Строение отделов головного мозга млекопитающего. Развитие и строение головного мозга у животных. Как избежать этого и предупредить высыхание серого вещества

Общие характеристики: Мозг млекопитающих можно разделить на два типа: спинной и головной мозг. В свою очередь головной мозг подразделяется на: 1. Продолговатый мозг 2. Задний мозг 3. Средний мозг 4. Промежуточный мозг 5. Конечный мозг

Мозг кролика: I - сверху; II - снизу; III - сбоку; IV - продольный разрез. 1 - большие полушария; 2 - обонятельные доли; 3 - зрительный нерв; 4 - эпифиз; 5 - средний мозг; 6 - мозжечок; 7 - продолговатый мозг; 8 - гипофиз; 9 - варолиев мост; 10 - мозговая воронка; 11 - мозолистое тело

Мозговой ствол состоит из продолговатого мозга, варолиевого моста и среднего мозга. Часто в него включают мозжечок.

Мозжечок У млекопитающих мозжечок состоит из червя(средняя часть) и двух боковых долей. Стоит отметить, что у однопроходных средняя часть больше боковых, у сумчатых они приблизительно сходны, а отличительной чертой высших млекопитающих является увеличение боковых долей, связанных с корой больших полушарий. Для увеличения площади поверхности мозжечок, как и большие полушария, покрыт бороздами и извилинами. Функции мозжечка: Червь отвечает позу, тонус осевых мышц тела и проксимальных концов мышц Координация движений Регуляция равновесия

Средний мозг входит в состав ствола головного мозга. Является зрительным центром мозга. Вентральную часть составляют массивные ножки мозга, основную часть которых занимают пирамидные пути. Между ножками находится межножковая ямка (лат. fossa interpeduncularis), из которой выходит III нерв. Дорсальная часть - пластинка четверохолмия, две пары холмиков. Верхние холмики зрительные, они крупнее нижних(слуховые). С дорсальной стороны на границе с мостом отходит IV нерв. В глубине покрышки среднего мозга (под четверохолмием) находятся ядра глазодвигательных нервов, красные ядра (управление движением), чёрное вещество (инициация движений), ретикулярная формация.

Промежуточный мозг Состоит из: Таламический мозг 1. Таламус(зрительный бугор) 2. Эпиталамус 3. Метаталамус Гипоталамус Третий желудочек

Таламус – состоит из серого вещества, парное образование яйцевидной формы. Центр чувствительности. Эпиталамус – образует шишковидное тело(эпифиз), железа внутренней секреции, отвечает за синхронизацию биоритмов организма. Метаталамус – образован латеральным и медиальным коленчатыми телами, центр слуха. Гипоталамус - включает в себя сосцевидные тела, являющиеся подкорковыми центрами обоняния, гипофиз, зрительный перекрест, II пары черепных нервов, серый бугор, представляющий собой вегетативный центр обмена веществ и терморегуляции. В гипоталамусе содержатся ядра, контролирующие эндокринные и вегетативные процессы. Третий желудочек - полость промежуточного мозга. Он представляет собой узкое, расположенное в сагиттальной плоскости щелевидное пространство. Третий желудочек имеет пять стенок.

1 – кора 2 – наружный слой коры 3 – лимбическая система 4 – таламус 5 – гипоталамус 6 – четверохолмие 7 – мозжечок 8 – продолговатый мозг

Конечный мозг состоит из двух полушарий большого мозга (покрытых корой), мозолистого тела, полосатого тела и обонятельного мозга. Кора больших полушарий распределяется на древнюю, старую и новую кору. Древняя кора выполняет наиболее необходимые функции, такие как раскрытие глаз. Старая кора отвечает за проявление эмоций. Новая кора отвечает за высшую нервную деятельность. Мозолистое тело соединяет два полушария мозга. Отсутствует у сумчатых и клоачных. Полосатое тело выполняет функции гипертонуса скелетных мышц, нарушения сложных двигательных реакций и пищедобывающего поведения, торможения формирования условных рефлексов. Обонятельный мозг отвечает за все структуры конечного мозга, связанные с обонянием.

Конечный мозг млекопитающих обладает наиболее сложными корковыми формациями полушарий. Основу цитоархитектонического деления коры полушарий разработал в начале XX в. К. Бродман. Он разделил кору на две основные области: гомогенетическую, для которой характерно шести - семислойное строение, и гетерогенетическую, где такое строение отсутствует. Гомогенетическая кора разделяется на гомотипическую (шестислойное строение сохраняется и во взрослом состоянии) и гетеротипическую (в процессе эмбриогенеза количество слоев меняется). Каждая из этих территорий разделяется на области, а области на поля, различающиеся по строению, связям, функциональной значимости. Так, у приматов выделено 11 областей, включающих 52 поля.

По классификации И. Н. Филимонова основная область коры, обозначенная им как новая кора (неокортекс, изокортекс), соответствует гомогенетической коре по Бродману. Области старой (ар- хикортекс) и древней (палеокортекс) коры гомологичны только части гетерогенетической коры. Остальную часть коры занимает так называемая межуточная кора (мезокортекс), состоящая из пе- риархикортекса, отделяющего новую кору от старой, и перипалео- кортекса, отделяющего новую кору от древней.

В состав новой коры, по мнению И. Н. Филимонова, должен быть включен весь паллиум, в пределах которого стенка мозга уже

на самых ранних этапах развития характеризуется наличием основных слоев Гисса (матрикс, промежуточный слой, корковая пластинка, краевой слой). Старая и древняя кора, в отличие от новой, на ранних стадиях развития характеризуется неполнотой строения стенки мозга. Межуточная кора имеет переходный тип строения.

К палеокортексу относятся пириформная кора и препириформ- ная область полушария, а также обонятельная луковица, переднее обонятельное ядро, обонятельный бугорок, септум, часть амигдалы и ряд мелких ядер вентромедиальной стенки полушария . В состав архикортекса у млекопитающих включают районы гиппокампа, зубчатой фасции, субикулума. Периархикортекс представлен пре- и парасубикулумом, taenia tecta, энторинальной и цингулярной корой; перипалеокортекс - переходной инсулярной областью. Исследование большого числа млекопитающих показало, что деление коры на отмеченные выше основные области всюду сохраняет свое значение и проблема их гомологии у представителей разных групп млекопитающих не встречает существенных затруднений.

В 70-е годы, развивая идеи И. Н. Филимонова и других исследователей, швейцарский нейроморфолог Ф. Занидес сформулировал теорию четырех последовательных стадий развития коры полушарий млекопитающих. Согласно этой теории неокортекс имеет сложное происхождение и его формации развиваются из двух зачатков: архикортекса и палео- кортекса. Архикортикальная «половина» - предшественник неокорти- кальных формаций медиальной стенки полушария, палеокортикальная «половина» - вентральной и латеральной. Первая стадия на пути формирования неокортекса («изокортекса» в терминологии Ф. Занидеса) - образование двуслойной межуточной коры (мезокортекса), состоящего из периаллокортекса - медиально, перипалеокортекса - латерально (рис. 110). Затем образуются формации уже многослойной коры, представленные во взрослом мозге структурами цингулярной коры - медиально и инсулярной (островковой) - латерально. Далее на их основе формируются собственно отделы шестислойного изокортекса. Он включает в себя две зоны: переходную (произокортекс, прокониокортекс), включающую парацингулярную (лимбическую) и параинсулярную (инсулярную) кору, и основную зону, представленную структурами настоящей новой коры - кониокортекса. На последнем этапе формирования новой коры из структур переходных областей формируются первичные и вторичные сенсорные корковые зоны. В их пределах развиваются и все остальные поля и зоны новой коры. Таким образом, новая кора млекопитающих имеет двойное происхождение, и каждый ее участок имеет определенные структурно-функциональные особенности в зависимости от удаления от первичных зон формирования данной области коры.

Новая кора (neocortex). В эволюции млекопитающих новая кора благодаря своему интенсивному росту оттеснила старую и древнюю кору на медиальную и вентральную поверхности полушария. В результате сформировались две основные борозды: гиппокамповая (sh), отделяющая старую кору от новой, и ринальная (srh), отделяющая древнюю кору от новой. Эти борозды отчетливо выражены в конечном мозге всех млекопитающих. Далее происходило образование борозд и извилин в пределах корковых областей. По степени развития борозд и извилин полушария мозга млекопитающих разделяются на два типа: лиссэнцефалический, для которого характерно отсутствие или очень слабое развитие борозд на поверхности полушария, и гирэнцефалический - с более или менее развитой системой борозд и извилин. Первый тип характерен для однопроходных, низших сумчатых, насекомоядных, рукокрылых, грызунов. Остальные млекопитающие имеют на поверхности полушарий систему борозд и извилин. Изучение конфигурации извилин и борозд мозга различных млекопитающих имеет важное значение, однако попытки стандартизировать номенклатуру борозд и извилин пока успешны только в отношении мозга человека и нескольких видов приматов (рис. 111).


