Урок "магнитное поле и его графическое изображение". Графическое изображение магнитного поля. Поток вектора магнитной индукции

Src="http://present5.com/presentation/3/46060323_437197076.pdf-img/46060323_437197076.pdf-1.jpg" alt="> Магнитное поле и его графическое изображение Неоднородное и однородное"> Магнитное поле и его графическое изображение Неоднородное и однородное магнитное поле Правило буравчика Правило правой руки Правило левой руки

Src="http://present5.com/presentation/3/46060323_437197076.pdf-img/46060323_437197076.pdf-2.jpg" alt=">Магнитное поле и его графическое изображение Для наглядного представления "> Магнитное поле и его графическое изображение Для наглядного представления магнитного поля мы пользовались магнитными линиями. Магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. На рисунке показано магнитная линия (как прямолинейная, так и криволинейная). По картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля.

Src="http://present5.com/presentation/3/46060323_437197076.pdf-img/46060323_437197076.pdf-3.jpg" alt=">Неоднородное и однородное магнитное поле Сила, с которой поле полосового магнита"> Неоднородное и однородное магнитное поле Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называют неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке. В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению. Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и наплавлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам – то точками.

Src="http://present5.com/presentation/3/46060323_437197076.pdf-img/46060323_437197076.pdf-4.jpg" alt=">Правило буравчика Известно, что направление линий магнитного поля тока связано с"> Правило буравчика Известно, что направление линий магнитного поля тока связано с направлением тока в проводнике. Эта связь может быть выражена простым правилом, которое называется правилом буравчика. Правило буравчика заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока. С помощью правила буравчика по направлению тока можно определить направлений линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля – направление тока, создающего это поле.

Src="http://present5.com/presentation/3/46060323_437197076.pdf-img/46060323_437197076.pdf-5.jpg" alt=">Правило правой руки Для определения направления линий магнитного поля соленоида удобнее"> Правило правой руки Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида. Соленоид, как и магнит, имеет полосы: тот конец соленоида, из которого магнитные линии выходят, называется северным полюсом, а тот, в который входят, - южным. Зная направления тока в соленоиде, по правилу правой руки можно определить направление магнитных линий внутри него, а значит, и его магнитные полюсы и наоборот. Правило правой руки можно применять и для определения направления линий магнитного поля в центре одиночного витка с током.

Src="http://present5.com/presentation/3/46060323_437197076.pdf-img/46060323_437197076.pdf-6.jpg" alt=">Правило правой руки для проводника с током Если правую руку "> Правило правой руки для проводника с током Если правую руку расположить так, чтобы большой палец был направлен по току, то остальные четыре пальца покажут направление линии магнитной индукции

: установить связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике. Ввести понятие неоднородного и однородного магнитных полей. На практике получить картину силовых линий магнитного поля постоянного магнита, соленоида, проводника по которому течет электрический ток. Систематизировать знания по основным вопросам темы “Электромагнитное поле”, продолжить учить решать качественные и экспериментальные задачи.

  • Развивающие : активизировать познавательную деятельность обучающихся на уроках физики. Развивать познавательную активность учащихся.
  • Воспитательные : содействовать формированию идеи познаваемости мира. Воспитывать трудолюбие, взаимопонимание между учениками и учителем.
  • Задачи:

    • Образовательная
    : углубление и расширение знаний о магнитном поле, обосновать связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике.

  • Воспитательная : показать причинно – следственные связи при изучении магнитного поля прямого тока и магнитных линий, что беспричинных явлений не существует, что опыт- критерий истинности знаний.
  • Развивающая : продолжить работу над формированием умений анализировать и обобщать знания о магнитном поле и его характеристиках. Вовлечение учащихся в активную практическую деятельность при выполнении экспериментов.
  • Оборудование. Интерактивная доска, прибор для демонстрации расположения железных опилок вокруг прямого проводника с током, прибор для демонстрации расположения железных опилок вокруг соленоида, источник тока, катушка на 220 Вт, полосовые магниты, подковообразные магниты, магнитные стрелки, медный провод, железные опилки, магнитики, компас. Презентация (Приложение 1 ).Дополнительный материал (Приложение 2 ).

    Тип урока: урок изучения нового материала.

    Вид урока: урок исследование.

    Ход урока

    1. Организационный этап

    Этап актуализации знаний и действий.

    2. Мотивационный этап

    • Получение научного факта о связи между направлением линий магнитного поля тока с направлением тока в проводнике и в соленоиде.
    • Применение правила буравчика для определения направления линий магнитного поля по направлению тока.
    • Применение правила правой руки для определения направления линий магнитного поля по направлению тока.
    • Применение правила правой руки для определения направления линий магнитного поля по направлению тока в соленоиде.
    • Решение практических задач.
    • Подведение итогов.
    • Домашнее задание.

