительства. При том, что в основном работу делали ночью.

Станцию освещали кислородно-водородные газовые лампы, деревянная отделка, рояль, длина тоннеля 95 метров, за первый год работы метро перевезло 400 тыс. человек, потом Альфред все-таки получает разрешение на строительство такого метро под всем городом, но фондовый рынок падает, магазин горит, а про метро благополучно забывают.

Вспомнили про него только через 40 лет и то ненадолго. Тогда рабочие бродвейского метро случайно натолкнулись на этот тоннель, там находился проходческий щит, ржавые рельсы и вагончик.

Что не так в официальной версии:

Как можно было забыть за это время про такой грандиозный проект и даже потерять все чертежи и план тоннелей?

Как проходческий щит попал в подвал магазина, что за подвал должен быть с заездом под паровоз, скорее всего магазин был построен на готовом допотопном тоннеле.

Обнаружили уникальное сооружение прошлого века, почему не сделали музей - это ведь первое американское метро, обновили бы вагончики, было бы красиво и прибыльно, почему так быстро постарались забыть, щит в итоге пропал, вагончики тоже.

В Англии строителя первого метро, Брюнеля, не забывают, а его первые наброски очень напоминают американское метро, сделал он их еще до американского метро и американец тоже их видеть не мог, так как они никогда не публиковались. Как они задумали одно и тоже одновременно.

Какое может быть объяснение? В Америке могли найти реальный туннель с оборудованием, с компрессором, с вагончиками, расчистили старые тоннели, такая версия объясняет все странности:

и короткий срок строительства
и желание властей забыть о проекте.
А вот старейший Канадский тоннель, который используется как канализация, тоже напоминает первое забытое метро.

А в Лондоне такую канализацию построили в 19 веке и строили тоже как первое метро Нью-Йорка.

А вот фотографии 1904 года, открытие метро в Нью-Йорке.

Здесь бросается в глаза огромный тоннель и убогая тележка, 50 лет до этого Альфред Бич использовал вагоны почти современные, но в 1904 году они строят убогие тележки.

А вот план метрополитена, сложнейший современный проект.

А на втором фото мы видим как реализован этот проект, современный план и древняя каменная кладка. Опять сложные технологичные вещи идут рука об руку с какими-то отсталыми технологиями.

По фотографиям метро в Париже видно как откапывают старое и приспосабливают под новое. Опять такие же тоннели.

Возникает ощущение, что была зачистка старых тоннелей. Для фактической проходки щит должен быть диаметром внешней кладки кирпича а не внутренней.

В Москве с 1933 по 1935 построили целую линию, а сейчас несколько лет одну станцию строят, причём неглубокого залегания, на многих старых станциях арочные своды как в старинных зданиях. Первые станции красивые как дворцы.

Что же произошло с планетой, метро, статуи, пирамиды, церкви-приемники атмосферного электричества, а памяти нет.

ДРУГОЙ ВЗГЛЯД

Этим летом вся Европа была напугана очень маленьким существом — патогенным штаммом кишечной палочки Escherichia coli. Ее длина — всего 2-3 микрона, но она опасна и шустра. Поневоле задумаешься, кто же на нашей планете господствующий вид — человек или такие вот малютки?

Если одну кишечную палочку, которая, как известно, размножается простым бинарным делением, поместить в идеальную питательную среду и допустить, что еды у нее и ее потомков будет в достатке, то за сутки эта малышка способна образовать колонию весом около... 10 миллионов тонн!

Шокирующая цифра, не правда ли? Одноклеточные — если и не самые главные, то уж точно самые весомые, в прямом смысле, жители земного шара. Суммарная биомасса всех микроорганизмов, в том числе микроскопических грибов и водорослей, составляет 76 миллиардов тонн (в сухом остатке, без учета воды).

Все многоклеточные растения весят 55 миллиардов тонн, а масса животных, включая человека, составляет в сумме какие-то «жалкие» 500 миллионов тонн.

Да и в каждом здоровом человеческом теле наберется килограмма два бактерий, ведь человек — это симбиотический конгломерат клеток его собственного организма и бактерий. Как утверждает молодая наука метабономика, люди - это сверхорганизмы, в которых только 2-3 триллиона клеток непосредственно наши, родные.

Еще добрую сотню триллионов составляют микроорганизмы — их в человеческом теле более 500 видов. В этом сверхорганизме человеческая ДНК вовсе не является преобладающей, утверждает отец-основатель метабономики британский биохимик Джереми Николсон.

