Стероидные гормоны. Гормоны регуляция метаболизма система регуляции обмена

Регуляция физиологических процессов, роста и продуктивности сельскохозяйственных животных осуществляется комплексно, в виде рефлекторных реакций и гормональных воздействий на клетки, ткани и органы.

При участии нервной системы гормоны оказывают коррелирующее воздействие на развитие, дифференцировку и рост тканей и органов, стимулируют воспроизводительные функции, процессы метаболизма и продуктивность. Как правило, один и тот же гормон может оказывать соответствующее влияние на несколько физиологических процессов. В то же время различные гормоны, выделяемые одной или несколькими эндокринными железами, могут проявлять свое действие как синергисты или антагонисты.

Регулирование обмена веществ с помощью гормонов во многом зависит от интенсивности их образования и поступления в кровь, от продолжительности срока действия и скорости распада, а также от направленности их влияния на обменные процессы. Результаты действия гормонов зависят от их концентрации, а также от чувствительности эффекторных органов и клеток, от физиологического состояния и функциональной лабильности органов, нервной системы и всего организма. У одних гормонов влияние на процессы метаболизма проявляется, в основном, как анаболическое (соматотропин, инсулин, половые гормоны), а у других гормонов - как катаболическое (тироксин, глюкокортикоиды).

Широкая программа исследований влияния гормонов и их аналогов на обмен веществ и продуктивность животных выполнена в НИИФБиП сельскохозяйственных животных. Этими исследованиями доказано, что анаболическое использование азота, принятого с кормом, зависит не только от его количества в рационе, но и от функциональной активности соответствующих эндокринных желез (гипофиза, поджелудочной, половых желез, надпочечников и др.), гормоны которых во многом определяют интенсивность азотистого и других видов обмена. В частности, определено влияние соматотропина, инсулина, тироксина, тестостерон-пропионата и многих синтетических препаратов на организм животных и установлено, что все перечисленные препараты проявляют четко выраженный анаболический эффект, связанный с повышением биосинтеза и ретенции белка в тканях.

Для роста животных, их важнейшей продуктивной функции, связанной с наращиванием живой массы, важным регулирующим гормоном является СТГ, который действует непосредственно на метаболические процессы в клетках. Он улучшает использование азота, усиливает синтез белков и других веществ, митоз клеток, активирует образование коллагена и рост костей, ускоряет расщепление жиров и гликогена, что в свою очередь улучшает метаболизм и энергетические процессы в клетках.

Действие на рост животных СТГ оказывает в синергизме с инсулином. Они совместно активируют функции рибосом, синтез ДНК, и другие анаболические процессы. На инкрецию соматотропина оказывают влияние тиротропин, глюкагон, вазопрессин, половые гормоны.

На рост животных путем регуляции метаболизма, в частности углеводного и жирового обменов, оказывает влияние пролактин, который действует аналогично соматотропину.

В настоящее время изучаются возможности стимуляции продуктивности животных воздействием на гипоталамус, где образуются соматолиберин - стимулятор инкреции СТГ. Имеются данные о том, что возбуждение гипоталамуса простагландинами, глюкагоном и некоторыми аминокислотами (аргинином, лизином) стимулирует аппетит и поедаемость корма, что положительно сказывается на метаболизме и продуктивности животных.

Одним из важнейших анаболических гормонов является инсулин. Наибольшее влияние он оказывает на обмен углеводов. Инсулин регулирует синтез гликогена в печени и мышцах. В жировой ткани и печени он стимулирует превращение углеводов в жиры.

Анаболическим действием, особенно в период активного роста, обладают гормоны щитовидной железы. Тиреоидные гормоны - тироксин и трийодтиронин оказывают влияние на интенсивность обмена веществ, дифференцировку и рост тканей. Недостаток этих гормонов сказывается отрицательно на основном обмене. При избытке они обладают катаболическим действием, усиливают расщепление белков, гликогена и окислительное фосфорилирование в митохондриях клеток. С возрастом инкреция тиреоидных гормонов у животных уменьшается, что согласуется с замедлением интенсивности обмена веществ и процессов по мере старения организма. С понижением активности щитовидной железы животные более рационально используют питательные вещества и лучше откармливаются.

Таким же действием обладают андрогены. Они улучшают использование питательных веществ корма, синтез ДНК и белков в мышцах и других тканях, стимулируют процессы метаболизма и рост животных.

На рост и продуктивность животных существенное влияние оказывает кастрация. У некастрированных бычков интенсивность роста, как правило, значительно выше, чем у кастратов. Среднесуточный привес у кастратов на 15- 18% ниже, чем у интактных животных. Кастрация бычков отрицательно влияет и на использование корма. По данным некоторых авторов, бычки-кастраты на 1 кг привеса потребляют кормов и переваримого протеина на 13% больше, чем интактные бычки. В связи с этим в настоящее время кастрацию бычков многие считают нецелесообразной.