    Образовательные результаты, которые буду достигнуты учащимися:

    1. Учащиеся поймут смысл терминов: “неоднородное и однородное магнитное поле”, “магнитные линии неоднородного и однородного магнитных полей”.
    2. Школьники осознают зависимость между направлением линий магнитного поля тока с направлением тока в проводнике и в соленоиде.
    3. Ученики смогут решать практические задачи:

    – на определение направления линий магнитного поля тока по направлению тока в проводнике;
    – на определение направления линий магнитного поля тока по направлению тока в соленоиде;
    – по направлению тока в проводнике определять направление магнитных линий магнитного поля тока;
    – по направлению тока в соленоиде определять направление магнитных линий магнитного поля тока.

    1. Этап актуализации знаний и действий

    Магнетизм известен с пятого века до нашей эры, но изучение его сущности продвигалось очень медленно. Впервые свойства магнита были описаны в 1269 году. В этом же году ввели понятие магнитного полюса. Слово “магнит” (от греческого magnetis eitos. Минерал, состоящий из – FeO (31%) Fe 2 O 3 (69%)) означает название руды, добывавшейся в местности Магнессия (теперь это город Маниса в Турции). Магнит – “камень Геркулеса”, “любящий камень”, “мудрое железо”, и “царственный камень”.

    Слайд 1. Происхождение слова – магнит.
    Название это было придумано древнегреческим драматургом Еврипидом (в V век до н.э.) Богатые залежи магнитного железняка имеются на Урале, на Украине, в Карелии и Курской области. В настоящее время удалось создать искусственные магниты, обладающие большими магнитными свойствами, чем естественные. Материалом для них служат сплавы на основе железа, никеля, кобальта и некоторых других металлов.

    Слайд 2. Искусственные магниты.
    Магнит обладает на разных участках различной притягивающей силой, на полюсах эта сила наиболее заметна. Вам уже известно, что вокруг любого магнита существует магнитное поле. Это поле и притягивает железо к магниту.

    Слайд 3. Различная притягивающая сила магнитов на полюсах.
    Внешнее, расплавленное, ядро Земли находится в постоянном движении. В результате этого в нем возникают магнитные поля, формирующие в конечном итоге магнитное поле Земли.

    Слайд 4. Земной шар – большой магнит.
    Ранее вами изучены различные действия электрического тока, в частности – магнитное действие. Проявляется оно в том, что между проводниками с током возникают силы взаимодействия, которые называются магнитными. Первые опыты по обнаружению магнитного поля вокруг проводника с током провел Ганс Христиан Эрстед в 1820 году.

    Слайд 5. Опыт Ганса Христиана Эрстеда в 1820 году.

    Слайд 6. Схема опыта Ганса Христиана Эрстеда в 1820 году.

    Его неожиданные и простые опыты с отклонением магнитной стрелки вблизи проводника с током были проверены рядом ученых. Эта проверка принесла и новые результаты,которые составили экспериментальную основу первой теории магнетизма.Он впервые высказал предположение о возможной связи электрического тока и магнетизма, а зафиксирована в1735 году в одном из научных лондонских журналов.Однако разгадка наступила только тогда, когда исследователи научились получать электрический ток.

    Рассмотрим серию опытов. Опыт по обнаружению магнитного поля тока. Соберем электрическую цепь по схеме. Расположим вблизи проводника магнитную стрелочку. Ответим на вопрос: “Как взаимодействуют проводник с током и магнитная стрелка, если цепь не замкнута?”.

    Слайд 7. Опыт по обнаружению магнитного поля тока.
    Ответим на вопрос: “Как взаимодействуют проводник с током и магнитная стрелка, если цепь замкнута?”.

    Слайд 8. Опыт по обнаружению магнитного поля тока.
    Ответим на вопрос: “Как взаимодействуют проводник с током и магнитная стрелка при размыкании цепи?”.

    Слайд 9. Опыт по обнаружению магнитного поля тока.
    Опыты навели на мысль о существовании вокруг проводника с током магнитного поля. Из опытов видно, что магнитная стрелка, которая может свободно вращаться вокруг своей оси, всегда устанавливается, ориентируясь определенным образом, в данной области магнитного поля. Исходя из этого, вводится понятие о направлении магнитного поля в данной точке.
    Железные опилки притягиваются к постоянному магниту. На основании имеющихся знаний утверждаем, что это происходит благодаря магнитному полю, возникающему вокруг постоянных магнитов.