Рис. Ill

Рисунок основных борозд (sulcus) и извилин (gyrus) на боковой (Л) и медиальной (Б) поверхностях головного мозга приматов (человек. Ногтю supiens)

В отношении других млекопитающих проблема номенклатуры борозд и извилин очень актуальна. Есть несколько причин несоответствия номенклатур: 1 - изучаемые виды (даже близкородственные) резко различаются по рисунку борозд; отмечается значительная внутривидовая (индивидуальная) изменчивость; так, например, величина затылочной области коры мозга человека колебалась от 9072 мм до 11748 мм, у оранга - от 4036 до 5350 мм, у низших древних обезьян (церкопитеков) от 1842 до 2594 мм; 2 - гомология борозд и извилин у разных животных обычно неизвестна; 3 - разные авторы, независимо друг от друга, дают разные названия одним и тем же бороздам и извилинам; 4 - отсутствие единой методологии исследования анатомии мозга и единой точки зрения на морфологическое и функциональное значение борозд. Тем не менее изучение архитектоники поверхности полушарий большого числа видов и групп млекопитающих позволило выделить несколько общих закономерностей анатомической организации полушарий.

Формирование рисунка борозд и извилин происходит в пре- и постнатальном онтогенезе животного постепенно. Первыми формируются главные, первичные борозды и извилины (например, ри- нальная, гиппокамповая, сильвиева), затем вторичные и т. д. С количеством извилин и борозд тесным образом связаны такие важные параметры развития мозга, как: площадь и относительный объем, занимаемые той или иной корковой формацией.

Различные архитектонические поля обычно занимают различные извилины. Границы таких зон определяют по дну противоположных извилин, так называемых «лимитирующих борозд» (например: ар- куатная, центральная борозды у приматов; латеральная, супрасиль- виева, крестообразная и посткрестообразная борозды у хищных; цин- гулярная, ринальная или сильвиева борозды у всех млекопитающих).

Многие борозды лежат внутри одного цитоархитектоническо- го поля, при этом выделяют так называемую «осевую борозду», занимающую середину того или иного цитоархитектонического поля. Примером таких борозд у приматов являются верхняя и нижняя прецентральная извилины. Во многих случаях одна и та же извилина включает в себя ряд цитоархитектонических полей, границы которых анатомически определить невозможно. Примером являются поля За, 3b, 1, 2 на постцентральной извилине. Различные таламические, подкорковые, стволовые, мозжечковые, спинальные ядра и центры посылают проекции и получают реципрок- ные связи от различных специфических кортикальных извилин или групп извилин .

Существуют значительные различия в рисунке борозд и извилин на уровне отрядов, семейств, родов, видов млекопитающих и даже на внутривидовом, индивидуальном уровне. Необходимо подчеркнуть, что среди современных млекопитающих есть представители, анатомия мозга которых значительно отличается от формы, характерной для всей группы. Так, у ехидны (представителя низших однопроходных млекопитающих) полушария имеют необычно развитую систему борозд и извилин, захватывающих даже область древней коры (рис. 112).

Цитоархитектоническая структура новой коры подробно изучена у многих млекопитающих и имеет ряд общих черт строения. Неокортекс в большинстве зон и полей имеет типичное шестислойное строение. Каждый слой коры характеризуется определенным набором клеточных элементов, системой афферентных и эфферентных связей.

Слой 1 (зональный или молекулярный) развивается в онтогенезе очень рано как краевая зона стенки мозга и по сути дела не принадлежит корковой пластинке. Основное место в слое занимает система параллельных волокон, а также немногочисленные нейроны различного типа. Основной объем слоя I занимают апикальные дендриты


нейронов нижележащих слоев, на которые оканчиваются аксоны корково-корковых связей, подкорковых нейронов, аксоны клеток Кахаля - Ретциуса, клеток Мартиноти. Подсчитано, что каждый аксон параллельных волокон образует до несколько тысяч аксо-денд- ритных (35%) и аксо-шипиковых (66%) касательных, серийных синапсов.

Слой II (наружный зернистый) содержит большое количество мелких и средних по размеру звездчатых и пирамидных нейронов. Ширина и клеточная густота слоя II в различных полях коры различаются. Основная масса синапсов представлена аксо-дендрити- ческими и аксо-соматическими контактами, располагающимися на теле нейрона или на проксимальных участках дендритов. Появляются сложные синаптические комплексы, сами синапсы распределяются по слою неравномерно, образуя скопления (т. н. «синаптические поля, гроздья, гнезда»). Граница с нижележащим слоем III нечеткая.

Слой III (пирамидный) состоит, в основном, из мелких и средних пирамид и звездчатых нейронов разного типа. В слое также преобладают аксо-шипиковые контакты (55%). Важно отметить, что в слоях II - III появляется большое количество (12%) аксо-аксональ- ных контактов, образованных аксонами специализированных тормозных звездчатых нейронов. Морфология слоя сильно варьирует от поля к полю, в связи с чем он часто разделяется на ряд подслоев. В верхней части слоя расположено аксонное сплетение, образованное ветвлениями ассоциативных афферентов (полоска Кез - Бехтерева).

Слой IV (внутренний зернистый) состоит из звездчатых и пира мидных нейронов и наиболее изменчив в новой коре у млекопитаю щих. Именно исходя из строения слоя IV новую кору классифицируют на гомотипическую кору (поля с хорошо выраженным, но однородным по структуре слоем) и гетеротипическую кору (где слой сильно варьирует). По степени варьирования структуры слоя в гетеротипической коре выделяют агранулярные поля (слой IV отсутствует, например, поля 4, 6 прецентральной области) и гранулярные поля (слой IV разделяется на ряд подслоев, например: поля 17, 18 зрительной области). Значительные изменения происходят и в клеточном составе слоя. Преобладают аксо-дендритические контакты (60%), на проксимальных сегментах дендритов, много аксо-ак- сональных (12%) и аксо-шипиковых (30%) синапсов. Особенность слоя IV подчеркивается и тем, что здесь оканчивается основная масса таламических афферентов, образующих еще одно аксонное сплетение в коре - полоску Белларже.

Слои V (ганглиозный) содержит популяцию крупных и гигантских пирамид и небольшое количество звездчатых нейронов разного вида. В ряде полей этот слой разделяется на ряд подслоев, а его элементы достигают гигантских размеров (80 - 120 мкм). Это гигантские пирамиды Беца в поле 4 прецентральной области или пирамиды Мейнерта в поле 17 зрительной области.

Слои VI (полиморфный) состоит из мелких полигональных нейронов и специальных клеток (нейроны Мартинноти). Этот слой отличает довольно сложная синаптоархитектоника: здесь встречаются синаптические комплексы конвергентного и дивергентного типов, смешанные и реципрокные синапсы. Здесь преобладают аксо-дендритические синапсы.

Внутривидовая изменчивость в структуре одноименных полей достигает больших величин (до 15%). Межвидовая изменчивость, связанная со сложными процессами эволюции млекопитающих и их ЦНС, еще более значительна. Так, исследования поля 9 (фронтальная область коры) у 16 видов млекопитающих, включая человека, проведенное с помощью методов стереологического анализа на ЭВМ, показали, что цитоархитектоническая структура поля значительно отличается у разных видов по целому ряду параметров. Так, толщина коры отличалась у изученных видов более чем в два раза (например, у человека в сравнении с насекомоядными). Слой I у ряда видов очень тонкий, особенно у приматов (человека и обезьян), тогда как у других очень широкий (африканского слона, дельфина белобочки, морской свиньи). Очень сильно варьирует плотность нейронов в слоях коры. Такие млекопитающие, как лемуры и обезьяны, имеют чрезвычайно высокую плотность нейронов, тогда как у слонов и дельфинов она очень низкая. Сильно варьируют размеры нейронов в слоях неокортекса. Мелкие клетки одного размера преобладают в коре мозга лемуров и низших обезьян, средние по размеру нейроны отмечены у насекомоядных и хищных, очень крупные нейроны обнаружены в коре мозга хоботных и китообразных. У высших приматов и человека вариации размеров нейронов очень велики, однако их характерной чертой можно считать присутствие большой фракции мелких звездчатых нейронов в слоях коры III - IV (отсюда термин, часто применяемый при описании неокортекса приматов, -- кониокортскс, пылевидная кора).

Нейронная структура новой коры млекопитающих чрезвычайно разнообразна и сложна. Для нее характерно наибольшее среди других отделов ЦНС разнообразие нейронных типов и разновидностей. По одной из классификаций, разработанной Г. И. Поляковым (Институт мозга АМН СССР), в новой коре человека выделяется до 56 разновидностей нейронов. Весь нейронный состав неокортекса можно разделить на три большие группы нейронов: пирамидные, непирамидные и переходные нейроны.


Пирамидные нейроны располагаются в слоях коры II - VI и характеризуются большим разнообразием форм и разновидностей (рис. 113, а). Для типичных пирамид характерно тело конусовидной формы, от апикального полюса которого отходит апикальный дендрит (или дендриты), достигающий слоя I, где он дихотомически ветвится. От базальной части тела отходит более или менее развитая система базальных дендритов (от 4 до 16). Основная ветвь аксона направляется вниз, выходя за пределы коры и образуя систему эфферентных проекций. Доля пирамидных нейронов в различных слоях коры сильно колеблется, но в целом составляет (в зависимости от зоны и поля коры) от 50 до 90% клеток. Полагали, что для пирамидных клеток характерно сильное развитие дендритной системы, отличающейся большим полиморфизмом, тогда как аксонная система менее развита и более однообразна. Однако в настоящее время.установлено, что большинство пирамидных нейронов коры имеют наряду со сложной системой дендритных ветвлений и сложную систему аксонных ветвлений, образующих богатую сеть коллатералей в пределах коры (рис. 113; б, в). Тем самым подтверждается точка зрения на то, что и пирамидные нейроны принимают активное участие в образовании системы внутримодульных и внутрикорковых ассоциативных связей.