Лучшее использование корма и усиление роста животных обеспечивают также эстрогены. Они активируют генный аппарат клеток, стимулируют образование РНК, клеточных белков и ферментов. Эстрогены влияют на обмен белков, жиров, углеводов и минеральных веществ. Малые дозы эстрогенов активируют функцию щитовидной железы и намного увеличивают концентрацию инсулина в крови (до 33%). Под действием эстрогенов в моче возрастает концентрация нейтральных 17-кетостероидов (до 20%), что является подтверждением повышенной инкреции андрогенов, обладающих анаболическим действием и, следовательно, дополняющих ростовой эффект СТГ. Эстрогены обеспечивают преобладающее действие анаболических гормонов. В результате этого осуществляется ретенция азота, стимулируется процесс роста, увеличивается содержание аминокислот и белков в мясе. Некоторым анаболическим действием обладает и прогестерон, повышающий эффективность использования корма, особенно у беременных животных.

Из группы кортикостероидов у животных особо важное значение имеют глюкокортикоиды - гидрокортизон (кортизол), кортизон и кортикостерон, которые участвуют в регуляции всех видов обмена веществ, влияют на рост и дифференцировку тканей и органов, на нервную систему и многие эндокринные железы. Они принимают активное участие в защитных реакциях организма при действии стрессовых факторов. Ряд авторов считает, что животные с повышенной функциональной активностью коры надпочечников растут и развиваются интенсивнее. Молочная продуктивность у таких животных более высокая. При этом важную роль играет не только количество глюкокортикоидов в крови, но и их соотношение, в частности гидрокортизона (более активный гормон) и кортикостерона.

На разных этапах онтогенеза различные анаболические гормоны влияют на рост животных неодинаково. В частности, установлено, что концентрация соматотропина и гормонов щитовидной железы в крови крупного рогатого скота с возрастом уменьшается. Уменьшается также и концентрация инсулина, что свидетельствует о тесной функциональной связи этих гормонов и ослаблении интенсивности анаболических процессов в связи с возрастом животных.

В начальном периоде откорма у животных отмечается усиление роста и анаболических процессов на фоне повышенной инкреции СТГ, инсулина и гормонов щитовидной железы, затем инкреция этих гормонов постепенно уменьшается, наступает ослабление процессов ассимиляции и роста, повышается жироотложение. В конце откорма инкреция инсулина значительно уменьшается, так как функция островков Лангерганса, после ее активации в интенсивный период откорма, угнетается. Поэтому на заключительной стадии откорма использование инсулина для стимуляции мясной продуктивности животных весьма целесообразно. Для стимуляции обмена веществ и мясной продуктивности животных, наряду с гормонами и их аналогами, как установлено Ю. Н. Шамберевым и сотрудниками, важное значение имеют алиментарные факторы - углеводистые и белковые корма, а также отдельные компоненты (масляная кислота, аргинин, лизин, комплексы аминокислот и простейших полипептидов и др.), которые оказывают стимулирующее воздействие на функциональную активность желез и метаболические процессы.

Лактация у животных регулируется нервной системой и гормонами ряда эндокринных желез. В частности, эстрогены стимулируют развитие протоков молочных желез, а прогестерон - их паренхимы. Эстрогены, а также гонадолиберин и тиролиберин усиливают инкрецию пролактина и соматотропина, которые стимулируют лактацию. Пролактин активирует в железах пролиферацию клеток и синтез предшественников молока. Соматотропин стимулирует развитие молочных желез и их секрецию, повышает содержание жира и лактозы в молоке. Своим влиянием на обмен белков, жиров и углеводов стимулирует лактацию также инсулин. Кортикотропин и глюкокортикоиды совместно с соматотропином и пролактином обеспечивают необходимый запас аминокислот для синтеза белков молока. Гормоны щитовидной железы тироксин и трийодтиронин усиливают секрецию молока путем активации ферментов и увеличения в клетках железы содержания нуклеиновых кислот, ЛЖК и молочного жира. Лактация усиливается при соответствующем соотношении и синергическом действии перечисленных гормонов. Их излишнее и малое количество, а также рилизинг-гормон пролактостатин тормозят лактацию.

Многие гормоны оказывают регулирующее влияние на рост шерсти. В частности, тироксин и инсулин усиливают рост шерсти. Соматотропин своим анаболическим действием стимулирует развитие фолликулов и образование шерстных волокон. Пролактин тормозит рост шерсти, особенно у беременных и лактирующих животных. Тормозящее влияние на рост шерсти оказывают некоторые гормоны коры и мозгового вещества надпочечников, в частности, кортизол и адреналин.

Для определения взаимосвязи гормонов и различных видов обмена веществ и продуктивности с учетом возраста, пола, породы, условии кормления и содержания животных, а также для правильного выбора и применения гормональных препаратов с целью стимуляции продуктивности животных, необходимо учитывать состояние их гормонального статуса, так как действие гормонов на процессы метаболизма и рост животных тесно связано с функциональной активностью эндокринных желез и содержанием гормонов. Весьма важным показателем является определение концентрации различных гормонов в крови и других биологических жидкостях.

Как уже отмечалось, одним из основных звеньев гормональной стимуляции роста и продуктивности животных является влияние на частоту митозов клеток, их количество и размеры; В ядрах активируется образование нуклеиновых кислот, что способствует синтезу белков. Под влиянием гормонов усиливается активность соответствующих ферментов и их ингибиторов, охраняющих клетки и их ядра от излишней стимуляции процессов синтеза. Поэтому с помощью гормональных препаратов можно достичь лишь определенной умеренной стимуляции роста и продуктивности в пределах возможных изменений уровня обменных и пластических процессов у каждого вида животных, обусловленных филогенезом и активной адаптацией этих процессов к факторам среды обитания.