    Слайд 10. Опыт. Железные опилки притягиваются к постоянному магниту..
    Делаем вывод о том, что источником магнитного поля являются:

    а) движущиеся электрические заряды;
    б) постоянные магниты.

    Слайд 11. Источники магнитного поля.
    С помощью железных опилок демонстрируем спектр магнитного поля прямого тока в данной точке.

    Слайд 12. Расположение металлических опилок вокруг прямолинейного проводника с током.
    Ответим на вопрос: “Как можно обнаружить магнитное поле?”.

    а) с помощью железных опилок. Попадая в магнитное поле, железные опилки намагничиваются и располагаются вдоль магнитных линий.
    б) по действию на проводник с током. Попадая в магнитное поле, проводник с током начинает двигаться, т.к. со стороны магнитного поля на него действует сила.

    Слайд 13. Варианты обнаружения магнитного поля.
    Определим на основании имеющихся знаний причины возникновения магнитного поля.
    Утверждаем, что магнитное поле порождается постоянными магнитами и движущимися электрическими зарядами и обнаруживается по действию на движущиеся электрические заряды. С удалением от источника магнитное поле ослабевает.

    Слайд 14. Магнитное поле и причины его возникновения. Сделаем выводы:
    Вокруг проводника с током (т.е. вокруг движущихся зарядов) существует магнитное поле. Оно действует на магнитную стрелку, отклоняя её.
    Электрический ток и магнитное поле неотделимы друг от друга.

    Ответим на вопросы :

    • Вокруг неподвижных зарядов существует … поле.
    • Вокруг подвижных зарядов … .

    Слайд 15. Выводы.

    2. Мотивация нового учебного материала

    Графическое изображение магнитного поля. Все магниты имеют два вида полюсов. Эти полюса называются южными (S) и северными (N) .

    Слайд 16. Полюса магнитов.
    Представление о магнитном поле можно получить с помощью современных методов. Но это можно сделать и с помощью железных опилок.

    Слайд 17. Силовые линии магнитного поля.
    Для того чтобы получить вид магнитного поля постоянного магнита необходимо проделать следующее: положить лист картона на полосовой магнит, и равномерно посыпьте его железными опилками. Не сдвигая, магнит и лист картона относительно друг друга, осторожно постучать по листу, чтобы опилки могли свободно перераспределяться. Следить, как выстраиваются опилки на картоне.

    Слайд 18. Силовые линии магнитного поля полосового магнита..
    Силовые линии магнитного поля – замкнутые линии. Вне магнитные силовые линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита.
    Линии, образуемые магнитными стрелками или железными опилками в магнитном поле, стали называть силовыми линиями магнитного поля.

    Слайд 19. Графическое изображение магнитного поля тока.
    Линии вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называются линиями магнитного поля .
    Магнитные линии магнитного поля тока представляют собой замкнутые кривые , охватывающие проводник.
    Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитных линей магнитного поля.

    3. Осмысление нового учебного материала

    Мы продолжаем познавать мир. Тема сегодняшнего урока “ Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле. Зависимость направления магнитных линий от направления тока в проводнике”.

    Из курса физики 8 класса вы узнали, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создается электронами, направленно движущимися вдоль проводника. Магнитное поле возникает и в том случае, когда ток проходит через раствор электролита, где носителями зарядов являются положительно и отрицательно заряженные ионы, движущиеся навстречу друг другу.

    Поскольку электрический ток – это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными. Напомним, что согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.

    Слайд 20. Направление магнитной линии в точке В
    Для наглядного представления магнитного поля мы пользовались магнитными линиями (их называют также линиями магнитного поля) Напомним, что магнитные линии это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. За направление магнитной линии условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенный в эту точку.

    Слайд 21. Магнитные линии являются замкнутыми.

    Слайд 22. Магнитное поле катушки и постоянного магнита.
    Катушка с током, как и магнитная стрелка, имеет 2 полюса – северный и южный.
    Магнитное действие катушки тем сильнее, чем больше витков в ней.
    При увеличении силы тока магнитное поле катушки усиливается.
    Магнитные линии являются замкнутыми.
    Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.

    Слайд 23. Магнитные линии прямолинейного проводника с током. Слайд 24. Рассмотрим магнитные линии соленоида.
    Неоднородное и однородное магнитное поле.
    Рассмотрим картину линий магнитного поля постоянного полосового магнита, изображенную на рисунке.

    Слайд 25. Представление магнитного поля с помощью магнитных линий.
    Из курса физики 8 класса мы знаем, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность. Вне магнита линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает.Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на неё поле магнита.Поскольку магнитные линии искривлены, то направление силы с которой поле действует на стрелку,тоже меняется от точке к точке. Таким образом, сила с которой поле полосового магнита действует на помещённую в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называется неоднородным.