В группу непирамидных (звездчатых) нейронов входят такие разновидности, как нейроны с восходящим аксоном, клетки с двойным букетом дендритов с нисходящими или восходящими аксонами, клетки с локальными аксонными ветвлениями, клетки-«кан- делябры», большие и малые корзинчатые клетки, шипиковые и бесшипиковые звездчатые нейроны и ряд более мелких разновидностей. К разновидностям непирамидных нейронов также относят ряд специализированных клеток коры: веретеновидные нейроны, клетки Мартинотти, нейроны Кахаля - Ретциуса. Все разновидности непирамидных клеток составляют в коре примерно 10%, но их функциональная роль очень велика. Именно непирамидные нейроны, их аксонные терминали, образуют систему внутрикорковых связей, регулируют ход физиологических процессов в корковых модулях и их объединениях.

Для большого числа звездчатых нейронов доказана тормозная функция: их аксоны оканчиваются на телах, аксонном холмике, начальном сегменте аксона - местах, где генерируется нервный импульс. В синапсах обнаружены популяции синаптических пузырьков овальной формы, содержащие тормозные медиаторы: ГАМК(гамма-аминомаслянная кислота), глицин, глутамат и др. Звездчатые нейроны - самые молодые элементы неокортекса, формирующиеся на последних этапах пренатального и даже в первый период постнатального развития - они как бы завершают формирование структурно-функциональной целостности коры. Наличие в коре определенного набора звездчатых нейронов является важным показателем уровня эволюционного развития коры. В нейроморфологии даже используется специальный термин «звездчатость», определяющий уровень структурно-функционального развития коры.

Переходные формы корковых нейронов сочетают в себе признаки того или иного основного класса нейронов: например, пирамидо- звезды, звездообразные пирамиды, пирамидо-веретена и т. п. Их присутствие в коре еще раз демонстрирует проявление в строении нервной системы позвоночных принципов полиморфизма и структурной переходности (см. главу 1).

Подробный качественный и количественный анализ структуры неокортекса у представителей разных групп млекопитающих позволил сделать вывод об относительной униформности, консервативности коры. Так, количество нейронов в единице объема коры у разных видов млекопитающих и в разных зонах коры оказалось одинаковым, отношение количества пирамидных и непирамидных клеток относительно постоянно у обезьян, кошек и крыс, большинство типов непирамидных клеток, включая специализированные виды клеток - «канделябров», встречаются у всех млекопитающих от насекомоядных до приматов. Получены данные о сходных гистохимических и медиаторных параметрах неокортекса разных млекопитающих.

В коре существует определенная иерархия зон, которые участвуют в восприятии, анализе и переработке афферентн]ой информации разного вида, поступающей в эти зоны. В эволюции млекопитающих в коре происходит постепенное вычленение из общей, недифференцированной коры специфических зон. Это так называемые проекционные (сенсорные) зоны и ассоциативные зоны. Поля проекционных зон принимают участие в непосредственной переработке стимулов определенной модальности (соматосенсорной, зрительной, слуховой ит. п.) и разделяются на центральные (первичные, по старой терминологии) и периферические (вторичные) поля. Например: у человека в соматосенсорной области выделяют центральное поле 3, в зрительной - поле 17, в слуховой - поле 41 и соответственно периферические поля 1 и 2; 18 и 19; 42 и 22.

Показано, что центральные поля имеют большее значение в непосредственном анализе первичной сенсорной информации, а периферические поля - в интеграции сигналов той же модальности, которые направляются затем в соответствующее центральное поле. Центральные и периферические поля связаны друге другом системой двусторонних связей. Млекопитающие с маленьким мозгом и небольшим неокортексом имеют, как правило, только несколько первичных и вторичных сенсорных и моторных зон, занимающих при этом большую часть новой коры. Эти районы включают первичные и вторичные соматосенсорные поля SI и S2, первичные и вторичные зрительные поля VI и V2, первичную слуховую кору AI и первичные моторные поля MI (рис. 114). Млекопитающие из высших отрядов, обладающие более крупными полушариями и большой площадью неокортекса, имеют наряду с базовыми, основными сенсорными и моторными зонами, большое количество дополнительных сенсорных полей. Так, например, у кошек есть по меньшей мере 7 слуховых полей, 12 зрительных, 5 соматосенсорных. У мартышки обнаружено6 слуховых, 15 зрительных и 7 соматосенсорных полей.

Сравнивая структуру мозга таких млекопитающих со структурой мозга однопроходных, сумчатых и низших плацентарных, неокортекс которых включает те же зоны, можно предположить, что подобная базовая


hie. 114

Подразделение зон неокортекса на первичные и вторичные поля у разных млекопитающих (Kaas. 1992)

а - еЛс. б - белка, в - кошка, г - обезьяна. MI - первичные моторные, SI, SII - первичные и вторичные соматосенсорные, AI - первичные слуховые, VI, VII - первичные и вторичные зрительные поля. Объяснения в тексте

схема строения неокортекса сложилась у примитивных мезозойских млекопитающих более чем 200 млн. лет назад. Новые зоны в неокортексе могли появляться из разных источников: либо путем вычленения внутри уже сформированных высокодифференцированных сенсорных зон, либо постепенно развиваясь на основе первично существующих недифференцированных зон. В связи с этим полагают, что увеличение разнообразия сенсорных и моторных зон и полей неокортекса могло происходить в разных линиях млекопитающих независимо и является результатом параллельной или конвергентной эволюции и одноименные поля и зоны неокортекса, возможно, негомологичны.

Важным этапом развития неокортекса было вычленение в коре ассоциативных (третичных и четвертичных) зон и полей, в которых отсутствует прямое представительство той или иной чувствительности (модальности), а происходит широкая конвергенция разнообразной информации, поступающей сюда как из первичных сенсорных и проекционных полей, так и из других зон неокортекса. Ассоциативные области коры отличаются, кроме того, наиболее сложным и дифференцированным клеточным составом, особенно разнообразны в этих полях звездчатые нейроны. У высших приматов и человека основная масса ассоциативных полей сосредоточена в лобной и теменно-височной областях полушарий.

Ассоциативные зоны нсокортекса сильно дифференцированы и включают несколько групп нолей, каждая из которых имеет свои характеристики и занимает определенный участок коры. Группа I (па- расенсорные поля) тесно связана с соответствующими первичными и вторичными полями данной модальности, их активность зависит от деятельности этих зон. Группа II подвержена влиянию со стороны первичных зон лишь отчасти, поскольку их ответ на афферентные стимулы разной модальности формируется относительно независимо от активности первичных проекционных зон. Группа III совершенно независима от активности первичных зон, здесь происходит наиболее сложный синтез разномодальных сигналов, поступающих в эту зону из разных источников. Ассоциативные зоны и поля формируются на самых последних этапах пренатального развития, а их окончательное созревание происходит уже после рождения.

В процессе эволюции млекопитающих происходило последовательное увеличение площади, занимаемой ассоциативными полями и усиление вариабельности в расположении одноименных зон коры даже у близко- родственных животных (рис. 115). В основном же за счет увеличения числа и размеров ассоциативных зон происходит и общее увеличение площади неокортекса.

Каждое поле и область коры имеют многочисленные связи с другими отделами коры и частями мозга. Примерно половина из них образована афферентными волокнами, входящими в данное поле. Они разделяются на две большие группы: кортико-кортикальные (ассоциативные и межлолушарные) и связи, образованные афферентными волокнами из нижележащих отделов мозга. Ассоциативные


Рус. 115

Расположение и степень развития корковых полей различных типов на латеральной поверхности полушарий млекопитающих (Богословская, Поляков, 1981) а - еж, б - крыса, в - собака, г - мартышка, д - оранг, е - человек; / - 3 - поля неокортекса: первичные (/), вторичные(2) и третичные (.3); 4 - территория древней, старой и межуточной коры; 5 - обонятельная луковица; 6 - ринальная борозда связи объединяют поля в пределах одного полушария. В образовании этих связей принимают участие нейроны многих слоев коры, при этом аксоны пирамидных нейронов составляют от 60 до 90% связей. Распределениетерминалей ассоциативных волокон зависит от слоя коры, в котором проходят кортико-кортикальные аксоны, а также от типа полей, связанных друг с другом. Так, поля, не имеющие связей со стороны другого поля из соседнего полушария, не образуют ассоциативных связей с одноименным полем и в пределах своего полушария. Основная масса ассоциативных волокон оканчивается на дистальных участках дендритов и их шипиков как пирамидных, так и непирамидных нейронов. Имеются и определенные видовые различия в организации одноименных ассоциативных связей: так, у обезьяны поле 7 теменной области связано ассоциативными связями с меньшим количеством полей, чем у кошки.

Комиссуральные волокна сосредоточены в основном в мозолистом теле, corpus callosum. Его формирование связано с развитием новой коры, однако при резком увеличении у высших млекопитающих, по сравнению с низшими, площади мозолистого тела плотность волокон сохраняется на одном уровне: примерно 400 тысяч волокон на 1 мм 2 сечения. В коре есть участки, как образующие комиссуральные связи (их большинство), так и лишенные их (поле 17 зрительной коры). Большинство каллозальных связей симметричны, хотя есть и несимметричные проекции между полями разных функциональных зон коры. Нейроны, образующие каллозальные связи, располагаются во всех слоях коры, с преимущественной концентрацией в III и V слоях, а их окончания обнаружены во всех слоях коры (рис. 116). Обнаружено, что ряд нейронов как пирамидного, так и непирамидного типов образуют одновременно и каллозальные и ассоциативные связи. Морфологически это обеспечивается присутствием у таких нейронов развитой системы длинных аксонных коллатералей. Среди других трактов, образующих межполушарные ассоциативные связи, необходимо упомянуть переднюю комиссуру (commissure anterior), хорошо выраженную у всех млекопитающих и соединяющую структуры древней коры (палеокортекса), а также гиппокампову комиссуру (commissure hippocampi), соединяющую области гиппокампа (архикортекс) и участки энторинальной коры.