Эндокринология уже располагает обширными данными о гормонах и их аналогах, обладающих свойствами стимулирующего влияния на обмен веществ, рост и продуктивность животных (соматотропин, инсулин, тироксин и др.). По мере дальнейшего прогресса наших знаний в этой области и изыскания новых высокоэффективных и практически безвредных эндокринных препаратов, наряду с другими биологически активными веществами, они найдут все более широкое применение в промышленном животноводстве для стимуляции роста, сокращения сроков откорма, повышения молочной, шерстной и других видов продуктивности животных.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

15.1. Интеграция обмена веществ

Вышеприведенное раздельное описание реакций, характерных для обмена углеводов, липидов и белков, является искусственным и вызывается исключительно удобством для изучения.

В действительности обмен веществ протекает как единое целое, одновременно и совместно, хотя и в разном объеме. Уже первый этап обмена– пищеварение – представляет собой одновременное расщепление углеводов, липидов и белков. Еще большая общность обмена различных соединений имеется при внутриклеточном обмене. Такие реакции как переаминирование, переметилирование, переамидирование, пересульфирование и др. путем межмолекулярного переноса атомных групп обеспечивает возможность перехода одних химических веществ в другие.

Одним из промежуточных продуктов расщепления углеводов является ацетил-КоА. Но и при распаде жиров и при окислении углеродной цепочки аминокислот появляется это же промежуточное вещество. Именно в этом пункте, в момент образования одного и того же промежуточного вещества– ацетил-КоА – углеводный, жировой и белковый обмен сливаются воедино. Далее ацетил-КоА независимо от своего происхождения расщепляется в -ли моннокислом цикле, сопряженном с цепью дыхательных ферментов, до одних и тех же конечных продуктов обмена: углекислоты и воды. Именно в лимоннокислом цикле происходит полное и окончательное объединение процессов обмена белков, липидов и углеводов, и именно отсюда идут пути взаимных превращений этих веществ.

При определенных условиях единство обмена различных веществ может опять дифференцироваться и пойти по разным путям. На этом основана возможность взаимопревращения углеводов, жиров, аминокислот, перехода одного вещества в другое. В частности, ацетил-КоА, НАДФ.H2 , фосфодиоксиацетон, полученные при расщеплении углеводов, или ацетил-КоА из безазотистого остатка аминокислот, могут синтезироваться в жирные кислоты и жиры. И, наоборот, углеводы в животном организме могут синтезироваться из продуктов окисления жиров и белков, т.е. из продуктов лимоннокислого цикла через

оксалоацетат и обращение ряда реакций гликолиза с включением обходных путей для необратимых реакций гликолиза. Это можно наблюдать в особенно большом количестве при сахарном диабете. У растений и микроорганизмов образование глюкозы может происходить из ацетил-КоА через гликооксилатный цикл.

308 15. Интеграция и регуляция обмена веществ. Гормоны

Многие заменимые аминокислоты могут синтезироваться, как мы видели выше, из промежуточных продуктов расщепления углеводов и жиров(т.е. кетокислот и непредельных кислот путем их аминирования). К примеру, из пировиноградной кислоты может образоваться аланин, из кетоглутаровой – глутаминовая кислота, из щавелево-уксусной и фумаровой кислот– аспарагиновая кислота.

Конечно, возможности биосинтеза аминокислот из других веществ значительно ниже, по сравнению с синтезом жиров и углеводов. Образование новых аминокислот может происходить только при наличии в тканях свободного аммиака, освобождающегося при дезаминировании других аминокислот. Переаминирование сумму аминокислот не меняет.

Естественно, что незаменимые аминокислоты не могут синтезироваться из жиров и углеводов и из заменимых аминокислот. Поэтому белки и являются незаменимой составной частью пищи человека и животных.

Таким образом, изучение различных видов обмена веществ свидетельствует, что обмен веществ представляет собой стройный ансамбль многочисленных и тесно связанных друг с другом химических процессов, в которых ключевыми метаболитами служат пируват, a -глицерофосфат, ацетил-КоА, метаболиты цикла Кребса, а лимитирующими факторами являются незаменимые аминокислоты и незаменимые полиеновые жирные кислоты. Ведущая роль в этом сложнейшем ансамбле принадлежит белкам. Благодаря их каталитической функции осуществляется все многочисленное множество химических реакций распада и синтеза. С помощью нуклеиновых кислот поддерживается строгая специфичность при биосинтезе макромолекул, т.е. в конечном счете, видовая специфичность в строении важнейших биополимеров. Благодаря, главным образом, обмену углеводов и липидов, в организме постоянно возобновляются запасы АТФ– универсального источника энергии для биохимических преобразований. Эти пути поставляют также простейшие органические молекулы, из которых строятся биополимеры и другие соединения, включающиеся в состав организма в процессе непрерывного самообновления живой материи.

15.2. Нейрогуморальная регуляция обмена веществ, роль гормонов

В каждой клетке живого организма одновременно протекают огромное количество реакций обмена углеводов, липидов, белков и других веществ. И в то же время в любой клетке соблюдается строгий порядок течения биохимических процессов, строгая их направленность и согласованность, связанная с условиями внешней среды и направленная на поддержание постоянства внутренней среды (гомеостаза). Такое состояние обменных реакций достигается

15. Интеграция и регуляция обмена веществ. Гормоны 309

тем, что в процессе эволюции в живых организмах сформирована определенная, свойственная только живому, организация биохимических процессов, с одной стороны, а с другой – выработалась стройная система регуляции обмена веществ на различных уровнях. Наиболее простыми являются внутриклеточные механизмы регуляции, важнейшими элементами которых являются:

1) изменение проницаемости биологических мембран;

2) аллостерическое изменение активности ферментных белков;

3) изменение количества молекул ферментов путем регуляции биосинтеза ферментных белков на генетическом уровне.