Каждый из нас обладает уникальным геномом, который складывается из собственного генетического материала и ДНК населяющих нас многочисленных одноклеточных.

КТО В ЧЕЛОВЕКЕ ЖИВЕТ?

В большинстве случаев младенцы рождаются стерильными. Однако в первые же сутки их жизни начинается создание микробиоценоза: человек колонизируется множеством микроорганизмов. Сначала это хаотический процесс, в ходе которого бактерии яростно борются за «место под солнцем» и внутри, и снаружи.

Через 2-3 дня устойчивые колонии получают пожизненную прописку в различных частях тела. Это так называемые облигатные — полезные и. более того, необходимые микробы. Можно сказать, самые близкие людям живые существа в этом мире.

На всей поверхности кожи и в ее верхнем слое уютно устроились пропионибактерии, дифтероиды и коринебактерии. Они умеют поглощать приходящих извне патогенных бактерий, держат первый рубеж обороны.

Слизистая оболочка глаз заселена стафилококками и микоплазмой, которые не дают случайным пришельцам закрепиться здесь и начать размножение, В желудке плавает дружная команда стрептококков, лакто- и бифидобактерий в окружении дрожжеподобных грибов; все они хорошо переносит кислую среду желудочного сока и дают старт процессу переваривания пищи.

В кишечнике в тесноте, да не в обиде живут более 15 основных видов анаэробных бактерий и грибов рода Candida. И среди них та самая кишечная палочка Е. соli, непатогенные штаммы котором очень нужны человеку. Именно она вырабатывает в нашем организме витамин К2, отвечающий за свертываемость крови.

"Хотя мне исполнилось уже 50 лет, но у меня очень хорошо сохранились зубы, потому что я имею привычку каждое утро натирать их солью, а после очистки больших зубов гусиным пером хорошенько протирать их еще платком" — такие слова можно прочитать в письме сторожа судебной палаты из голландского города Делфта Антони ван Левенгука (1632-1723), которое он направил в Лондонское королевское общество.

Ничего не скажешь, оригинальный способ соблюдения гигиены полости рта, но прославился Левенгук, конечно, не этим - а тем, что научил человечество видеть потаенные стороны жизни природы. У Левенгука не было «ученого» образования, зато была поистине пламенная страсть: увеличительные стекла. Он был одним из первых, кто догадался объединить несколько линз в зрительную трубу для изучения не макро-, а микромира. И получил таким образом микроскоп.

Материалы для своих исследований он выбирал бессистемно: перечный настой, волокна хрена, чешуйки кожи, глаз мухи, моллюски, выловленные в каналах Делфта. Соскоб с зубов он разбавлял водой и в волшебных стеклах наблюдал «невероятное количество маленьких животных, и притом в таком крошечном кусочке вышеуказанного вещества, что этому почти невозможно было поверить, а если не убедишься собственными глазами.

Самоучка Левенгук за 50 лет наблюдений зарисовал более 200 видов «крошечных зверьков», как он называл своих новых знакомцев. Впрочем, научной революции тогда не случилось — еще сотню лет после Левенгука микромир оставался для ученого мира эдаким «шапито в микроскопе».

ДРУЗЬЯ И ВРАГИ

Пожалуй, практически все самые привычные для нас продукты питания — хлеб, сыр, йогурт, пиво, вино, шоколад и многое другое — не что иное, как продукты брожения. Всю основную работу по их приготовлению производят анаэробные бактерии и дрожжевые грибы. Человеку остается только бережно хранить, селекционировать и культивировать закваски — колонии бактерий.

И он делает это на протяжении тысячелетий. Еще за пять тысяч лет до Рождества Христова в древнем Вавилоне умели сбраживать напитки, а три с половиной тысячи лет назад египтяне придумали дрожжевой хлеб. Так что человек уже давно приручил своих микродрузей.

Профессиональные "дрессировщики», ученые-биотехнологи, вооружившись достижениями молекулярной биологии и генной инженерии, научили микробов делать массу полезных для человека вещей. Сегодня на полях вносят в почву бактериальные удобрения, а микробные инсектициды и пестициды, подверженные биодеградации, пришли на смену опасным химическим сельскохозяйственным реагентам.

Тионовые (окисляющие серу) бактерии выщелачивают ценные металлы из рудных концентратов и повышают качество серосодержащего каменного угля. Современная фармацевтика немыслима без «рабочих лошадок» - бактерий, одноклеточных грибов и водорослей, производящих все виды антибиотиков, противоопухолевые препараты, витамины и аминокислоты.