    Линии неоднородного магнитного поля искривлены, их густо та меняется от точки к точке.
    Свойства магнитных линий:если магнитные линии искривлены и расположены с неодинаковой густотой, то магнитное поле – является неоднородным.

    Слайд 26. Свойства магнитных линий.

    В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению. Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Однородным является также поле внутри постоянного полосового магнита в центральной его части.

    Слайд 27. Свойства магнитных линий.

    Слайд 28. Однородные и неоднородные магнитные поля.

    Что нужно знать о магнитных линиях?

    Слайд 29. Что нужно знать о магнитных линиях?
    Для изображения магнитного поля пользуются следующим приемом.
    Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам – то точками. Как и в случае с током, каждый крестик – это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка – острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).

    Слайд 30. Изображение однородного магнитного поля.
    Для определения направления магнитных линий существует несколько способов.

    1. При помощи магнитной стрелки.
    2. По правилу буравчика.
    3. По правилу правой руки.

    Слайд 31. Определение направления магнитных линий.

    Первое правило правой руки: если обхватить проводник ладонью правой руки, направив отставленный большой палец вдоль тока, то остальные пальцы этой руки укажут направление силовых линий магнитного поля данного тока.

    Слайд 32. Первое правило правой руки.

    Второе правило правой руки: если обхватить соленоид ладонью правой руки, направив четыре пальца по току в витках, то отставленный большой палец укажет направление магнитных линий внутри соленоида.

    Слайд 33. Второе правило правой руки.
    Если поместить в некоторую точку магнитного поля рамку с током, то магнитное поле окажет на неё ориентирующее действие – рамка установится в магнитном поле определенным образом. Теперь к рамке нужно провести нормаль. По направлению нормали можно определить направление вектора магнитной индукции в этой точке магнитного поля.

    Правило буравчика: если ручку буравчика вращать по направлению тока в рамке, то направление хода буравчика покажет направление вектора магнитной индукции в данной точке поля.

    Слайд 34. Правило буравчика.
    Решение практических задач.

    Слайд 35. Какие утверждения являются верными?




    Слайд 36. Закончить фразу: “Вокруг проводника с током существует...

    а) Магнитное поле.
    б) Электрическое поле.
    в) Электрическое и магнитное поле.

    Слайд 37. Что нужно знать о магнитных линиях?

    1. Магнитные линии – замкнутые кривые, поэтому магнитное поле называют вихревым. Это означает, что в природе не существует магнитных зарядов.
    2. Чем гуще расположены магнитные линии, тем магнитное поле сильнее.
    3. Если магнитные линии расположены параллельно друг другу с одинаковой густотой, то такое магнитное поле называют однородным.
    4. Если магнитные линии искривлены – это значит, что сила, действующая на магнитную стрелку в разных точках магнитного поля, разная. Такое магнитное поле называют неоднородным.

    Слайд 38. На что указывает северный полюс магнитной стрелки? Какими бывают магнитные линии?

    Слайд 40. В какой точке магнитное поле самое сильное?

    Слайд 41. Определить направление тока по известному направлению магнитных линий.

    Слайд 42. Ответ. Определение направления тока по известному направлению магнитных линий.

    Слайд 43. Какой из вариантов соответствует схеме расположения магнитных линий вокруг прямолинейного проводника с током, расположенного перпендикулярно плоскости рисунка?

    Слайд 44. Какой из вариантов, соответствует схеме расположения магнитных линий вокруг прямолинейного проводника с током, расположенного вертикально?

    Слайд 45. Какой из вариантов соответствует схеме расположения магнитных линий вокруг соленоида?

    Слайд 46. Что собой представляют магнитные линии соленоида?

    4. Осознание учебного материала

    Вопросы : Слайд 47.

    1. Какие утверждения являются верными?

    А) В природе существуют электрические заряды.
    Б) В природе существуют магнитные заряды.
    В) В природе не существует электрических зарядов.
    Г) В природе не существует магнитных зарядов.

    а) А и Б, б) А и В, в) А и Г, г) Б, В и Г.

    2. Чем порождается магнитное поле?

    3. Чем создается магнитное поле постоянного магнита?

    4. Что такое магнитные линии?

    5. О чем можно судить по картине линий магнитного поля?

    6. Какое магнитное поле – однородное или неоднородное – образуется вокруг полосового магнита? вокруг прямолинейного проводника с током? внутри соленоида, длина которого значительно больше его диаметра?

    Слайд 49. Картины магнитных полей.

    Работа учащихся у доски.

    • Задание для первого человека: нарисовать магнитное поле прямолинейного проводника с током.
    • Задание для второго человека: нарисовать магнитное поле соленоида.
    • Задание для третьего человека: нарисовать магнитное поле постоянного магнита.