В организме высших животных и человека ведущую роль в регуляции биохимических реакций выполняет сложно построенная, возникшая в процессе эволюции, нервно-эндокринная система. У этих организмов вся информация о состоянии обмена веществ в тканях в виде нервных импульсов или -хи мических сигналов поступает в центральную нервную систему и железы внутренней секреции. В головном мозге эта информация перерабатывается и в виде сигналов передается как непосредственно в ткани, так и в железы внутренней секреции. Последние вырабатывают особые вещества-гормоны, которые изменяют (регулируют) биохимические процессы непосредственно в клетках.

Гормоны – это биологически активные органические вещества, вырабатываемые в организме определенными клеточными группами или железами и оказывающие регулирующее влияние на процессы обмена веществ и функционирование органов и тканей. Термин «гормон» был введен в1905 году Старлингом при изучении механизма действия секретина. Слово «гормон» – греческого происхождения и означает поощряю, побуждаю, возбуждаю. Выработка почти всех гормонов происходит в хорошо отграниченных отдельных железах. Поскольку выработанные гормоны выделяются не через выводные протоки, а поступают через клеточную стенку в кровь, лимфу или тканевый сок, эти железы называют железами внутренней секреции или эндокринными железами, а выделение гормонов – внутренней секрецией или инкрецией.

Образование гормонов в клеточных группах происходит в ходе метаболизма и является основной (или одной из основных) их функцией. Если же образующиеся биологически активные вещества являются побочными продуктами жизнедеятельности клеток, специализированных на выполнении какихлибо иных функций, то эти вещества называются парагормонами или гормоноидами.

Гормоны и гормоноиды интегрируют обмен веществ, т.е. регулируют соподчиненность и взаимосвязь протекания различных химических реакций в организме, как в едином целом. Само возникновение гормонов и гормоноидов в процессе эволюции живой материи, несомненно, связано с её дифференциацией, с обособлением тканей и органов, деятельность которых должна была

310 15. Интеграция и регуляция обмена веществ. Гормоны

быть тонко скоординирована с тем, чтобы они стали единым организмом. Самая простая форма этой координации заключается в том, что продукты обмена, образующиеся в результате повышенной деятельности одного типа клеток, влияют на деятельность другого рода клеток, усиливая или ослабляя их функции. Продукты обмена, а также гормоноиды при этом распространяются от клетки к клетке преимущественно путем диффузии. Это и имеет место у простейших организмов. На более высоком уровне развития организмов появляется гормональная регуляция, отличающаяся от упомянутой выше тем, что на этой ступени развития уже дифференцируются такие клетки, специализированная функция которых заключается именно в выработке веществ, служащих для регуляции деятельности других клеток и органов. Эти вещества, получившие название гормонов, транспортируются к регулируемым клеткам и органам преимущественно через кровоток.

На высоком уровне развития органов наряду с гормональной регуляцией, являющейся более древней эволюционно, появляются и координирующая деятельность нервной системы. В ходе развития организмов гормональная и нервная регуляция тесно взаимосвязываются в процессе своей деятельности, но нервная система имеет то преимущество, что характеризуется более точной локализацией действия и может быстрее вызвать необходимые функциональные изменения, чем гормональная. Центральная нервная система, анализируя сигналы, идущие из внутренней или наружной среды, в гораздо большей степени может обеспечивать единство организма, чем гормональная регуляция.

Но последняя, присоединяясь к нервной регуляции, имеет для организма то преимущество, что способна воздействовать одновременно на целый ряд различных видов клеток организма и держать под постоянным влиянием соответствующие ткани и органы. По существу, роль эндокринной и нервной систем совпадают, так как их деятельность направлена на обеспечение регулирования и координирования функций организма и сохранение его равновесия(гомеостаза).

Общность нервной и эндокринной систем обуславливается тем, что передача импульсов с нейрона на другой нейрон или на эффектор реализуется -че рез посредство особых биологически активных веществ– медиаторов, а также тем, что некоторым нервным клеткам свойственна нейросекреция, т.е. способность вырабатывать и секретировать продукты метаболизма, обладающие гормональной активностью.

Нейросекреторные клетки совмещают нервную и эндокринную функции, так как способны, с одной стороны, воспринимать нервные импульсы, а с другой стороны – передавать эти импульсы в виде нейрогормонов дальше через кровь. Нейросекреторные клетки у млекопитающих сосредоточены в гипоталамусе, являющемся мозговым центром вегетативных функций организма. При этом одни из нейросекреторных клеток гипоталамуса вырабатывают ней-

15. Интеграция и регуляция обмена веществ. Гормоны 311

рогипофизарные гормоны вазопрессин и окситоцин, которые затем поступают в заднюю долю гипофиза и аккумулируются в ней, выделяясь затем отсюда в кровь. Другие нейросекреторные клетки гипоталамуса продуцируют аденогипофизотропные вещества, так называемые рилизинг-факторы, среди которых различают стимулирующие факторы – либерины и угнетающие факторы – статины, которые активируют или угнетают гормонообразование в передней доле гипофиза. Рилизинг-факторы впервые выделили Гилемин и Шели, установив способность клеток мозга вырабатывать вещества, управляющие работой гипофиза. К числу либеринов относят соматолиберин, кортиколиберин, тиреолиберин, пролактолиберин, фоллилиберин, люлилиберин, а к числу статинов – соматостатин, пролактостатин, меланостатин. Все они являются по химической структуре низкомолекулярными пептидами.