Афферентные связи включают кроме перечисленных выше тала- мо-кортикальные и экстраталамические проекции. Основная масса специфических таламических афферентов проходит в IV слой, хотя и в других слоях коры также имеются их окончания. На пирамидных


Hue. 116

Организация некоторых проводящих систем конечного мозгя млекопитающих (Йонтов п др., 1990, Szentagotai, 1983):

а-г- развитие мозолистого тела (СС) у ежа («). крысы (б), кошки (в ), обезьяны (?), О - места образования и окончания каллозальных волокон и коре, е -общая схема организации ассоциативных и межиолушарных связей в неокортексе, 1-VI - слои коры, звездочка -- гомологичные модули в соседних полушариях, I - корковый модуль; 2 межмодульные связи; 3 - связи между зонами я пределах полушария (аксоны пирамидных нейронов): 4. Г» - межполушарные связи между гомологичными () и негомологичными (5) зонами коры и модулями нейронах коры таламические афференты образуют преимущественно аксо-шипиковые синапсы, на непирамидных нейронах разного типа - аксо-дендритные и аксо-соматические. Диаметр зоны ветвления таламических афферентов составляет от 300 до 500 мкм и во многом определяет размер корковых модулей.

Экстраталамические афференты берут начало в основном от центров ствола и в соответствии с источником проекции разделяются на холин-, адрен-, дофамин- и серотонинергические. Эти волокна проходят во все слои коры (в каждой системе имеются свои особенности распределения окончаний по слоям), идут параллельно поверхности коры на большом расстоянии (до нескольких миллиметров) и образуют как типичные синаптические соединения, так и модуляторные контакты. Общее число таких окончаний составляет от 5 до 12% от числа межнейронных контактов в коре.

Наиболее крупными эфферентными путями считаются кортико-спинальные (пирамидный тракт) и кортико-бульбарные тракты. Они образованы аксонами пирамидных нейронов нижних (V - VI) слоев коры. Большинство эфферентов (особенно идущих от моторных и сенсорных полей коры) имеют строго топическую организацию. Волокна нисходящих трактов формируют многочисленные коллатерали, оканчивающиеся в различных отделах мозга. Так, коллатерали волокон пирамидного тракта оканчиваются на нейронах красного ядра, образующих рубро-спинальные проекции, и влияют на их деятельность.

Направления эволюционного развития структуры новой коры у разных видов плацентарных млекопитающих оказались различными. У млекопитающих встречается несколько вариантов строения неокортекса.

Первый тип неокортекса встречается у представителей таких отрядов, как: насекомоядные, рукокрылые, грызуны, зайцеобразные. Неокортекс у этих животных занимает от 30 до 60% поверхности полушария, ассоциативные области развиты очень слабо. Практически отсутствуют борозды и извилины (за исключением основных, характерных для всех млекопитающих). Для цитоархитектоничес- кого строения коры характерно"преимущественное развитие I слоя и нижних слоев V - VI, практйческое отсутствие IV слоя (рис. 117). Уровень нейронной дифференцировки достаточно низок. Пирамидные нейроны слоя II имеют систему веерообразных дендритов, направляющихся в слой I. Такая система ветвления дендритов является атипичной. Среди пирамид нижележащих слоев отмечается большая вариабельность по размерам и форме дендритного дерева: от типичных пирамид дот. н. «перевернутых». К признакам низкого уровня организации неокортекса относится и присутствие в его составе многочисленных крупных радиальных нейронов в слоях II - III, множества переходных, недифференцированных форм. Звездчатых нейронов мало, хотя в зачаточной форме в коре разных представителей данной группы млекопитающих могут встречаться все основные разновидности непирамидных клеток. Ультраструктурное исследование показало присутствие в коре большого количества «касательных» аксо-дендритических и аксо-шипиковых синапсов асимметричного типа (тип I по Грею). Синапсы с уплощенными синаптическими пузырьками, для которых, в ряде случаев, доказана тормозная природа контакта, встречаются очень редко. Также редки и аксо-аксональные контакты.

Рус. 117

Цитоархитектоника (а) и нейронная организация (б ) центральной области неокортекса длиннокрылой летучей мыши Minioptcrux sthreibeni

  • (Ferrer, 1987)
  • 1 -4 - пирамидные нейроны различных слоев; 5 - пирамида II слоя с широкой зоной ветвления дендритов;6-#- гигантские (6 7) и мел к не (#) мульти полярные радиальные нейроны; 9 биполярный нейрон, /- VI - слои коры

Рыс. 118

Внешний вид полушарий конечного мозга дельфина (Tursiops truncatus)

(Jacobs е. а., 1984)

SSylEct - эктосильвнева борозда, орбитофронтальная (OFOper ), теменная (Рорег ), височная (Toper) оперкуляризации (выпячивания) поверхности полушария

Межвидовые вариации в площади неокортекса могут достигать больших величин. Так, в семействе Тенрековые (полуводные насекомоядные) у ежового тенрека неокортекс занимает 18,5% площади всей коры, а у выдровой землеройки - 36,7%; в сем. Кроты у европейского ежа - 30,9%, у пиренейской выхухоли - 41,4%. Толщина коры колеблется от 0,5 мм у некоторых видов летучих мышей, до 1,8 мм у насекомоядных. При этом вариации толщины коры в пределах одного отряда или семейства также очень велики (например: у насекомоядных - от 0,4 мм у белозубки малютки Suncus etruscus, до 1,8 мм у выдровой землеройки Patomogale velox).

На структуру мозга низших плацентарных сильное влияние оказывают адаптивные процессы, связанные с развитием ряда сенсорных систем животных. Так, у европейского ежа (Erinaceus europaeus) обнаружена полисенсорная область коры, которая имеет сложный, дифференцированный нейронный состав и сравнима с ассоциативными областями коры высших млекопитающих. В качестве второго примера можно привести данные по структуре коры мозга белки (зрительная зона). В коре сильно развиты слои П - III, хорошо выражен слой IV, который разделяется на ряд подслоев, обнаружено большое количество высокодифференцированных звездчатых нейронов разного типа. В целом уровень развития зрительной коры белки сравним с таковым у приматов. Еще одним примером такой адаптивной специализации может послужить феномен сильного развития слуховых зон неокортекса у эхо- лоцирующих животных (летучие мыши).

Второй тип неокортекса представлен у китообразных. Своеобразие данного отряда млекопитающих состоит в том, что они освоили водную среду вторично, возникнув от наземных форм древних млекопитающих, входящих в одну или несколько ветвей древних копытных.

Конечный мозг китообразных имеет очень своеобразный вид (рис. 118). По общему рисунку борозд и извилин он отчасти напоминает мозг копытных и хищных, но значительно отличается сильным развитием мелких борозд и извилин, резким изгибом (курватурой) теменной части полушарий, практическим отсутствием височной доли. Индекс энцефализации очень высокий (96), а неокортекс занимает до 97,8% всей площади коры полушарий (больше, чем у высших приматов и человека!). Кроме того, у китообразных, в частности у дельфинов, оказался совершенно другой рисунок распределения первичных моторных и сенсорных зон в полушариях (рис. 119).

Анализ микроструктуры коры, однако, показал, что общий уровень организации такого неокортекса довольно низок. Имея большую площадь неокортекса, китообразные за счет очень небольшой толщины коры (1,5 - 2,2 мм) обладают очень низкими объемными показателями (ниже, чем у насекомоядных и грызунов). Для цитоархитектоническо- го строения характерны: большая ширина слоев I и II, сильная дифференциация слоя III (в зрительной коре дельфинов Stenella coeruleoalba и Tursiops truncatus в его составе выделено три подслоя), практически полное отсутствие слоя IV, а также сильное развитие филогенетически древних слоев V - VI. Отмечается слабая вариабельность цитоархитектонического строения разных зон неокортекса, что придает коре мозга китообразных «монотонный» вид.