    Упражнение 33

    1. На рис. 88 изображен участок ВС проводника с током. Вокруг него в одной из плоскостей показаны линии магнитного поля, созданного этим током. Существует ли Магнитное поле в точке А?
    2. На рис. 88 изображены три точки: А, М, N. В какой из них магнитное поле тока, протекающего по проводнику ВС, будет действовать на магнитную стрелку с наибольшей силой? с наименьшей силой?

    5. Итог урока

    6. Домашнее задание

    §§43–45. Упр. 33, 34, 35.

    Литература

    1. Перышкин А.В., Гутник Е.М. Учебник для общеобразовательных учреждений “Физика-9”, 12 издание. – М.: Дрофа, 2009.
    2. Громов С.В . “Физика-9”: Учебник для общеобразовательных учреждений. 3-е изд. – М.: Просвещение, 2002.
    3. Пинский А.А., Разумовский В.Г. Учебник для общеобразовательных учреждений “Физика-8”. М.: Просвещение, 2003.
    4. “Основы методики преподавания физики. Общие вопросы” под редакцией Л.И. Резникова, А.В. Перышкина, П.А. Знаменского. – М.: Просвещение, 1965.
    5. Научно-методический журнал “Физика в школе”, Издательство “Школа-Пресс”, 1999, 6.
    6. Журнал “Физика в школе”. – 2003. – 7. – с.30.
    7. Дубинин Э.М., Подгорный И.М. Магнитное поле небесных тел. – М.: Знание, 1998.
    8. “Основы методики преподавания физики. Общие вопросы” / под редакцией Л.И. Резникова, А.В. Перышкина, П.А. Знаменского – “Просвещение”, Москва, 1965.
    9. Громов С.В., Родина Н.А. Физика-9: Учебник для общеобразовательных учреждений– 3-е изд. – М.: Просвещение, 2002.
    10. Лукашик В.И. Сборник вопросов и задач по физике. 7–9 кл. – М.: Просвещение, 2002. – 192с.
    11. Марон А.Е., Марон Е.А. Контрольные тексты по физике. 7–9 кл. – М.: Просвещение, 2002. – 79с.

    «Магнитное поле и его графическое изображение. Неоднородное и однородное магнитные поля»

    Цель урока: обеспечение условия для получения учащимися знаний о магнитном поле c пособ ахего графического изображения

    Задачи:

    образовательные:

    выявить существование магнитного поля в процессе решения поставленной ситуации;

    дать определение магнитного поля;

    исследовать зависимость величины магнитного поля магнита от расстояния до него;

    исследовать взаимодействие полюсов двух магнитов;

    выяснить свойства магнитного поля;

    познакомиться с изображением магнитного поля через силовые линии.

    развивающие: развитие логического мышления; умения анализировать, сравнивать, систематизировать информацию;

    воспитательные: формировать навыки работы в группах;

    формировать ответственность в выполнении учебной задачи.

    Тип урока: изучение нового материала.

    Оборудование: магниты (полосовые, дугообразные) по количеству учащихся, железные опилки, белый лист.

    Ход урока

    1) Организационный этап. Девизом нашего урока станут слова Р.Декарта: «…Для того, чтобы усовершенствовать ум, надо больше размышлять, чем заучивать».

    2) Постановка цели и задач урока. Мотивация учебной деятельности учащихся.

    Ситуация. Много веков назад это было. В поисках овцы пастух зашёл в незнакомые места, в горы. Кругом лежали чёрные камни. Он с изумлением заметил, что его палку с железным наконечником камни притягивают к себе, словно её хватает и держит какая-то невидимая рука. Поражённый чудесной силой камней пастух принёс их в ближайший город. Здесь каждый мог убедиться в том, что рассказ пастуха не выдумка – удивительные камни притягивали к себе железные вещи! Более того, стоило потереть таким камнем лезвие ножа, и тот сам начинал притягивать железные предметы: гвозди, наконечники стрел. Будто из камня, принесённого с гор, в них перетекала какая-то сила, разумеется, таинственная.

    Любящий камень» - такое поэтическое название дали китайцы этому камню. Любящий камень (тшу-ши), говорят китайцы, притягивает железо, как нежная мать привлекает своих детей.

    Учитель. О каком камне идёт речь в предании? (О магните.)

    Тела, длительное время сохраняющие намагниченность, называются постоянными магнитами или просто магнитами.