В последние годы из мозга животных выделено более 50 пептидов, получивших название нейропептидов, определяющие в известной степени поведенческие реакции. Показано, что эти вещества влияют на некоторые формы поведения, на процессы обучения и запоминания, регулируют сон, подобно морфину устраняют боль. В качестве примера может быть назван b -эндорфин (обезболивающее действие), скотофобин (вызывает страх перед темнотой) и др. Ряд пептидов, оказывающих фармакологический эффект, получен синтетическим путем (брадикинин, нейрогипофизарный гормон окситоцин, соматостатин и др.). Установлено, что тканевые пептидные гормоны имеют не линейную, а квазициклическую структуру.

Под влиянием рилизинг-факторов в передней доле гипофиза вырабатываются так называемые тропные гормоны, которые активируют деятельность ряда эндокринных желез(щитовидной железы, половых желез, коры надпочечников), непосредственно регулирующих отдельные процессы и функции в организме. Следовательно, если сопоставить функции центральной нервной системы и гормонов, то можно заключить, что роль гормонов по существу состоит в том, что они гуморально передают начальный нервный импульс на конечный эффектор, и, следовательно, гормональная и нервная системы образуют единую систему регуляции жизнедеятельности организма.

При патологических состояниях, вызванных заболеванием эндокринных желез, нейро-гормональная регуляция биохимических процессов оказывается нарушенной, что приводит к резкому понижению способности организма противостоять действию повреждающих факторов. В большинстве случаев эти заболевания есть следствие либо гипофункции эндокринной железы(т.е. недостаточного образования гормона), либо ее гиперфункции (т.е. избыточного выделения гормона). При этом нарушение функции одной эндокринной железы не происходит изолированно, так как отдельные эндокринные железы оказывают своими секретами мощное влияние не только на различные органы и ткани организма, но и на функцию других желез внутренней секреции и на

312 15. Интеграция и регуляция обмена веществ. Гормоны

нервную систему. В этой связи заболевание, вначале вызванное изменением функции той или иной эндокринной железы, в последующем в большинстве случаев отражает нарушение деятельности ряда желез.

Нарушение гормонообразования может обусловливаться не только действием внешних факторов, вызывающих патологическое состояние эндокринных желез, но и эндогенными причинами. К числу этих причин следует отнести: прекращение или искажение активирующих и регулирующих импульсов, посылаемых прямо или опосредованно нервной системой; форму выделения и циркуляции гормона в крови– в доступной или недоступной для эффектора (связывание гормонов белками плазмы крови и пр.); степень реактивности регулируемых систем к гормонам.

В связи с тесной взаимосвязью эндокринной и нервной систем существенное значение для направленного воздействия на функции эндокринных желез приобрели средства, действующие на центральную нервную систему. К примеру, резерпин способен высвобождать катехоламины, являющиеся гормональными веществами, из окончаний симпатических нервов и тем менять функциональное состояние организма.

Большое научное и практическое значение имеют вещества, способные тормозить образование и секрецию гормонов или блокировать их физиологическую активность в эффекторных органах(так называемые антигормональные средства). Это открывает возможность медикаментозной терапии заболеваний, которые возникают вследствии избыточной продукции гормонов. Примером таких веществ являются тиоцианиды, производные тиомочевины, мерказолил, аллоксан, дитизон, хлорпроизводные дифенилэтана, аминоглютетимид, флутаминд, нафоксидин и др., обладающие ингибирующим воздействием на гормоны щитовидной железы, инсулярного аппарата поджелудочной железы, коры надпочечников.

В основе молекулярного механизма действия некоторых антигормонов лежит их конкуренция с гормонами за связывание их цитозольных рецепторов. Антигормоны обладают меньшим сродством к рецепторам, чем истинные гормоны, и поэтому оказывают действие при высоких концентрациях. На этом механизме основано действие природных антигормонов, например, эстрогенов

и андрогенов. Эстрагены блокируют андрогенные рецепторы, а андрогены - эстрагонные рецепторы. На этом механизме основано лечебное применение тестостерона и эстрадиола для терапии опухолей половой сферы у лиц противоположного пола. Такие антигормоны используют для лечения гормонозависимых опухолей, при отклонении в половом поведении(например, при гиперсексуальности).

Функциональная активность эндокринной железы находится в равновесии

с концентрацией ее гормонов в циркулирующей крови.

15. Интеграция и регуляция обмена веществ. Гормоны 313

Это равновесие обеспечивается разными путями: активирующим влиянием тропного гормона гипофиза на периферическую эндокринную железу и

действием гормона последней на тропную функцию гипофиза по принципу обратной связи; угнетающим действием гормонов на железу, их продуцирующую; влиянием выделившихся гормонов на высшие отделы центральной нервной системы и через них на функции эндокринных желез; существованием связи между функцией эндокринной железы и некоторыми продуктами ее метаболизма и т.д.