Для нейронного состава неокортекса также характерен ряд специфических черт строения (рис. 120). Таламические субкортикальные афференты, входя в кору, ветвятся дихотомически и оканчиваются практически во всех слоях коры, образуя многочисленные аксо-соматические и аксо- дендритные синапсы. Наибольшая плотность синапсов наблюдается в верхних слоях коры, причем большая их часть относится к простым, недифференцированным

Рис 119

Схема расположения основных моторных и сенсорных проекционных зон в неокортексе гипотетического предка млекопитающих и локализация этих зон у современных млекопитающих (Morgan е.а., 1990):

а - гипотетический предок млекопитающих, б - д - современные млекопитающие: кролик (0). кошка (в), обезьяна (/) и дельфин (d). 1 -4 - сенсорные зоны: слуховая (/), зрительная (2 ). соматосенсорная (3). моторная (4)

Рис 120

Схема нейронного строения и синаптических взаимоотношений в зрительной коре неокортекса дельфина (Morgan е. а., 1990)

I - 6 - различные виды пирамидных нейронов, 7.8 - средние (7) и мелкие (8) звездчатые яейроны, а-к - различные виды синапсов, встречающиеся в неокортексе дельфина, aff - таламические афференты, I-V - слои коры

формам; в частности, очень много касательных контактов типа «еп passage*. Слои II и III содержат большое количество пирамидных нейронов нетипичной, переходной формы: перевернутые пирамиды, пирамиды с веерообразными апикальными дендритами, пирамиды-веретена и т. д. Они посылают свои аксоны в белое вещество, но по ходу образуют многочисленные возвратные восходящие коллатерали, контактирующие с дендритами нейронов II III слоев. Подобные пирамидные нейроны встречаются в неокортексе низших млекопитающих. В численном отношении пирамидные нейроны преобладают. Помимо пирамидных нейронов, в неокортексе китообразных обнаружено большое число крупных радиальных звездчатых нейронов изодендритного типа. Их длинные, слабоветвящиеся дендриты охватывают большую площадь, а аксонные ветвления оканчиваются на телах и дендритах нейронов нескольких слоев. Клетки такого типа относятся к разновидностям ретикулоподобних нейронов, являющихся консервативно древними формами корковых нейронов, характерными, как полагают, для начальных этапов эволюции нсокортекса млекопитающих. Высокодифференцированных звездчатых нейронов различного типа в неокортекге китообразных практически нет, в связи с чем у них отсутствует такой важный показатель, как грануляция коры (кониокортекс).

В целом неокортекс китообразных сочетает в себе ряд примитивных черт строения, которые позволяют, исходя из теории эволюции неокортексаФ. Занидеса, рассматривать их неокортекс как структуру, остановившуюся в своем развитии на третьей (параинсулярно- паралимбической) стадии. При этом в мозге дельфинов обнаружена система длинных ассоциативных внутрикорковых связей, что характерно для коры приматов и человека; им свойствен высокий уровень рассудочной деятельности, сложные формы поведения. Все это свидетельствует о весьма своеобразном, во многом независимом от других млекопитающих, пути эволюции конечного мозга китообразных.

Третий тип неокортекса сформировался в эволюции таких групп млекопитающих, как: хищные, ластоногие, копытные, хоботные. Несмотря на имеющиеся различия в организации полушарий у представителей этих Отрядов современных млекопитающих, их объединяет ряд общих черт строения неокортекса. Полушария имеют хорошо развитую систему крупных дуговых извилин и борозд, существенно отличающих их от мозга других млекопитающих и создающих определенные трудности при сопоставлении цитоар- хитектонических карт мозга (рис. 121). У большинства видов отсутствует истинный островок Рейли, перипалеокортикальные поля которого располагаются у хищных практически на поверхности, тогда как у приматов разрастающийся неокортекс отодвигает островок в глубь боковой поверхности полушария. С этим связано и почти полное отсутствие четко выраженной височной доли полушарий. Рельеф коры более сложен у крупных видов, чем у мелких (вплоть до микрогирии - образования многочисленных мелких третичных и четвертичных борозд и извилин, резко усложняющих рисунок коры: например, у медведей). Индивидуальная и межгрупповая изменчивость в этой группе млекопитающих очень велика.

Неокортекс занимает от 80 до 95% площади полушария и имеет большую толщину (от 2,5 до 3,5 мм). Для нейронной структуры, наиболее полно изученной у представителей хищных млекопитающих (кошек и собак), характерно значительное увеличение разнообразия и полиморфизма нейронов. Интенсивно развиваются слои III и IV, увеличивается число звездчатых нейронов, уменьшается количество переходных форм (звездо-пирамид, пирамидо-веретен ит.д.), отсутствуют радиальные нейроны и атипичные формы пирамид, заметно усложняется система


Рис Ш

Рельеф новой коры на латеральной поверхности конечного мозга у некоторых копытных, мозоленогих и хищных (Богословская, Поляков, 1981)

  • - европейский кабян, 6 - нильгау, в ~ зубр, г - двугорбый верблюд, д - домашняя лошадь,
  • - медведь

дендритных и аксонных ветвлений пирамидных нейронов слоев III и V. В неокортексе намечается разделение на гранулярную (лобная доля) и агранулярную (теменно-затылочная и височная доли) кору; помимо многочисленных первичных и вторичных проекционных и сенсорных полей образуется сложная системы ассоциативных зон.

Однако было бы естественным ожидать, что в такой обширной группе млекопитающих имеются различные варианты строения нсокортек- са.Так, изучение зрительных полей (17,18) затылочной области мозга коровы и овцы показало, что в структуре их неокортекса сохраняются многие черты, свойственные неокортексу низших млекопитающих. Это относительно слабая слоистость коры, отсутствие четких границ слоев (особенно между III и IV), большое количество «нетипичных* пирамид, слабая дифференцировка звездчатых нейронов. Таким образом, в рамках данного типа неокортекса мы встречаемся с рядом разновидностей, что является отражением сложных филогенетических связей в этих отрядах млекопитающих.

Четвертый тип неокортекса сформировался у приматов. Это один из древнейших отрядов млекопитающих, и не удивительно, что именно в пределах этого отряда уровень межвидовой изменчивости очень велик. Так, коэффициент энцефализации у полуобезьян составляет 0,13 - 1,3; низших узконосых обезьян - 0,56 - 2,22; широконосых обезьян Нового Света - 0,54 - 8,4; человекообразных обезьян - 2,03 - 7,35; человека - 32. Новая кора занимает при этом от 85 до 96% площади полушария. У приматов формируется особый рисунок борозд и извилин, основу которых составляют крупные первичные извилины, идущие в поперечном направлении. Отсутствует система дуговых извилин и хорошо развита височная доля (островок Рейли находится при этом в глубине латеральной стенки полушария). Это в значительной мере затрудняет гомологизацию рельефа борозд, извилин и полей неокортекса приматов и других млекопитающих.

У приматов интенсивно развиваются ассоциативные зоны коры, особенно в лобной и теменной области полушарий, максимального развития они достигают у человека. Среди слоев коры у приматов сильное развитие получают III и IV слои, наиболее заметно разделение корковых зон на гранулярные и агранулярные поля. Увеличивается и разнообразие нервных клеток, особенно звездчатых. При этом степень вариабельности в одноименных полях коры у разных представителей приматов очень высока.

Таким образом, исследования структуры новой коры у большого количества видов плацентарных млекопитающих практически из всех основных отрядов позволили сделать ряд важных выводов относительно направлений ее эволюционного развития. Во-первых, общий план строения неокортекса един для всех млекопитающих. Во-вторых, неокортекс приматов (и человека в том числе) является только одним из возможных и реализованных в эволюции типов развития неокортекса. В-третьих, эволюция новой коры проходила в разных отрядах млекопитающих независимо, параллельно. И, наконец, в каждом отряде млекопитающих встречаются представители, уровень развития неокортекса которых не соответствует типу неокортекса, наиболее характерному для данной группы.

В настоящее время созданы различные теории организации неокортекса млекопитающих, среди которых наибольшее распространение получила модульная концепция структурно-функциональной организации коры.

Нейроны коры организованы в строго упорядоченную систему вертикальных объединений - модулей различного размера и формы. Они впервые были обнаружены при изучении соматосенсорной коры мозга крыс. Эти объединения имеют форму вертикальных бочонков, «barrels*, диаметром от 150 до 400 мкм. В бочонке в среднем 4000 нейронов, по периферии плотность клеток выше, чем в центре. Основная масса дендритов и аксонов ветвятся в пределах бочонка. Было показано, что каждой вибриссе на мордочке животного соответствует строго определенный модуль в коре. В дальнейшем было показано, что большинство зон неокортекса у разных видов млекопитающих имеют модульное строение.

Основной предпосылкой формирования нейронных объединений являются дендритные пучки, образованные апикальными дендри- тами групп пирамидных нейронов. Они были описаны в разных областях коры крысы, кролика, кошки, обезьяны, человека, а также у представителей низших отрядов млекопитающих: летучих мышей, ежей, сумчатых. В дендритных пучках создаются благоприятные условия как для дивергенции импульсов, когда одно эфферентное волокно образует несколько контактов с разными дендритами пучка, так и для конвергенции импульсов, когда на одном дендрите оканчиваются аксоны из разных источников. Следовательно, данная форма объединения нейронов в неокортексе является для млекопитающих универсальной. Количество дендритов в пучках колеблется от 2 - 3 до 20 в зависимости от вида животного и зоны мозга. Между телами и дендритами пирамидных нейронов обнаружены многочисленные электротонические контакты, создающие основу для координированной работы нейронов.

Число клеток, входящих в элементарный корковый модуль млекопитающих, составляет примерно 110 клеток. Каждая такая группировка формируется в онтогенезе из отдельных нейрогенетических локусов в вентрикулярной зоне стенки мозга. Полагают, что в продуцировании нейронов модуля одновременно участвует не более 10 клеток. Авторадиографические исследования развития неокортекса мышей показали, что каждый локус продуцирует за один митотический цикл 7-9 нейронов. Учитывая, что в период развития неокортекса мыши формируется 12 генераций нейронов, то общее число клеток элементарного модуля приближается к 110.

Элементарные модули объединяются в макромодули, количество клеток в которых составляет от 3 до 10 тысяч клеток. Общее количество макромодулей в коре млекопитающих колеблется от 0,6 до 2 - 3 млн.