    Учитель. У вас на партах лежат магниты Я предлагаю взять магниты и поднести их друг к другу, не касаясь. Что вы наблюдаете? Как объясняете? Почему происходит взаимодействие магнитов? Выходит между магнитами есть нечто такое, что мы не видим и не можем потрогать руками. Тогда это называют особой формой материи – полем. Магнитным полем. Выясняем тему урока и ставим цель урока – изучение магнитного поля. Не просто понятия магнитного поля, а его свойств.

    3 ) Первичное усвоение новых знаний.

    Итак записываем тему в тетради. Магнитное поле и его графическое изображение. Неоднородное и однородное магнитные поля. Цель нашего урока: выявление основных свойств магнитного поля и способов его изображения

    Итак немного о магнитах (сайт ИНФОУРОК, Магнитное поле)

    (просматривая фильм записываем определения, свойства поля, делаем зарисовки)

    Магнитное поле – особая форма материи(силовое поле), которое образуется вокруг движущихся заряженых частиц)

    1.Магнитное поле порождается только движущимися зарядами.

    2. Магнитное поле невидимо, но материально. Обнаружить его можно только по тому действию, которое оно оказывает.

    3. Магнитное поле можно обнаружить по его действую на магнитную стрелку и на другие движущиеся тела.

    Изобразить магнитное поле можно с помощью магнитных линий.

    Магнитные линии - это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

    Их мы можем увидеть, проделав опыт с железными опилками.

    Опыт: На белый лист, под которым находится магнит, медленно сыпем железные опилки. Опилки выстраиваются вдоль линий магнитного поля.

    Обратите внимание, что в тех областях, где магнитное поле более сильное – на полюсах, магнитные линии располагаются ближе друг к другу, т.е. гуще. Чем в тех местах, где поле слабее.

    Особенности магнитных линий (записать)

    1. Магнитные линии можно провести через любую точку пространства.

    2. Они замкнуты и не пересекаются.Средняя линия идет бесконечно.

    3.Магнитная линия проводится так, чтобы касательная в каждой точке линии совпадала с осью магнитной стрелки, помещенной в эту точку.

    4. За направление магнитной линии принято направление северного полюса стрелок компаса, расположенных вдоль этой линии.

    5. Более сильное магнитное поле изображается большей концентрацией.

    Рассмотрим силовые линии катушки с током. С понятием соленоид мы знакомы с 8 класса.

    Соленоид - это катушка в виде намотанного на цилиндрическую поверхность изолированного проводника, по которому течёт электрический ток (показать)

    Правило стрелы (изобразить в тетрадь)

    Однородное поле(изобразить в тетрадь)

    Неоднородное поле(изобразить в тетрадь)

    4 ) Первичная проверка понимания заполнить таблицы

    Результат – графическое изображение линий магнитного поля

    Полосовой магнит

    Дугообразный магнит

    Неоднородное магнитное поле

    Однородное магнитное поле

    Расположение линий

    Искривлены, их густота различна

    Параллельны, их густота одинакова

    Густота линий

    неодинакова

    Одинакова

    неодинакова

    одинакова

    5 ) Первичное закрепление . Самостоятельная работа с взаимопроверкой.

    1. Поворот магнитной стрелки вблизи проводника с током объясняется тем, что на нее действует …

    А. …магнитное поле, созданное движущимися в проводнике зарядами.

    Б. …электрическое поле, созданное зарядами проводника.

    В. … электрическое поле, созданное движущимися в проводнике зарядами.

    2. Магнитные поля создаются…

    А. …как неподвижными, так и движущимися электрическими зарядами.

    Б. …неподвижными электрическими зарядами.

    В. …движущимися электрическими зарядами.

    3. Линии магнитного поля – это …

    А. … линии, совпадающие с формой магнита.

    Б. ... линии, по которым движется положительный заряд, попадая в магнитное поле.

    В. …воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

    4. Линии магнитного поля в пространстве вне постоянного магнита …

    А. …начинаются на северном полюсе магнита, заканчиваются на бесконечности.

    Б. … начинаются на северном полюсе магнита, заканчиваются на южном.

    В. … начинаются на полюсе магнита, заканчиваются на бесконечности.

    Г. …начинаются на южном полюсе магнита, заканчиваются на северном.

    5. Конфигурации линий магнитного поля соленоида сходны с картиной силовых линий …

    А. …полосового магнита.

    Б. …подковообразного магнита.

    В. …прямого провода с током.

    Проверка по эталону и самооценивание:

    3 правильных ответов – оценка 3,

    4 правильных ответов – оценка 4,

    5 правильных ответов – оценка 5.

    6) Информация о домашнем задании, инструктаж по его выполнению

    7) Ре флексия (подведение итогов занятия)

    Выберите начало фразы и продолжите предложение.