Деятельность некоторых эндокринных желез специализирована исключительно на продукции гормонов(аденогипофиз, щитовидная железа, околощитовидная железы, кора и мозговая часть надпочечников), тогда как другие эндокринные железы сочетают гормонообразование с неэндокринными функциями (поджелудочная железа, половые железы).

Гормоны отличаются друг от друга видом действия и избирательностью воздействия на тот или иной исполнительный орган. Некоторые гормоны, как, например, гормон щитовидной железы, обладают универсальным действием, другие имеют строго ограниченный диапазон действия: например, гормоны паращитовидной железы действуют преимущественно на костную систему и почки. Особый вид гормонов, вырабатываемых гипофизом, несет регулирующую функцию по отношению к другим эндокринным железам(щитовидной железе, надпочечникам и половым железам). Это различные тропные гормоны гипофиза. Благодаря этому гипофиз занимает особое место в системе эндокринных желез, являясь как бы главной, ведущей эндокринной железой. Ряд гормонов, оказывают непосредственное действие на некоторые основные функции организма (обмен веществ, рост, размножение и др.). Среди последних гормоны щитовидной железы обладают катаболическим действием, тогда как соматотропный гормон передней доли гипофиза, инсулин, андрогены – в основном анаболическим действием.

Гормоны надпочечников (глюкокортикоиды и катехоламины) являются «гормонами адаптации», так как повышают сопротивляемость организма к действию повреждающих факторов. Кроме того, глюкокортикоидам свойственно пермиссивное действие, состоящее в повьшении реактивности эффекторов к действию нервных импульсов и других гормонов, что, поддерживая повышенную работоспособность эффекторных клеток, делает возможной их длительную и напряженную работу.

В регуляции основных жизненных функций участвуют, как правило, несколько гормонов. Так, в регуляции углеводного обмена участвуют инсулин, глюкагон, глюкокортикоиды, соматотропный гормон, адреналин, в регуляции минерального обмена – альдостерон, паратиреоидный гормон и тиреокальцитонин, в регуляции водного обмена– алъдостерон и антидиуретический гормон.

Моноамины: Дофамин, норадреналин, адреналин, мелатонин.

Йодтиронины: Тетрайодтиронин (тироксин, Т 4), трийодтиронин (Т 3).

Белково-пептидные: рилизинг-гормоны гипоталамуса, гормоны гипофиза, гормоны поджелудочной железы и желудочно-кишечного тракта, ангитензины и др.

Стероиды: глюкокортикоиды, минералокортикоиды, половые гормоны, метаболиты холекальциферола (витамин D ).

Цикл жизни гормона

1. Синтез.

2. Секреция.

3. Транспорт. Аутокринное, паракринное и дистантное действие. Значение белков-переносчиков для стероидных и тиреоидных гормонов.

4. Взаимодействие гормона с рецепторами клеток-мишеней.

а) водорастворимые гормоны (пептиды, катехоламины) соединяются с рецепторами на мембране клеток-мишеней. Мембранные рецепторы для гормонов: хемочувствительный ионный канал; G -белки. В результате в клетке-мишени появляются вторичные посредники (например, цАМФ). Изменение активности ферментов → биологический эффект.

б) жирорастворимые гормоны (стероидные, йодсодержащие тиреоидные) проникают сквозь клеточную мембрану и соединяются с рецепторами внутри клетки-мишени. Комплекс «гормон-рецептор» регулирует экспрессию → развитие биологического эффекта.

5. Биологический эффект (сокращение или расслабление гладких мышц, изменение скорости обмена веществ, проницаемости клеточной мембраны, секреторные реакции и др.).

6. Инактивация гормонов и/или их экскреция (роль печени и почек).

Обратная связь

Скорость секреции гормона точно контролируется внутренней системой контроля. В большинстве случаев секреция регулируется механизмом отрицательной обратной связи (хотя крайне редко имеет место и положительная обратная связь). Итак, эндокринная клетка способна воспринимать последствия секреции определенного гормона. Это позволяет ей приспособить уровень секреции гормона для обеспечения желаемого уровня биологического эффекта.

А. Простая отрицательная обратная связь.

Если биологический эффект возрастает , количество гормона, секретируемого эндокринной клеткой, в дальнейшем будет снижаться .

Контролируемый параметр – уровень активности клетки-мишени. Если клетка-мишень слабо отвечает на гормон, эндокринная клетка будет выделять больше гормона, чтобы достигнуть желаемого уровня активности.

Б. Сложная (составная) отрицательная обратная связь осуществляется на различных уровнях.

Пунктирными линиями показаны различные варианты отрицательной обратной связи.

В. Положительная обратная связь: в конце фолликулярной фазы женского полового цикла возрастает концентрация эстрогенов, что приводит к резкому увеличению секреции (пику) ЛГ и ФСГ, возникающему перед овуляцией.

Самостоятельная работа по теме: «Физиология эндокринной системы»

Женские половые гормоны

_______________________

_______________________

_______________________

_______________________

Дни от пика ЛГ

Дни от начала цикла

Рис. 1. Изменение уровня гонадотропинов аденогипофиза (ЛГ, ФСГ), гормонов яичников (прогестерона и эстрадиола) и базальной температуры тела во время женского полового цикла.