Как указывалось ранее (см. главу 1), в состав корковых модулей входит три группы клеток: «афферентные* нейроны, связанные с внешними (по отношению к модулю) афферентными волокнами различного происхождения; интернейроны (до 10 типов), формирующие сложную систему внутри- и межмодульных связей; «эфферентные* нейроны, аксоны которых выходят за пределы коры. Каждая из этих групп нейронов и даже отдельные его элементы образуют в составе модуля сложнейшую систему пространственно четко организованных «микромодулей* разного вида и размеров.

Размеры коркового модуля во многом определяются зоной ветвления специфических таламических афферентов и составляет от 300 до 500 мкм. Основная масса таламических афферентов ветвится на уровне IV слоя, где на апикальных дендритах каждого пирами- дого образует по 1 - 2 синапса. Кроме пирамидных нейронов таламические афференты контактируют с звездчатыми нейронами разного вида, расположенными в этом же слое (рис. 122).

Модульный принцип организации неокортекса является, по-видимому, универсальным для всех млекопитающих (есть данные, что по модульному принципу построены многие отделы ЦНС не только млекопитающих, но и других позвоночных, как высших, так и низших).

Разнообразие модулей в корковых структурах мозга млекопитающих довольно ограничено. Нет кортикальных зон и полей, которые содержали бы более чем несколько типов модулей. Так, в первичной

Рис 122

Схема нейронной организации «элементарного* коркового модуля (Szentagotai, 1978 - 1984)

1 - пирамидные нейроны; 2 - 6 - различные виды звездчатых нейронов; 7.8- специфические (7) и кортико-кортикальные (8) афференты и зоны их ветвления, геометрические фигуры определяют зоны ветвления отростков клеток модуля и границы самого модуля, I - VI - слои коры зрительной коре макаки обнаружено всего три типа морфо-функциональных модулей: «колонки глазодоминантности», которые активируются либо правым, либо левым глазом; «ориентационные колонки», нейроны которых реагируют на определенное положение предметов в пространстве и так называемые « цитохромоксидазные колонки», где отсутствует предпочтение нейронов к определенной ориентации стимула, но отдается предпочтение цвету. В составе последних выделяется два подтипа модулей, связанных с ощущением желто-голубой гаммы цветов или красно-зеленой. В первичной соматосенсорной коре макаки (поле ЗЬ) и кошек выделяется не более двух типов модулей: один связан с быстрой реакцией на кожную стимуляцию, другой - с медленной. Есть зоны, где обнаружен всего один тип модулей (например, в соматосенсорной коре (SI) мозга крыс). Возможно, развитие методической базы исследований позволит в ряде случаев доказать наличие большего разнообразия модулей в той или иной зоне коры, однако значительного увеличения их разнообразия, по всей видимости, не произойдет. Причины такого эволюционного ограничения не ясны.

Интересную модель становления модульной организации в эволюции млекопитающих предложил П. Морган с сотрудниками. Согласно этой модели в эволюции происходило образование в коре модулей с их последующей модификацией (усложнением) и увеличением количества. Исходный (гипотетический)тип мозга предков млекопитающих характеризовался наличием в коре небольшого количества просто организованных модулей. В этих модулях

Рис 123

Схема возможной эволюции модульного строения коры млекопитающих

  • (Glezere. а., 1988)
  • б -

а - исходный гипотетический модуль, б - модифицированный модуль. I - пирамиды слоя II с широкой зоной ветвления дендри- тов; 2 - пирамиды слоев III - V; 3 - муль- типолярная клетка; 4 - биполярная клетка; 5 - короткоаксонные звездчатые нейроны разных типов; 6 - специфические и 7- неспецифические таламо-кортикаль- ные афференты специфические и неспецифические таламо-кортикальные волокна, а также ассоциативные и комиссуральные проекции направлялись преимущественно в слой I, контактируя с апикальными дендрита- ми пирамидных и непирамидных нейронов (рис. 123). Большие мультиполярные изодендритные нейроны посылали свои аксоны во второй слой, обеспечивая внутрикорковые связи. Таким образом, основным «афферентным» слоем коры был слой II с его специализированными пирамидными клетками, аксоны которых направлялись во все нижележащие слои коры.

В процессе эволюции в модулях происходило разделение зон окончаний основных афферентных проекций. Таламо-кортикальные афференты оканчиваются преимущественно в новом, интенсивно развивающемся слое IV, где появляется большое число высокоспециализированных звездчатых нейронов. Другие афференты направляются в верхние слои коры, давая на своем протяжении многочисленные коллатерали.

В разных группах млекопитающих процесс модификации и увеличения количества модулей шел, по мнению автора этой гипотезы, независимо, в результате чего к настоящему времени сформировалось четыре основных типа неокортекса. Консервативный , при котором сохраняются многие признаки гипотетического типа коры, встречается у представителей современных отрядов насекомоядных и рукокрылых. Прогрессивно-консервативный тип, характеризующийся некоторым увеличением количества модулей и незначительным их усложнением. Животные с таким типом неокортекса встречаются практически во всех отрядах современных млекопитающих (например, лемуры и мартышки среди приматов). При прогрессивном типе строения коры количество, степень сложности и разнообразие модулей значительно увеличивается. В каждом отряде млекопитающих есть представители, неокортекс которых имеет черты прогрессивного типа (среди приматов - это высшие обезьяны и человек). Консервативно-прогрессивный тип отличается резким увеличением количества модулей в коре при незначительной их модификации, что приводит к формированию « монотонной » структуры коры (китообразные).

Старая кора (archicortex). Старая кора мозга млекопитающих образована в основном структурами гиппокампа, который разделяется у плацентарных млекопитающих на три отдела: прекомиссуральный (прекаллозальный), супракомиссуральный (супракаллозальный) и ретрокомиссуральцый (посткаллозальный). Из-за сильного развития у высших млекопитающих мозолистого тела первые два отдела у них редуцируются (рис. 124). Прекомиссуральный отдел, расположенный между зоной переднего обонятельного ядра и мозолистым телом, представлен мелкими пирамидными клетками и связан афферентными и эфферентными проекциями с.пириформной и энтори- нальной корой. Средняя часть гиппокампа превращается в узкую полоску серого вещества, связывающего передний и задний отделы гиппокампа. Ретрокомиссуральный отдел наиболее развит и представлен структурами субикулума (S) и собственно гиппокампа, который состоит из ряда зон (СА 1 - 4) и зубчатой фасции (FD). Гиппокамп имеет корковую структуру и состоит из пяти слоев, основным из которых является слой III, образованный пирамидными нейронами. У низших млекопитающих этот слой узкий, компактный; у высших - широкий, диффузный.

Гиппокамп - важнейший компонент лимбической системы конечного мозга, связанный со многими отделами головного мозга. Он получает афферентные проекции от различных зон неокортекса (включая ассоциативные поля), а также септума, амигдалы, ряда ядер таламуса, многих отделов ствола мозга. Эфферентные проекции гиппокампа образованы аксонами исключительно пирамидных нейронов и проходят в основном в составе свода. Через него обеспечивается связь гиппокампа с амигдалой, таламусом, гипоталаму-


Ршс 124

Организация гиппокампа у ежа (а) и человека (б) и строение гиппокампа лемура на тангенциальном срезе (я)

(Stephan, Malonescu, 1980)

/ - прекаллозальный; 2 - супракаллозальный и 3 - посткаллозальный отделы гиппокампа; 4 - мозолистое тело; 5 - передняя комиссура; СА1 и СА2/3 - отделы гиппокампа, ERC - эн- торинальняя кора. FD - зубчатая фасция. PaS - парасубикулум, PrS - пресубикулум, S - субикулум сом, палеокортексом, септумом. У высших млекопитающих над мозолистым телом формируется пучок волокон - пояс, cingulum, через который гиппокамп связан с другими отделами архикортекса и рядом полей неокортекса. Комиссуральные связи осуществляются через комиссуру гиппокампа.

Древняя кора (paleocortex). Древняя кора у млекопитающих занимает в полушарии вентральное положение, оттесненная с латеральной поверхности сильно разросшейся новой корой. Для нее характерны слабая слоистость и неполное отделение от соседних клеточных масс стриатума. Основная часть палеокортекса - пири- формная кора - получает обонятельные проекции по латеральному обонятельному тракту, волокна которого оканчиваются на апикальных дендритах пирамидных нейронов пириформной коры. Аксоны этих нейронов направляются в обонятельный бугорок, а также в префронтальную область коры. Палеокортекс имеет эфферентные:вязи с амигдалой и эпиталамусом. Обращает на себя внимание тот Ьакт, что у животных, имеющих редуцированную обонятельную систему (например, дельфины, некоторые птицы), палеокортекс раз- зит хорошо. Это свидетельствует о том, что палеокортекс функцио- гально связан не только с обонянием.

Субпаллиальные формации. В конечном мозге млекопитающих:убпаллиальные формации включают в себя: хвостатое ядро, nucl. audatus, и скорлупу, putamen, часто рассматриваемые как единая:труктура (неостриатум), а также бледный шар, globus pallidus, (па- геостриатум), ограду, claustrum, амигдалу, структуры вентромеди- 1ЛЬНой стенки полушария (септум, обонятельный бугорок, ядро ди- тональной связки Брока, безымяннаясубстанция, nucl. accumbens).