      сегодня я узнал…

      было интересно…

      было трудно…

      я выполнял задания…

      я понял, что…

      теперь я могу…

      я почувствовал, что…

      я приобрел…

      я научился…

      у меня получилось …

    • я попробую…

      меня удивило…

      урок дал мне для жизни…

      Постоянные магниты N – северный полюс магнита S – южный полюс магнита Постоянные магниты Постоянные магниты – тела, сохраняющие длительное время намагниченность. Дугообразный магнит Полосовой магнит N N S S Полюс - место магнита, где обнаруживается наиболее сильное действие






      Гипотеза Ампера ++ е - SN Согласно гипотезы Ампера (г.) в атомах и молекулах в результате движения электронов возникают кольцевые токи. В 1897г. гипотезу подтвердил английский учёный Томсон, а в 1910г. измерил токи американский учёный Милликен. В чем же причины намагничивания? При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом.


      Магнитное поле постоянных магнитов Магнитное поле составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц. Представление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками.


      Магнитные поля изображаются с помощью магнитных линий. Это воображаемые линии, вдоль которых располагаются магнитные стрелки, помещенные в магнитное поле. Магнитные линии можно провести через любую точку магнитного поля, они имеют направление и всегда замкнуты. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита.




      НЕОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ Сила, с которой действует поле магнита может быть различной как по модулю, так и по направлению. Такое поле называют неоднородным. Характеристики неоднородного магнитного поля: магнитные линии искривлены; густота магнитных линий различна; сила, с которой магнитное поле действует на магнитную стрелку, различна в разных точках этого поля по величине и направлению.


      Где существует неоднородное магнитное поле? Вокруг прямого проводника с током. На рисунке изображен участок такого проводника, расположенный перпендикулярно плоскости чертежа. Ток направлен от нас. Видно, что магнитные линии представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника




      ОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ Характеристики однородного магнитного поля: магнитные линии параллельные прямые; густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, одинакова во всех точках этого поля по величине и направлению.






      Если на Солнце происходит мощная вспышка, то усиливается солнечный ветер. Это вызывает возмущение земного магнитного поля и приводит к магнитной буре. Пролетающие мимо Земли частицы солнечного ветра создают дополнительные магнитные поля. Магнитные бури причиняют серьёзный вред: они оказывают сильное влияние на радиосвязь, на линии электросвязи, многие измерительные приборы показывают неверные результаты. Это интересно


      Земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно. В состав космического излучения, кроме электронов, протонов, входят и другие частицы, движущиеся в пространстве с огромными скоростями. Это интересно


      Результатом взаимодействия солнечного ветра с магнитным полем Земли является полярное сияние. Вторгаясь в земную атмосферу, частицы солнечного ветра (в основном электроны и протоны) направляются магнитным полем и определённым образом фокусируются. Сталкиваясь с атомами и молекулами атмосферного воздуха, они ионизируют и возбуждают их, в результате чего возникает свечение, которое называют полярным сиянием. Это интересно


      Изучением влияния различных факторов погодных условий на организм здорового и больного человека занимается специальная дисциплина - биометрология. Магнитные бури вносят разлад в работу сердечно -сосудистой, дыхательной и нервной системы, а также изменяют вязкость крови; у больных атеросклерозом и тромбофлебитом она становится гуще и быстрее свёртывается, а у здоровых людей, напротив, повышается. Это интересно


      1.Какие тела называют постоянными магнитами? 2.Чем порождается магнитное поле постоянного магнита? 3.Что называют магнитными полюсами магнита? 4.Чем отличаются однородные магнитные поля от неоднородных? 5.Как взаимодействуют между собой полюсы магнитов? 6.Объясните, почему иголка притягивает скрепку? (см.рис) Закрепление

      Темой этого урока будет магнитное поле и его графическое изображение. Мы обсудим неоднородное и однородное магнитное поле. Для начала дадим определение магнитному полю, расскажем, с чем оно связано и какими оно обладает свойствами. Научимся изображать его на графиках. Также узнаем, как определяется неоднородное и однородное магнитное поле.

      Cегодня мы в первую очередь повторим, что такое магнитное поле. Магнитное поле - силовое поле, которое образуется вокруг проводника, по которому протекает электрический ток. Оно связано с движущимися зарядами .

      Теперь необходимо отметить свойства магнитного поля . Вы знаете, что с зарядом связано несколько полей. В частности, электрическое поле. Но мы будем обсуждать именно магнитное поле, создаваемое движущимися зарядами. У магнитного поля несколько свойств. Первое: магнитное поле создается движущимися электрическими зарядами . Иными словами, магнитное поле образуется вокруг проводника, по которому протекает электрический ток. Следующее свойство, которое говорит, как магнитное поле определяется. Определяется оно по действию на другой движущийся электрический заряд. Или, говорят, на другой электрический ток. Наличие магнитного поля мы можем определить по действию на стрелку компаса, на т.н. магнитную стрелку.