Укажите рядом с графиками названия гормонов.

В яичнике в период женского полового цикла (продолжительностью в 28 дней) различают:

1. Фолликулярную фазу, которая длится с ______ по ______ день цикла. В эту фазу в яичнике ____________________________________________________________________________

2. Овуляция (О ) происходит на _____ день цикла. Овуляция – это ______________________ ____________________________________________________________________________________________________________________________________________________________

Овуляции предшествует пик _______________________________ гормона.

3. Фазу желтого тела, которая длится с ______ дня по ________ день. В эту фазу в яичнике ______________________________________________________________________________ ____________________________________________________________________________________________________________________________________________________________

В матке в период женского полового цикла различают:

1. Менструацию (М ) – ____________________________________________________________ ______________________________________________________________________________

2. Пролиферативную фазу – ______________________________________________________ ____________________________________________________________________________________________________________________________________________________________

3. Секреторную фазу – __________________________________________________________ ____________________________________________________________________________________________________________________________________________________________

Пользуясь рис. 1 , дополните предложения:

1. Наибольшая концентрация в плазме эстрадиола на _______ день цикла, т.е. в ________________________ фазу.

2. Наибольшая концентрация в плазме прогестерона на ________ день цикла, т.е. в ________________________ фазу.

3. Непосредственно перед овуляцией наблюдается пик гормонов __________________.

4. Подъем базальной температуры тела во время овуляции и в фазу желтого тела связан с секрецией гормона ________________________________.

Менопауза

Менопауза – это ________________________________________________________________

____________________________________________________________________________________________________________________________________________________________

В менопаузу секреция:

а) прогестерона, эстрадиола ________________________

б) ФСГ, ЛГ ________________________

в) половых гормонов (андрогенов) в корковом веществе надпочечников _________________

В период менопаузы изменяется деятельность систем организма: ______________________

____________________________________________________________________________________________________________________________________________________________

Эпифиз (шишковидная железа)

Гормон эпифиза: __________________________________________

(аминокислота триптофан → серотонин → ____________________)

Регуляция секреции:

Темнота (стимулирующее влияние) → сетчатка глаза → ретино-гипоталамический тракт → латеральная область гипоталамуса → спинной мозг → симпатические нервы (преганглионарный нейрон) → верхний шейный ганглий → постганглионарный нейрон → пинеалоциты эпифиза → увеличение синтеза и секреции мелатонина.

Примечание: 1) медиатор постганглионарного нейрона, который взаимодействует с β-адренорецепторами пинеалоцитов эпифиза, _____________________________________

2) свет оказывает _________________________ влияние на синтез и секрецию мелатонина

3) на ночные часы приходится 70% суточной продукции гормона

4) стресс ___________________________ секрецию мелатонина

Механизм действия и эффект

1. Мелатонин _____________ секрецию гонадолиберинов гипоталамуса и ________________ аденогипофиза → снижение половых функций.

2. Введение мелатонина вызывает легкую эйфорию, сон.

3. К началу полового созревания уровень мелатонина _______________________________.

4. Во время женского полового цикла уровень мелатонина изменяется: во время менструации – ___________________________, а во время овуляции – _________________________.

5. Эпифиз – биологические часы, т.к. благодаря ему происходит временная адаптация.

Клинические проявления недостатка и избытка гормона:

1. Опухоли, разрушающие эпифиз, _______________________ половую функцию.

2. Опухоли, происходящие из пинеалоцитов, сопровождаются______________________

половой функции.

Регуляция уровня Ca 2+ в крови

Нормальная физиология Марина Геннадиевна Дрангой

27. Синтез, секреция и выделение гормонов из организма

Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках.

Генетический контроль осуществляется либо на уровне образования мРНК (матричной РНК) самого гормона или его предшественников либо на уровне образования мРНК белков ферментов, которые контролируют различные этапы образования гормона.

В зависимости от природы синтезируемого гормона существуют два типа генетического контроля гормонального биогенеза:

1) прямой, схема биосинтеза: «гены – мРНК – про-гормоны – гормоны»;

2) опосредованный, схема: «гены – (мРНК) – ферменты – гормон».

Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы.

Секреторный процесс осуществляется как в покое, так и в условиях стимуляции.

Секреция гормона происходит импульсивно, отдельными дискретными порциями. Импульсивный характер гормональной секреции объясняется циклическим характером процессов биосинтеза, депонирования и транспорта гормона.

Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции.

Выделяют три механизма секреции:

1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);

2) освобождение из белоксвязанной формы (секреция тропных гормонов);

3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).

Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему.

Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям.

Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация.

В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5-10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник.

