Свойства собирающей линзы в физике. Линзы. Оптические приборы

Простые линзы бывают двух различных типов:положительные и отрицательные. Эти два типа известны также как собирательные и рассеивающие, потому что положительные линзы собирают свет и образуют изображение источника, тогда как отрицательные линзы рассеивают свет.

Характеристики простых линз

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленнойдисперсией света, - ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз: Собирающие : 1 - двояковыпуклая 2 - плоско-выпуклая 3 - вогнуто-выпуклая (положительный(выпуклый) мениск) Рассеивающие : 4 - двояковогнутая 5 - плоско-вогнутая 6 - выпукло-вогнутая (отрицательный(вогнутый) мениск)

Использование линзы для изменения формы волнового фронта. Здесь плоский волновой фронт становится сферическим при прохождении через линзу

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

Основные элементы линзы: NN - оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре). Примечание . Ход лучей показан, как в идеализированной (тонкой) линзе, без указания на преломление на реальной границе раздела сред. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса .

Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса - фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

Мнимый фокус рассеивающей линзы

Сказанное о фокусе на оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на наклонной линии, проходящей через центр линзы под углом к оптической оси. Плоскость, перпендикулярная оптической оси, расположенная в фокусе линзы, называется фокальной плоскостью .

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от главных точек линзы.

а) Типы линз .

Оптические линзы, которые в середине толще, чем на краю, называются собирающими; напротив, если край толще, чем середина, то линзы действуют как

рассеивающие. По форме поперечного сечения различают: двояковыпуклые, плоско-выпуклые, вогнуто-выпуклые собирающие линзы; двояковогнутые, плоско-вогнутые, выпукло-вогнутые рассеивающие линзы.

Тонкие линзы в первом приближении можно рассматривать как две сложенные тонкие призмы (рис.217, 218). Ход лучей можно проследить на шайбе Гартля.

Собирающая линза концентрирует параллельные лучи в одной точке за линзой, в фокусе (рис.219)

Рассеивающая линза превращает параллельный пучок лучей в расходящийся пучок, который кажется выходящим из фокуса (рис.220).

Линза является оптической деталью, которая производится из прозрачного материала (оптического стекла или пластмассы) и имеет две преломляющие полированные поверхности (плоские или сферические). Возраст самой старой линзы, найденной археологами в Нимруде, составляет около 3000 лет.

Это говорит о том, что люди с очень древних времен интересовались оптикой и пытались создать с ее помощью различное оснащение, помогающее в повседневной жизни. Римские военные при помощи линз добывали огонь в походных условиях, а император Нерон использовал вогнутый изумруд как средство от своей близорукости.

Со временем оптика тесно интегрировалась в медицину, что позволило создавать такие устройства для коррекции зрения, как окуляры, очки и контактные линзы. Кроме того, сами линзы получили широкое распространение в различной высокоточной технике, которая позволила в корне изменить представления человека об окружающем его мире.

Что такое линза, какие она имеет свойства и особенности?

Любую линзу в разрезе можно представить, как две поставленные друг на друга призмы. В зависимости от того, какой стороной они соприкасаются друг с другом, будет различаться и оптическое действие линзы, а также ее вид (выпуклая или вогнутая).

Рассмотрим, что такое линза, более подробно. К примеру, если взять кусок обычного оконного стекла, грани которого параллельны, мы получим совершенно незначительное искажение видимого изображения. То есть, луч света входящий в стекло преломится, а после прохождения второй грани и попадания в воздух вернет прежнее значение угла с небольшим смещением, которое зависит от толщины стекла. Но если плоскости стекла будут находится под углом относительно друг друга (например, как в призме), то луч, вне зависимости от его угла, после попадания в данное стеклянное тело будет преломлен и выйдет в его основании. Это правило, позволяющее управлять световым потоком, лежит в основе всех линз. Стоит отметить, что все особенности линз и оптических приборов на их основе .

Какие существуют виды линз в физике?

Существует только два основных вида линз: вогнутые и выпуклые, также их называют рассеивающими и собирающими. Они позволяют разделить пучок света или наоборот сконцентрировать его в одной точке на определенном фокусном расстоянии.

Выпуклая линза имеет тонкие края и утолщенный центр, благодаря чему в разрезе
представляется как две соединенные основаниями призмы. Эта ее особенность позволяет собирать все лучи света, попадающие под разными углами, на одну точку в центре. Именно такими приспособлениями пользовались римляне для разжигания огня, поскольку сфокусированные лучи солнечного света позволяли создать на небольшом участке легко воспламеняемого предмета очень высокую температуру.