Команда исследователей под руководством профессора Джозефа Чеппела из американского Университета Кентукки выяснила, что все запасы нефти и угля на нашей планете — результат жизнедеятельности одной-единственной микроводоросли Botryococcus braunii. Так что, если бы не она, не видать нам ни тепловой энергетики, ни автомобилей.

Кроме того, некоторые микроорганизмы — это еще и самые старательные и дотошные в мире уборщики. Подсчитано, что если бы не работа бактерий гниения, разлагающих органические вещества, то кости животных, обитавших на Земле с начала ледникового периода, покрывали бы сегодня всю сушу полутораметровым слоем.

Взаимовыгодное существование человека и микроорганизмов портит только одно обстоятельство: есть порядочное количество простейших, которые не прочь ускорить процесс превращения живого в мертвое, сократив его до пары суток.

Со времен Гиппократа и приблизительно до середины XIX века считалось, что болезни, которые мы сегодня называем инфекционными, вызываются дурным воздухом и вредными испарениями — «миазмами». Среди теоретиков патогенеза ближе всего к истине был однокашник Коперника Джироламо Фракасторо. живший за сто с лишним лет до Левенгука. Он писал о крошечных «семенах», которые передаются от человека к человеку, поселяются внутри и вызывают болезни. Однако Фракасторо и помыслить не мог, что эти «семена» живые.

Потери человечества от эпидемических инфекционных заболеваний значительно превышают число жертв военных конфликтов. На полях сражений Столетней войны (1337-1453) погибли сотни тысяч человек.

А эпидемия бубонной чумы, случившаяся как раз во время той войны и продолжавшаяся всего пять лет, унесла жизни 34 миллионов европейцев. Всего же за все время существования нашей цивилизации жертвами одноклеточных возбудителей болезней пало около полутора миллиардов человек.

Весь XIX век в научном мире не утихали споры о том, виноваты ли микроорганизмы в том, что мы болеем и умираем. С одной стороны, ученые постоянно находили патогенных возбудителей в тканях умерших от холеры, туберкулеза, дифтерии; их чистые культуры выделили первые микробиологи, все как один — лауреаты Нобелевских премий по медицине: Эмиль Беринг, Пауль Эрлих, Илья Мечников и первооткрыватель возбудителей сибирской язвы, туберкулеза и холеры Роберт Кох.

Но с другой стороны, приверженцы гигиенической теории не уставал и твердить, что все болезни происходят от грязи. Во главе гигиенистов стоял президент Баварской академии наук Макс фон Петтенкофер. Профессор прославился тем, что в 73 года в доказательство своих научных теорий в присутствии свидетелей проглотил чистую культуру холерного вибриона.

Холерой Петтенкофер не заболел, все обошлось легким расстройством желудка. Понятия «специфический иммунитет» в тот момент еще не существовало, а профессор был здоров как бык. Наверняка сработала и сила внутренней убежденности в собственной правоте.

Петтенкофер настолько дорожил собственным здоровьем и не желал болеть, что, ощутив себя в 82 года дряхлеющим стариком, предпочел застрелиться.

Сегодня мы точно знаем: такие болезни, как чума, дифтерия, холера, туберкулез и многие другие, однозначно вызываются бактериями, которые в процессе своей жизнедеятельности выделяют токсины. Оспу, корь, гепатит, полиомиелит провоцируют не бактерии, а вирусы. Вирусы намного меньше бактерий (20-500 нанометров в поперечнике), и до сих пор не вполне понятно, живые они или нет. Сам но себе вирус размножаться не способен — он производит потомство, используя ДНК клетки, в которую внедряется.

КОВАРНЕЙ КОШКИ ЗВЕРЯ НЕТ

При этом остальные рефлексы не нарушаются. Так токсоплазма контролирует свой собственный жизненный цикл, управляя переносчиком: для нее выгодно, чтобы мышь погибла, будучи съеденной кошкой.

Впрочем, подлинную роль токсоплазмы ученым еще предстоит выяснить. Пока можно сказать только одно — «другим человека» она не была никогда. В отличие от нашего симбионта — кишечной палочки Е. coli. Каким же образом незаменимый помощник превратился в убийцу? Эта детективная интрига все еще ждет своей разгадки.

Пока ученые искали преступника, перебирая всех возможных подозреваемых, начиная с испанского огурца и заканчивая пажитником из Египта, эпидемия сама собой сошла на нет. Теперь уже не определить ни «место преступления», ни какая из миллиона других видов бактерий передала часть своего генома "хорошей" кишечной палочке, после чего та приобрела неприятную особенность вырабатывать гибельные для почек токсины и разрушать эритроциты. Кроме того, новый штамм, обозначенный шифром О104:Н4, получил от какого-то другого микроорганизма удивительную стойкость к антибиотикам.