Цитоархитектоническая и нейронная организация стриатума 1лекопитающих (он включает формации нео-, палеостриатума и граду) очень сложна. Неостриатум цитоархитектонически неодно- юден. Его клетки образуют сложные пространственные комплек- ы - стриосомы, окруженные более рыхло расположенными нейронами, составляющими так называемый матрикс. На поперечных резах мозга в состав центральной части стриосомы входит от 1500 о 15000 нейронов разного размера и формы. Нейроны часто распо- агаются очень плотно, что предполагает наличие электротонических онтактов и синхронизации работы групп нейронов в стриосомах. Форса этих островков, в основном округлая или эллипсоидная (300 - 00 мкм в диаметре), однако объемная реконструкция стриосом на са- иттальных и тангентальных срезах мозга показала очень сложную ространственную конфигурацию подобных комплексов (рис. 125).


Рис. 125

Трехмсрняя реконструкция пространственных комплексов (стриосом) в хвостатом ядре млекопитающих (Goldman - Rakic, 1982) а - зона матрикса, б - зона стриосом

Матрикс представлен скоплениями рыхло расположенных нейронов. Отмечены и существенные различия в медиаторной мозаике стриосомы и матрикса. Стриосомы хвостатого ядра вполне можно рассматривать как аналоги корковых модулей неокортекса.

В составе хвостатого ядра выделено несколько типов нейронов, различающихся по размеру (крупные, средние, мелкие), по типу аксонов (длинно- и короткоаксонные) и характеру дендритных ветвлений (густо- и редковетвистые; шипиковые и бесшипиковые). Показано, что клетки любого размера могут быть как длинноаксонными, образующими эфферентные проекции, так и короткоаксонными, формирующими внутристриатарные связи. Крупные длинноаксонные нейроны дают восходящие проекции в кору, тогда как мелкие и средние длинноаксонные нейроны - нисходящие проекции. В эволюции млекопитающих доля мелких нейронов разного типа увеличивается.

Для микроструктуры неостриатума характерно значительное количество касательных синапсов. Большинство из них - аксо-денд- ритные. Аксоны идут не параллельно дендритам, а перпендикулярно, пересекая один за другим. Несмотря на некоторое преобладание дивергенции окончаний, в значительном количестве встречаются и синаптические комплексы конвергентного типа, когда на одном дендрите оканчивается несколько аксонных окончаний. Еще одна особенность хвостатого ядра - высокая плотность нейропиля, образованного большим количеством миелинизированных и немиелини- зированных волокон. Большую часть этих сплетений составляют коллатерали короткоаксонных интернейронов, а также входящих в ядро афферентных волокон. Аксоны большинства нейронов оканчивается в пределах неостриатума и лишь незначительное количество нейронов образуют внешние связи. В связи с этим одной из особенностей строения неостриатума является обилие внутренних связей.

Бледный шар разделяется цитоархитектонически на внутренний и наружный сегменты. У приматов и человека наружный и внутренний сегменты бледного шара тесно прилегают друг к другу, разделяясь тонким слоем волокон, тогда как у большинства других млекопитающих гомолог внутреннего сегмента, известный под названием энтопедункулярного ядра (nucleus entopeduncularis), топографически значительно отделен от наружного сегмента (палеостриатума).

Нейронный состав бледного шара довольно однообразен. Его клетки - в основном крупные редковетвистые нейроны ретикулярного типа со строго упорядоченной ориентацией дендритов, образующих систему микромодулей в виде дисков, параллельных друг другу и латеральной границе ядра, но расположенных перпендикулярно направлению хода аксонов нейронов неостриатума. В противоположность хвостатому ядру аксонные ветвления нейронов бледного шара идут параллельно, образуя своеобразную аксо-дендритную систему - тип синапсов, характерных для клеток Пуркинье мозжечка. Часто наблюдаются множественные синапсы, образованные 6-8 аксонными терминалями. Аксоны клеток хвостатого ядра и скорлупы, проходя в бледный шар, пронизывают сотни дендритных модулей и образуют сложные синаптические комплексы.

Стриатум млекопитающих имеет сложную систему связей с большим числом мозговых структур (рис. 126). Основной тенденцией в организации афферентных и эфферентных проекций стриатума является формирование кольцевых связей: неокортекс неостриатум неокортекс, неокортекс неостриатум -? палеостриатум таламус -» неокортекс, неостриатум палеостриатум -> неостриатум,


неостриатум палеостриатум -> таламус -? неостриатум, стриа- тум -> черная субстанция -> стриатум. Многие из этих связей топографически упорядочены. Например, в случае корково-неостриатар- ных связей нейроны глубоких слоев коры (V, VI) из определенной зоны неокортекса проецируются в стриосомы, верхних (II, III) - в матрикс. Имеются различия в преобладании определенных.типов проекций от разных зон коры. Эфференты от аллокортикальных ролей оканчиваются, в основном, в центральной части стриосомы, тогда как происходящие из неокортикальных полей - в матриксе. При этом входы из различных полей коры в неостриатуме могут перекрываться, что создает основу для конвергенции на нейронах стриатума разнообразной информации.

Таким образом, филогенетически молодая система связей стриатума с корковыми формациями получает у млекопитающих дальнейшее развитие, обеспечивая ему роль одного из интегративных центров конечного мозга.

Ограда - тонкая полоска серого вещества, отделенная от скорлупы пучками волокон, образующих наружную капсулу, capsula externa, а от коры ее отделяет узкая полоска белого вещества - самая наружная капсула, capsula extrema. Топографически ограда делится на дорсальную, вентральную и каудальную части. Филогенетически ограда является самым новым образованием базальных ганглиев полушарий; у ежей и некоторых грызунов гомолога ограды еще нет. Для нейронного строения ограды характерна значительная полиморфность. Наиболее многочисленны корковые выходы из различных зон неокортекса. Афференты также поступают из стриатума, амигдалы, таламуса и черной субстанции. Эфференты ограды направляются к новой коре, стриатуму, амигдале, обонятельной луковице, таламусу и мозжечку. Есть данные, что ограда имеет корковое происхождение.

В септальной зоне конечного мозга млекопитающих, включающей медиальное и латеральное септальные ядра, ядро диагональной связки Брака, nucl. accumbens, и функционально связанной с лимбической системой, появляется, в отличие от аналогичной зоны конечного мозга рептилий и птиц, большое количество высокоспециализированных короткоаксонных нейронов. Однако анализ связей, структуры и гистохимических характеристик позволяет проводить гомологию основных отделов септальной зоны мозга рептилий, птиц и млекопитающих.

Обонятельный бугорок имеет слоистое строение (различают наружный слой волокон, средний слой пирамидоподобных нейронов и внутренний слой полиморфных клеток). Степень выраженности слоев у разных видов млекопитающих значительно варьирует. Афферентные проекции поступают из обонятельной луковицы, пирифор- мной коры, амигдалы, преоптической области, ряда зон неокортек- са, интраламинарных ядер таламуса, черной субстанции. Эфференты направляются в септальную зону и далее в гиппокамп, стриатум, бледный шар, дорсомедиальную область таламуса и эпиталамус, амигдалу и пириформную кору. Таким образом видно, что обонятельный бугорок млекопитающих связан не только с обонятельной, но и с лимбической и стриопаллидарной системами.

Амигдала млекопитающих состоит из большого числа (до 10) ядер, которые объединяются в несколько групп: базолатеральную (латеральное, основное и добавочное ядра) - наиболее филогенетически молодую часть амигдалы, связанную с корковыми формациями; кортикомедиальную (периамигдалярная кора, среднее и заднее кортикальные ядра, медиальное ядро) - филогенетически более старую часть, связанную с обонятельной системой; центральную (центральное ядро, переднеамигдалярная зона) - связанную с гипоталамусом и ядрами ствола мозга, контролирующими вегетативные функции организма.

В филогенезе млекопитающих в амигдале происходило два процесса. Во-первых, уменьшалась доля, занимаемая ядрами кортикомедиальной группы, и увеличивался объем базолатеральной группы ядер (последняя достигает наибольшего развития и максимальной сложности у приматов и человека). Во-вторых, у высших млекопитающих вследствие сильного развития новой коры амигдала смещается с вентральной стенки полушария на вентромедиальную. Многие вопросы организации амигдалярного комплекса конечного мозга высших позвоночных еще не решены. Однако возможно, что амигдалоидный комплекс, являясь важной частью лимбической системы мозга, принимает участие в регуляции многих комплексных поведенческих реакций высших позвоночных.

  • В настоящее время исследователи на основании гистохимических, ходологических и эмбриологических данных относят перечисленные здесь структуры (начиная с обонятельного ядра) к субпаллиальным формациям.
  • Имеется прямая корреляция между размером мозга и степенью развития извилин - крупные полушария имеют, как правило, более развитую систему борозд и извилин.

Передний мозг - это наиболее крупный отдел головного мозга. У разных видов его абсолютный и относительный размеры весьма варьируют. Главная особенность переднего мозга - значительное раз­витие коры полушарий, которая собирает всю сенсорную информа­цию от органов чувств, производит высший анализ и синтез этой ин­формации и становится аппаратом тонкой условно-рефлекторной деятельности, а у высокоорганизованных млекопитающих - и психи­ческой деятельности (маммальныйтип мозга).

У наиболее высокоорганизованных млекопитающих кора имеет борозды и извилины, что значительно увеличивает ее поверхность.

Для переднего мозга млекопитающих и человека характерна функ­циональная асимметрия. У человека, она выражается в том, что пра­вое полушарие отвечает за образное мышление, и левое - за абстракт­ное. Кроме того, в левом полушарии находятся центры устной и письменной речи.