В каких приборах и для чего используются линзы?

С давних пор люди знали, что такое линза. Данная деталь использовалась в первых очках, которые появились в 1280-х годах в Италии. Позже были созданы подзорные трубы, телескопы, бинокли и многие другие устройства, которые состояли из множества различных линз и позволяли значительно расширить возможности человеческого глаза. На тех же принципах были построены и микроскопы, которые оказали значительное влияние на развитие всей науки в целом.

Первые телевизоры оснащались огромными линзами, которые увеличивали изображение
с миниатюрных экранов и давали возможность более детально рассмотреть картинку. Вся видео- и фототехника, начиная с самых первых устройств, оснащается линзами. Они устанавливаются в объектив для того, чтобы оператор или фотограф мог навести резкость или произвести приближение/отдаление изображения в кадре.

Большинство современных мобильных телефонов имеют камеры с автофокусировкой, в которых используются миниатюрные линзы, позволяющие получать четкие фотографии объектов, находящихся в паре сантиметров или в нескольких километрах от объектива устройства.

Не стоит забывать о современных космических телескопах (таких, как Хаббл) и лабораторных микроскопах, на которых также установлены высокоточные линзы. Данные приборы дают человечеству возможность увидеть то, что ранее было недоступно для нашего зрения. Благодаря им можно более детально изучить окружающий нас мир.

Что такое контактная линза и зачем она нужна?

Контактные линзы - это небольшие прозрачные линзы, изготавливаемые из мягких или
жестких материалов, которые предназначены для непосредственного ношения на глазу в целях коррекции зрения. Они были разработаны еще Леонардо Да Винчи в 1508 году, но изготовили их лишь в 1888 году. Изначально линзы производились только из твердых материалов, но со временем были синтезированы новые полимеры, которые позволили создать мягкие линзы, практически не ощутимые при ежедневном использовании.

Если вы хотите приобрести контактные линзы, тогда прочтите статью , чтобы больше узнать о данном приспособлении.

Линзы. Оптические приборы

Линзой называется прозрачное тело, которое ограничено двумя криволинейными поверхностями.

Линза называется тонкой , если ее толщина значительно меньше радиусов кривизны ее поверхностей.

Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью линзы. Если одна из поверхностей линзы является плоскостью, то оптическая ось проходит перпендикулярно к ней (рис.1).


Рис.1.

Точка тонкой линзы, через которую лучи проходят без изменения своего направления, называется оптическим центром линзы. Главная оптическая ось проходит через оптический центр.

Любая другая прямая, проходящая через оптический центр линзы, называется побочной осью линзы. Точка, в которой сходятся лучи света, идущие параллельно главной оптической оси, называется фокусом .

Плоскость, проходящая через фокус перпендикулярно к главной оптической оси, называется фокальной плоскостью .

Формула тонкой линзы (рис.2):

В формуле (1) величины a 1 , a 2 , r 1 и r 2 считаются положительными, если направления отсчета их от оптического центра линзы совпадают с направлением распространения света; в противном случае эти величины считаются отрицательными.

Линзы являются основным элементом многих оптических приборов.

Глаз, например, представляет собой оптический прибор, где роль линз выполняют роговица и хрусталик, а изображение предмета получается на сетчатке глаза.

Углом зрения называется угол, образованный лучами, которые проходят от крайних точек предмета или его изображения через оптический центр хрусталика глаза.

Многие оптические приборы предназначены для получения изображений предметов на экранах, на светочувствительных пленках или в глазу.

Видимое увеличение оптического прибора:

Линза в оптическом приборе, обращенная к предмету (объекту), называется объективом; линза, обращенная к глазу, называется окуляром. В технических приборах объектив и окуляр состоят из нескольких линз. Этим частично устраняются погрешности в изображениях.

Увеличение лупы (рис.3):

Величина, обратная фокусному расстоянию, называется оптической силой линзы: В = 1/f . За единицу оптической силы линзы принята диоптрия (D ), равная оптической силе линзы с фокусным расстоянием 1 м.

Оптическая сила двух тонких линз, сложенных вместе, равна сумме их оптических сил.

Линзой называется прозрачное тело, ограниченное двумя криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Линзы делятся на выпуклые и вогнутые.

Линзы, у которых середина толще, чем края, называются выпуклыми. Линзы, у которых середина тоньше, чем края, называются вогнутыми.