Можно сказать и о простейших. Казалось бы, все просто: одноклеточные размножаются делением или почкованием, а значит, весь геном должен передаваться от «мамы» к «дочке* в целости и сохранности. Но существует еще и так называемый горизонтальный перенос генов — процесс, отдаленно напоминающий спаривание. Происходит физический контакт, в ходе которого бактерии обмениваются генетической информацией.

Причем контактировать могут особи совершенно разных видов — и успешно. В результате возникают новые подвиды — штаммы, становящиеся звеном в непредсказуемой эволюции бактерий, эволюции гораздо более быстрой, чем у многоклеточных. Эта скорость и обеспечивает их невероятное видовое многообразие.

В 2009 году израильские микробиологи изучали палочки Paunibacillus dentintiformis и решили провести эксперимент: что будет, если начать морить их голодом? Предполагалось, что в условиях дефицита питания клетки начнут активно размножаться в целях сохранения вида. Однако все пошло совсем по-другому: бактерии не только прекратили размножаться, но и принялись убивать сородичей, избавляясь от «лишних ртов». Когда численность колонии стала соответствовать количеству питательных веществ, ситуация стабилизировалась.

Ученые пока не утверждают, что микробы обладают коллективным разумом, но существование у них примитивных социальных механизмов считают доказанным.

«У бактерий есть примитивная форма социального сознания. — полагает руководитель исследования профессор Эшел Бен-Якоб. — Они знают, как собирать информацию из окружающей среды и передавать ее друг другу. Они могут распределять задачи и хранить «коллективную память». Химический язык, с помощью которого они общаются, превращает колонии микробов в большой мозг».

Хотелось бы научиться понимать этот «большой мозг», а еще лучше - с ним дружить. Но микромир живет по своим законам, и наших знаний о нем пока слишком мало для заключения долгосрочного мирового соглашения.

Журнал Discovery ноябрь 2011


Вокруг нас существует множество вирусов, бактерий, которые способны попадать в наш организм, расти там, размножаться за счет наших клеток. Для человеческого организма их жизнедеятельность часто является губительной и приводит к различным заболеваниям. Если бы человечество не имело естественных средств защиты против бактерий, то, возможно, мы бы уже не существовали. Как уберечь свой организм от бактерий?

Работу иммунитета для нашего организма невозможно переоценить. Способность бороться с возбудителями инфекций формировалась в процессе эволюции, и сейчас человек находится в контакте с бактериями, обитающими не только вне, но и внутри него.

Главной особенностью иммунитета является его память. Клетки системы запоминают информацию о чужеродных организмах и при их появлении вновь применяют полученные навыки борьбы.

Средства гигиены против микробов

На нашей коже живет множество бактерий, и если ее регулярно не мыть, то есть большая вероятность того, что они попадут внутрь организма и станут причиной многих заболеваний.

Наиболее эффективным средством против бактерий, имеющим положительные отзывы, является антибактериальное мыло. Оно содержит в себе триклозан, который убивает бактерии и контролирует их рост, чего не содержит обычное мыло. Эффективность антибактериального мыла зависит от процента содержания триклозана и длительности контакта с кожей. Обычное мыло также убивает бактерии, только после его использования они быстро активизируются. Антибактериальное мыло содержит триклозан в количестве от 0,1 до 0,34%, на это стоит обращать внимание при покупке.

Это мыло убивает такие бактерии:

  • стафилококк;
  • кишечная палочка;
  • сальмонелла.

Антибактериальное мыло способствует контролю над бактериями. Учитывая отзывы и рекомендации специалистов, мыло с антибактериальным эффектом стоит использовать не постоянно и чередовать его с обычным мылом. Отзывы потребителей разделились в применении этого мыла для борьбы с бактериями на за и против. То есть, кроме положительных, также встречаются и отрицательные отзывы, поскольку у некоторых людей, особенно с нежной кожей, такое мыло может вызывать сухость кожных покровов.

Лекарственные препараты против микроорганизмов

Такие лекарственные препараты, как антибиотики, убивают либо тормозят развитие бактерий или опухолей и являются незаменимыми в борьбе со многими аэробными или анаэробными микроорганизмами.