Промежуточный мозг содержит около 40 ядер. Специальные яд­ра таламуса перерабатывают зрительные, тактильные, вкусовые и интероцептивные сигналы, направляя их затем в соответствующие зоны коры больших полушарий.

В гипоталамусе сосредоточены высшие вегетативные центры, управляющие работой внутренних органов через нервные и гуморальные­ механизмы.

В среднем мозге на смену двухолмия приходит четверохолмие. Его передние холмы являются зрительными, а задние связаны со слухо­выми рефлексами. В центре среднего мозга проходит ретикулярная формация, которая служит источником восходящих влияний, активи­рующих кору больших полушарий. Хотя передние доли являются зрительными, анализ зрительной информации осуществляется в зри­тельных зонах коры, а на долю среднего мозга приходится главным образом управление глазной мускулатурой - изменение просвета зрачка, движения глаз, напряжение аккомодации. В задних холмах расположены центры, регулирующие движения ушных раковин, на­тяжение барабанной перепонки, перемещение слуховых косточек. Средний мозг также участвует в регуляции тонуса скелетной мускулатуры.

Мозжечок имеет развитые боковые доли (полушария), покрытые корой, и червь. Мозжечок связан со всеми отделами нервной системы, имеющими отношение к управлению движениями - с передним моз­гом, стволом мозга и вестибулярным аппаратом. Он обеспечивает координацию движений.

Продолговатый мозг . В нем по бокам обособляются пучки нерв­ных волокон, идущих к мозжечку, а на нижней поверхности - продол­говатые валики, получившие название пирамид.

  • 1 Передний мозг достигает особенно больших размеров, прикрывая остальные отделы мозга. Его увеличение происходит за счет коры (neocortex ), которая становится главным центром высшей нервной деятельности (маммальный тип мозга). Площадь коры может быть гладкой, но у наиболее высокоорганизованных увеличивается за счет образования извилин и борозд. Спереди от больших полушарий у большинства млекопитающих (кроме китообразных, приматов и, в том числе, человека) расположены крупные обонятельные доли, что связано с большим значением обоняния в жизни зверей. В больших полушариях выделяют от 4 до 5 долей, основываясь на топографии определенных борозд и извилин. Различные участки коры больших полушарий являются специализированными зонами обработки информации, поступающей от органов чувств. Кроме того, имеются ассоциативные зоны коры, не связанные с конкретными анализаторами. Они представляют собой надстройку над остальными участками коры, обеспечивая мыслительные процессы и хранение видовой и индивидуальной памяти.
  • 2 Промежуточный мозг, как и у других позвоночных, образован эпиталамусом, таламусом и гипоталамусом, скрыт полушариями переднего мозга. На дорсальной его стороне находится эпифиз, а на вентральной - гипофиз.

Развитие неокортекса у млекопитающих привело к резкому увеличению таламуса. В нем содержится 40 ядер, в которых происходит переключенние восходящих путей на последние нейроны, аксоны которых достигают коры больших полушарий, где обрабатывается информация от всех сенсорных систем. Гипоталамус является высшим центром регуляции эндокринных функций организма. Кроме того, он является высшим центром симпатического и парасимпатического отделов вегетативной нервной системы. Эпиталамус служит нейрогуморальным регулятором суточной и сезонной активности и полового созревания животных.

  • 3 Средний мозг прикрыт полушариями переднего мозга, отличается сравнительно небольшими размерами и представлен не двухолмием, а четверохолмие, передние бугры которого связаны со зрительным анализатором, а передние - со слуховым.
  • 4 Мозжечок сильно развит и имеет более сложное строение; состоит из центральной части - червя с поперечными бороздами и парных полушарии. Развитие мозжечка обеспечивает сложные формы координации движений.
  • 5 Продолговатый мозг частично прикрыт мозжечком. Отличается от представителей других классов тем, что потоком четвертого желудочка обособляются продольные пучки нервных волокон - задние ножки мозжечка, а на нижней поверхности имеются продольные валики - пирамиды.

От ствола головного мозга отходит 12 пар черепно-мозговых нервов.

Спинной мозг расположен внутри позвоночника, который надежно защищает его от внешних повреждений. Он тоненький, не очень длинный, совсем мало весит, но управляет и всем опорно-двигательным аппаратом, и внутренними органами. Начинается он у затылочного отверстия черепа и длится до поясничных позвонков, далее в позвоночнике располагается «конский хвост» – пучок нервов, выходящих из спинного мозга.

Спинной мозг окружен тремя оболочками: мягкой, паутинной и твердой. А пространство между мягкой и паутинной оболочками заполнено еще и большим количеством спинномозговой жидкости. Через межпозвоночные отверстия от спинного мозга парами отходят спинномозговые нервы: каждый выходит двумя корешками – задним (чувствительным) и передним (двигательным), соединенными в один ствол. Каждая такая пара ответственна за определенную часть тела.


Вы замечали, что зачастую мы отдергиваем руку от острого или горячего предмета еще до того, как почувствовали боль? Чувствительный нерв, ответственный за руку, немедленно дает сигнал об опасности в спинной мозг и моментально его двигательный собрат передает руке команду срочно отдернуться. Сигнал о боли дойдет в головной мозг чуть позже. Это позволяет нам и нашим питомцам избежать более серьезных повреждений.

Вообще, практически все наши автоматические и рефлекторные действия контролируются спинным мозгом, ну за исключением тех, за которыми следит сам головной мозг. Так, например, информация об увиденном поступает в головной мозг, но глазные мышцы управляются спинным мозгом. Все новое, то, что человек, собака, кошка делает впервые, контролирует головной мозг, как только это действие становится привычным, автоматическим, рефлекторным, оно передается в ведение спинного мозга. А головной мозг отправляется в дальнейшее познавание неизведанного.

В свете разговоров про спинной мозг хотелось бы напомнить о таком заболевании, как дископатия. Больше всех это заболевание донимает такс, но бывает и у других пород собак, а также у животных других видов и человека. Позвонки, как мы помним, соединены между собой подвижно (иначе как бы мы поворачивались, нагибались?).

Верхняя часть каждого позвонка образует дужку. В ряд этих дужек, соединенных суставами (да-да, такими же суставами, что и кости конечностей), "продет", как нитка в бусины, спинной мозг. Нижние части (тела) позвонков, чтобы не тереться друг о друга и не травмироваться, "проложены" дисками. Каждый диск состоит из эластичной хрящевой основы и внутреннего желеобразного содержимого (представьте себе резиновый шарик, в который налили клейстер), за счет чего он может менять форму и играет роль амортизатора при нагрузке на позвоночник.

Если по какой-то причине диск деформируется, его части, выступающие за пределы межпозвоночного пространства, сдавливают спинной мозг и отходящие от него нервы. Чем это чревато? Пережатые нервные волокна перестают функционировать, и та часть тела, которая управляется этим нервом (этим участком спинного мозга), теряет чувствительность, подвижность, нарушается кровоток и т.д.

В зависимости от места и степени поражения это может ограничиться небольшим, проходящим приволакиванием задних лап (небольшое ущемление спинномозговых нервов в районе поясницы), а может привести и к летальному исходу (сильное сдавливание спинного мозга в области первых грудных позвонков). Хотя к этому заболеванию есть породная предрасположенность, следует помнить, что позвоночник поддерживает мышечный корсет, поэтому активная жизнь и адекватная физическая нагрузка снижают риск. Кроме того, нельзя позволять животным совершать неестественные движения.

Однако давайте немного поговорим о головном мозге. Чем больше, тем лучше? У мышек масса мозга всего около 1 грамма, у кошек – около 30, у собак – около 100, у человекообразных обезьян – около 400. Казалось бы, куда им до человека? У нас с вами в среднем по 1,4 кг мозга! Но у слона мозг весит 5 кг, а у кашалотов – все 7… Они умнее?

Нет, разумность зависит от соотношения массы мозга к массе тела. У человека это соотношение – 50, у шимпанзе – 120, у собаки – 500, а у кашалота – все 3000… Но и это не показатель. В качестве примера посмотрим на знаменитых людей: мозг И.С. Тургенева имел массу 2012 г, знаменитого химика Ю. Либиха – 1362 г, Ленина – 1340 г, писателя А. Франса – всего 1017 г, а самый большой мозг, массой в 2850 г, принадлежал… пациенту психиатрической лечебницы идиоту-эпилептику. От чего же зависит интеллект? От количества так называемого серого вещества – густого сосредоточения нейронов и от количества связей между нейронами.

Мозг потребляет громадное количество энергии и кислорода – до 9% всей энергии организма и 20% кислорода в покое и около 25% от всех поступающих в организм питательных веществ и примерно 33% так необходимого организму кислорода в период активности. Неэкономно? С одной стороны, да, с другой, для выживания нужны не только способы сэкономить энергию и кислород, но и скорость реакции. В общем, мозг, это выгодное вложение. Мощнейший компьютер, самообучающаяся система, центр управления полетами.

Он сложно устроен и надежно защищен: крепкими костями черепа и тремя оболочками: твердой, паутинной и мягкой. Головной мозг состоит из продолговатого мозга, заднего мозга (мозжечок и варолиев мост), среднего мозга, промежуточного мозга (таламус, гипоталамус, эпиталамус, гипофиз и эпифиз), ретикулярной формации, лимбической системы, мозолистого тела, большого мозга и коры его полушарий – это так много и так интересно, что об этом стоит поговорить подробно, что мы сделаем в следующий раз.