Если показатель преломления линзы больше, чем показатель преломления окружающей среды, то в выпуклой линзе параллельный пучок лучей после преломления преобразуется в сходящий пучок. Такие линзы называются собирающими (рис. 89, а). Если в линзе параллельный пучок преобразуется в расходящийся пучок, то эти линзы называются рассеивающими (рис. 89, б). Вогнутые линзы, у которых внешней средой служит воздух, являются рассеивающими.

O 1 , О 2 - геометрические центры сферических поверхностей, ограничивающих линзу. Прямая О 1 О 2 , соединяющая центры этих сферических поверхностей, называется главной оптической осью. Обычно рассматриваем тонкие линзы, у которых толщина мала по сравнению с радиусами кривизны ее поверхностей, поэтому точки C 1 и С 2 (вершины сегментов) лежат близко друг к другу, их можно заменить одной точкой О, называемой оптическим центром линзы (см. рис. 89а). Всякая прямая, проведенная через оптический центр линзы под углом к главной оптической оси, называется побочной оптической осью (А 1 A 2 B 1 B 2).

Если на собирающую линзу падает пучок лучей, параллельных главной оптической оси, то после преломления в линзе они собираются в одной точке F, которая называется главным фокусом линзы (рис. 90, а).

В фокусе рассеивающей линзы пересекаются продолжения лучей, которые до преломления были параллельны ее главной оптической оси (рис. 90, б). Фокус рассеивающей линзы мнимый. Главных фокусов - два; они расположены на главной оптической оси на одинаковом расстоянии от оптического центра линзы по разные стороны.

Величина, обратная фокусному расстоянию линзы, называется ее оптической силой . Оптическая сила линзы - D.

За единицу оптической силы линзы в СИ принимают диоптрию. Диоптрия - оптическая сила линзы, фокусное расстояние которой равно 1 м.

Оптическая сила собирающей линзы положительная, рассеивающей - отрицательная.

Плоскость, проходящая через главный фокус линзы перпендикулярно к главной оптической оси, называется фокальной (рис. 91). Пучок лучей, падающих на линзу параллельно какой-либо побочной оптической оси, собирается в точке пересечения этой оси с фокальной плоскостью.

Построение изображения точки и предмета в собирающей линзе.

Для построения изображения в линзе достаточно взять по два луча от каждой точки предмета и найти их точку пересечения после преломления в линзе. Удобно пользоваться лучами, ход которых после преломления в линзе известен. Так, луч, падающий на линзу параллельно главной оптической оси, после преломления в линзе проходит через главный фокус; луч, проходящий через оптический центр линзы, не преломляется; луч, проходящий через главный фокус линзы, после преломления идет параллельно главной оптической оси; луч, падающий на линзу параллельно побочной оптической оси, после преломления в линзе проходит через точку пересечения оси с фокальной плоскостью.

Пусть светящаяся точка S лежит на главной оптической оси.

Выбираем произвольно луч и параллельно ему проводим побочную оптическую ось (рис. 92). Через точку пересечения побочной оптической оси с фокальной плоскостью пройдет выбранный луч после преломления в линзе. Точка пересечения данного луча с главной оптической осью (второй луч) даст действительное изображение точки S - S`.

Рассмотрим построение изображения предмета в выпуклой линзе.

Пусть точка лежит вне главной оптической оси, тогда изображение S` можно построить с помощью любых двух лучей, приведенных на рис. 93.

Если предмет расположен в бесконечности, то лучи пересекутся в фокусе (рис. 94).

Если предмет расположен за точкой двойного фокуса, то изображение получится действительным, обратным, уменьшенным (фотоаппарат, глаз) (рис. 95).

В отличие от призматических и других рассеивателей линзы в осветительных приборах практически всегда применяются для точечного освещения. Как правило, оптические системы с применением линз состоят из рефлектора (отражателя) и одной или нескольких линз.

Собирающие линзы направляют свет от расположенного в фокальной точке источника в параллельный пучок света. Как правило, они применяются в осветительных конструкциях вместе с отражателем. Отражатель направляет световой поток в виде луча в нужном направлении, а линза - концентрирует (собирает) свет. Расстояние между собирающей линзой и источником света обычно варьируется, что позволяет регулировать угол, который нужно получить.

Система из и источника света и собирающей линзы (слева) и аналогичная система из источника и линзы Френеля (справа). Угол светового потока можно менять путем изменения расстояния между линзой и источником света.

Линзы Френеля состоят из отдельных примыкающих друг к другу концентрических колецевидной формы сегментов. Свое название они получили в честь французского физика Огюстена Френеля, впервые предложившего и реализовавшего на практике такую конструкцию в осветительных приборах маяков. Оптический эффект от таких линз сопоставим с эффектом использования традиционных линз схожей формы или кривизны.