В зависимости от принципа воздействия на бактерии антибиотики делят на такие группы:

  • Антибиотики, уничтожающие клеточную стенку. Многие из бактерий имеют клеточную стенку, разрушение которой приводит к их гибели. Этим свойством обладает пенициллин и препараты его группы.
  • Антибиотики, противодействующие синтезу белка. Эти антибиотики попадают внутрь клетки и блокируют процессы жизнедеятельности. Микроорганизм теряет способность к росту и размножению и погибает.
  • Препараты, проникающие внутрь клетки и растворяющие жиры, которые входят в состав мембраны.

Методы борьбы против хеликобактер

До недавнего времени причины таких заболеваний, как язва и гастрит, не до конца были изучены. Относительно недавно было обнаружено, что анаэробный микроорганизм хеликобактер пилори виновен в возникновении этих заболеваний. Особенность анаэробной бактерии хеликобактер в том, что она способна существовать в условиях высокой кислотности. Размножаясь, хеликобактер выделяет вредные токсины, разрушающие стенки желудка, что приводит к хроническим заболеваниям и даже к раку желудка. Какие методы и средства действенны в борьбе с хеликобактер?

При наличии соответствующих показателей бактерии хеликобактер эффективность лечения зависит от таких требований:

  • правильно подобранное мощное лекарство для действенной атаки на хеликобактер;
  • устойчивость препарата к кислотности желудка;
  • быстрое проникновение лекарства в слизистую с целью устранения хеликобактер;
  • локальное вмешательство лекарства;
  • невмешательство препарата в работу других органов и быстрый вывод его из организма.

Учитывая отзывы врачей, только комплексный подход к лечению приводит к положительным результатам в борьбе с хеликобактер.

Бактерии в кишечнике

Основные причины попадания микробов в организм – несоблюдение мер гигиены и санитарных норм обработки продуктов. Так, анаэробные бактерии, попадая в кишечник вместе с пищей, отравляют его токсинами, которые вызывают вздутие и колики. Способны вызвать инфекцию в кишечнике и анаэробные микроорганизмы, живущие в нем. Это происходит при нарушении микрофлоры кишечника. При сильном иммунитете организм может сам справиться с буйством кишечных микроорганизмов, человек почувствует лишь легкое недомогание либо диарею. При серьезных инфекциях в кишечнике, таких как ботулизм, дизентерия, без госпитализации, вмешательства специалистов и правильно подобранных лекарств не обойтись.

Инфекции в кишечнике, вызванные анаэробными микроорганизмами, чаще протекают в таких формах:

  • гастроэнтерит;
  • колит;
  • энтерит;
  • энтероколит.

Очень важно распознать инфекцию в кишечнике и отличить ее от пищевого отравления. Только врач может поставить правильный диагноз, назначить лечение и подобрать необходимые лекарства.

Лекарства на основе плесени против микробов

Многие сталкивались с негативным воздействием плесени:

  • испорченные продукты;
  • разрушение ткани и древесины;
  • заражение растений и семян.
  • плесень в помещениях.

Но не все знают, что из плесени делают лекарства для борьбы против микроорганизмов. Выработка плесневыми грибами метаболитов применяется в изготовлении многих антибиотиков. Самый первый и известный всем лекарственный препарат «Пенициллин» был получен на основе плесени. Антибиотики группы цефалоспорина были выделены в 1948 году из плесени Cephalosporium acremonium и применены против тифа. Выделенный из плесени циклоспорин является мощным иммунодепрессивным препаратом. Его применяют при трансплантации, пересадке органов и других операций.

Многие препараты, выделенные из плесени, являются токсичными и принимаются строго по указанию врача.

Растения-антибиотики против микроорганизмов

Последние отзывы о препаратах говорят о том, что их применение против микробов приводит к тому, что у них возникает устойчивость и невосприимчивость к ним. Лечебные растения на протяжении многих лет способны не только повышать иммунитет, но и работать как антибиотики.

Вот примеры действия на микробов лишь нескольких растений-антибиотиков:

  • масло эвкалипта (простудные инфекции);
  • алоэ (герпес, гнойные инфекции, синусит);
  • чеснок (туберкулез, дизентерия, молочница, стрептококк);
  • эхинацея (простудные инфекции);
  • солодка (малярия, холера, молочница, кишечная палочка).

В чем причина таких устойчивых антибактериальных свойств у растений? Растения имеют сложный химический состав, поэтому микробам тяжело адаптироваться под разрушающие действия растений. Если синтетические препараты имеют узкую направленность, то химические соединения у растений работают слаженно, сообща и во всех направлениях.

Чтобы уберечься от вредного воздействия бактерий, необходимо соблюдать правила гигиены, знать симптоматику их появления в организме и своевременно обращаться к врачу, который правильно подберет лекарственные препараты.