      Еще одно свойство: магнитное поле оказывает силовое действие . Поэтому говорят, что магнитное поле материально.

      Эти три свойства являются отличительными чертами магнитного поля. После того, как мы определились с тем, что такое магнитное поле, и определили свойства такого поля, необходимо сказать, как магнитное поле исследуют. В первую очередь магнитное поле исследуется при помощи рамки с током. Если мы возьмем проводник, сделаем из этого проводника круглую или квадратную рамку и по этой рамке будем пропускать электрический ток, то в магнитном поле эта рамка будет определенным образом поворачиваться.

      Рис. 1. Рамка с током поворачивается во внешнем магнитном поле

      По тому, как поворачивается эта рамка, мы можем судить о магнитном поле . Только здесь есть одно важное условие: рамка должна быть очень маленькая или она должна быть очень малых размеров по сравнению с расстояниями, на которых мы изучаем магнитное поле. Такую рамку называют контур с током.

      Исследовать магнитное поле мы можем и при помощи магнитных стрелок, размещая их в магнитном поле и наблюдая за их поведением.

      Рис. 2. Действие магнитного поля на магнитные стрелки

      Следующее, о чем мы будем говорить, о том, как можно изобразить магнитное поле. В результате исследований, которые были проведены в течение долгого времени, стало понятно, что магнитное поле удобно изображать при помощи магнитных линий. Чтобы пронаблюдать магнитные линии , проделаем один эксперимент. Для нашего эксперимента потребуется постоянный магнит, металлические железные опилки, стекло и лист белой бумаги.

      Рис. 3. Железные опилки выстраиваются вдоль линий магнитного поля

      Магнит накрываем стеклянной пластиной, а сверху кладем лист бумаги, белый лист бумаги. Сверху на лист бумаги сыплем железные опилки. В результате будет видно, как проявляются линии магнитного поля. То, что мы увидим, - это линии магнитного поля постоянного магнита. Их еще называют иногда спектром магнитных линий. Заметьте, что линии существуют по всем трем направлениям, не только в плоскости.

      Магнитная линия - воображаемая линия, вдоль которой выстраивались бы оси магнитных стрелок.

      Рис. 4. Схематическое изображение магнитной линии

      Посмотрите, на рисунке представлено следующее: линия изогнутая, направление магнитной линии определяется направлением магнитной стрелки. Направление указывает северный полюс магнитной стрелки. Очень удобно изображать линии именно при помощи стрелок.

      Рис. 5. Как обозначается направление силовых линий

      Теперь поговорим о свойствах магнитных линий. Во-первых, у магнитных линий нет ни начала, ни конца. Это линии замкнутые. Раз магнитные линии замкнуты, то не существует магнитных зарядов.

      Второе: это линии, которые не пересекаются, не прерываются, не свиваются каким-либо образом. При помощи магнитных линий мы можем характеризовать магнитное поле, представить себе не только его форму, но и говорить о силовом воздействии. Если изображать большую густоту таких линий, то в этом месте, в этой точке пространства, у нас силовое действие будет больше.

      Если линии располагаются параллельно друг другу, их густота одинакова, то в этом случае говорят, что магнитное поле однородно . Если, наоборот, этого не выполняется, т.е. густота разная, линии искривлены, то такое поле будет называться неоднородным . В заключение урока хотелось бы обратить ваше внимание на следующие рисунки.

      Рис. 6. Неоднородное магнитное поле

      Во-первых, теперь мы уже знаем, что магнитные линии можно изображать стрелками. И рисунок представляет именно неоднородное магнитное поле. Густота в разных местах разная, значит, силовое воздействие этого поля на магнитную стрелку будет разным.

      На следующем рисунке представлено уже однородное поле. Линии направлены в одну сторону, и их густота одинакова.

      Рис. 7. Однородное магнитное поле

      Однородное магнитное поле - это поле, которое встречается внутри катушки с большим числом витков или внутри прямолинейного, полосового магнита. Магнитное поле вне полосового магнита или то, что мы сегодня наблюдали на уроке, это поле неоднородное. Чтобы все это до конца усвоить, давайте посмотрим на таблицу.

      Список дополнительной литературы:

      Белкин И.К. Электрическое и магнитное поля // Квант. — 1984. — № 3. — С. 28-31. Кикоин А.К. Откуда берется магнетизм? // Квант. — 1992. — № 3. — С. 37-39,42 Леенсон И. Загадки магнитной стрелки // Квант. — 2009. — № 3. — С. 39-40. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. - М., 1974