Однако линзы Френеля обладают рядом преимуществ, из-за которых они находят широкое применение в осветительных конструкциях. В частности, они значительно тоньше и дешевле в изготовлении по сравнению с собирающими линзами. Этими особенностями не преминули воспользоваться дизайнеры Франсиско Гомес Пас и Паоло Риццатто в работе над ярким и волшебным модельным рядом .

Выполненные из легкого и тонкого поликарбоната, «листы» Hope, как их называет Гомес Паз, представляют собой не что иное, как тонкие и большие рассеивающие линзы Френеля, создающие волшебное, искристое и объемное свечение за счет покрытия поликарбонатной пленкой, текстурированной микропризмами.

Паоло Риццатто так описал проект:
«Почему хрустальные люстры потеряли свою актуальность? Потому что слишком дороги, очень сложны в обращении и производстве. Мы же разложили саму идею на составляющие и осовременили каждую из них».

А вот что рассказал по этому поводу его коллега:
«Несколько лет назад наше внимание привлекли чудесные возможности линз Френеля. Их геометрические особенности позволяют получить те же оптические свойства, что и у обычных линз, но на абсолютно плоской поверхности лепестков.

Однако применение линз Френеля для создания подобных уникальных продуктов, сочетающих в себе великолепный дизайнерский проект с современными технологическими решениями, встречается все же нечасто.

Широкое применение такие линзы нашли в освещении сцен прожекторами, где они позволяют создать неравномерное световое пятно с мягкими краями, отлично смешиваясь с общей световой композицией. В наше время они также получили распространение и в архитектурных схемах освещения, в тех случаях, если требуется индивидуальная регулировка угла света, когда расстояние между освещаемым объектом и светильником может меняться.

Оптические показатели линзы Френеля ограничены так называемой хроматической аберрацией, образующейся на стыках ее сегментов. Из-за неё на краях изображений предметов появляется радужная кайма. Тот факт, что кажущаяся недостатком особенность линзы была превращена в достоинство в очередной раз подчеркивает силу новаторской мысли авторов и их отношение к деталям.

Осветительная конструкция маяка, в которой применяются линзы Френеля. На снимке хорошо видна кольцевая структура линзы.

Проецирующие системы состоят либо из эллиптического отражателя, либо из сочетания параболического отражателя и конденсора, направляющего свет на коллиматор, который может также быть дополнен оптическими аксессуарами. После чего свет проецируется на плоскость.

Системы прожекторов: равномерно освещенный коллиматор (1) направляет световой поток через систему линз (2). Слева - параболический отражатель, с высоким показателем светоотдачи, справа - конденсор, позволяющий добиться высокой разрешающей способности.

Размер изображения и угол света определяется особенностями коллиматора. Простые шторки или ирисовые диафрагмы, формируют световые лучи разных размеров. Контурные маски могут использоваться для создания различныз контуров луча света. Проецировать логотипы или изображения можно с помощью гобо-линзы с нанесёнными на них рисунками.

Различные углы света или размер изображения может выбираться в зависимости от фокусного расстояния линз. В отличие от осветительных приборов с применением линз Френеля, здесь представляется возможным создать световые лучи с четкими контурами. Мягких контуров можно достичь смещением фокусировки.

Примеры дополнительных аксессуаров (слева направо): линза для создания широкого светового луча, скульптурная линза, придающая лучу овальную форму, канавчатый дефлектор и «сотовая линза», уменьшающая слепящий эффект.

Ступенчатые линзы преобразуют световые лучи таким образом, что они находятся где-то между «ровным» светом линз Френеля и «жестким» светом плоско-выпуклой линзы. У ступенчатых линз сохранена выпуклая поверхность, однако со стороны плоской поверхности сделаны ступенчатые углубления, образующие концентрические круги.

Лицевые части ступеней (подступени) концентрических кругов часто светонепроницаемы (либо закрашены, либо имеют выщербленную матовую поверхность), что позволяет отсечь рассеянное излучение лампы и сформировать пучок параллельных лучей.

Прожекторы с линзой Френеля формируют неравномерное световое пятно с мягкими краями и слабым ореолом вокруг пятна, благодаря чему легко смешиваются с другими источниками света, создавая естественную световую картину. Именно поэтому прожекторы с линзой Френеля используются в кино.

Прожекторы с плосковыпуклой линзой по сравнению с прожекторами с линзой Френеля формируют более равномерное пятно с менее выраженным переходом на краях светового пятна.

На наш блог, чтобы узнать новое об устройстве светильников и светодизайне.