автора Марина Геннадиевна Дрангой

Из книги Гомеопатия. Часть II. Практические рекомендации к выбору лекарств автора Герхард Кёллер

Из книги Основы интенсивной реабилитации. Травма позвоночника и спинного мозга автора Владимир Александрович Качесов

Из книги Нормальная физиология автора

Из книги Нормальная физиология автора Николай Александрович Агаджанян

Из книги Атлас: анатомия и физиология человека. Полное практическое пособие автора Елена Юрьевна Зигалова

Из книги Философский камень гомеопатии автора Наталья Константиновна Симеонова

Из книги Целительные силы. Книга 1. Очищение организма и правильное питание. Биосинтез и биоэнергетика автора Геннадий Петрович Малахов

Из книги Секреты целителей Востока автора Виктор Федорович Востоков

Из книги Талассо и релаксация автора Ирина Красоткина

автора Борис Васильевич Болотов

Из книги Рецепты Болотова на каждый день. Календарь на 2013 год автора Борис Васильевич Болотов

автора Галина Ивановна Дядя

Из книги Как сбалансировать гормоны щитовидной железы, надпочечников, поджелудочной железы автора Галина Ивановна Дядя

Из книги Лечебные чаи автора Михаил Ингерлейб

Из книги Минимум жира, максимум мышц! автора Макс Лис

Гормоны представляют собой биологически активные вещества, различные по химической природе, которые вырабатываются клетками эндокринных желез и специфическими клетками, рассеяными по всему организму в рабочих органах и тканях.

Все гормоны имеют несколько важных свойств, которые отличают их от других биологически активных веществ:

1. Гормоны вырабатываются в клетках эндокринных желез и секретируются в кровь.

2. Все гормоны являются чрезвычайно активными веществами, они вырабатываются в малых дозировках (0,001-0,01 моль/л), но оказывают выраженный и быстрый биологический эффект.

3. Гормоны специфически воздействуют на органы и ткани посредством рецепторов. Они подходят к рецептору как ключ к замку, а потому воздействуют только на восприимчивые клетки и ткани.

4. Гормоны отличаются тем, что имеют определенный ритм секреции, например, гормоны коры надпочечников имеют суточный ритм секреции, а иногда ритм является месячным (половые гормоны у женщин) или интенсивность секреции изменяется в течение более продолжительного периода времени (сезонные ритмы).

Стоит отметить, что биологически активные вещества, которые вырабатывают рассеянные по организму клетки, зачастую относят к так называемым тканевым гормонам. Их отличительными особенностями является секреция в тканевую жидкость и преимущественно местное действие, тогда как гормоны оказывают свой эффект дистанционно.

По своей химической природе все гормоны могут быть белками (пептидами), производными аминокислот или веществами стероидной природы.

Регуляция работы

Работа эндокринных желез (интенсивность синтеза гормонов) регулируется центральной нервной системой. При этом деятельность всех периферических желез внутренней секреции определяется также корригирующими влияниями из центральных структур эндокринной системы.

Существует два механизма влияния нервной системы на эндокринную: нейро-проводниковый и нейро-эндокринный. Первый заключается в непосредственном влиянии нервной системы за счет нервных импульсов на периферические железы. Например, интенсивность синтеза гормонов может изменяться за счет снижения или увеличения тонуса сосудов железы, т.е. изменения интенсивности ее кровоснабжения. Второй механизм заключается во влиянии нервной системы на гипоталамус, который посредством рилизинг факторов (стимуляторы – либерины, и подавляющие секрецию - статины) определяет работу гипофиза. Гипофиз, в свою очередь, продуцирует тропные гормоны, регулирующие деятельность периферических желез.

Все железы внутренней секреции связаны с центральными структурами по механизму обратной отрицательной связи – повышение концентрации гормонов в крови ведет к уменьшению стимулирующего влияния со стороны нервной системы и центральных структур эндокринной системы.

Образование

Большинство гормонов синтезируется эндокринными железами в активной форме. Некоторые поступают в плазму в виде неактивных веществ – прогормонов. Например, проинсулин, который становится активным только после отщепления от него небольшой части - так называемого С-пептида.

Выделение

Секреция гормонов – это всегда активный процесс, который строго регулируется нервными и эндокринными механизмами. При необходимости может не только снижаться продукция гормона, но и происходить его депонирование в клетках эндокринных желез, например, за счет связывания с белком, РНК, двухвалентными ионами.

Транспортировка

Транспорт гормона осуществляется исключительно кровью. При этом большая его часть в крови находится в связанной форме с белками (около 90%). Стоит отметить, что почти все гормоны связываются со специфическими белками, тогда как с неспецифическим белком (альбумином) связано лишь 10% пула. Связанные гормоны являются неактивными, они переходят в активную форму лишь после выхода из комплекса. Если гормон не понадобился организму, то со временем он выходит из комплекса и метаболизируется.

Рецепторные взаимодействия

Связывание гормона с рецептором является важнейшим этапом гуморальной передачи сигнала. Именно рецепторное взаимодействие обуславливает специфическое действие гормона на клетки-мишени. Большая часть рецепторов представляет собой гликопротеиды, которые встроены в мембрану, т.е. находятся в специфическом фосфолипидном окружении.

Взаимодействие рецептора и гормона происходит по закону действующих масс согласно кинетике Михаэлиса. В ходе взаимодействия возможно проявление как положительного, так и отрицательного кооперативного эффектов. Иными словами, связывание гормона с рецептором может улучшить связывание с ним всех последующих молекул, либо сильно затруднить его.

Взаимодействие гормона и рецептора может приводить к разным биологическим эффектам, во многом они определяются типом рецептора, а именно его расположением. В связи с этим выделяют следующие варианты локализации рецепторов:

1. Поверхностные. При взаимодействии с гормоном меняют свою структуру (конформацию), за счет чего увеличивается проницаемость мембраны, и в клетку проходят определенные вещества.

2. Трансмембранные. Поверхностная часть взаимодействует с гормоном, а противоположная ей (внутри клетки) - с ферментом (аденилатциклаза или гаунилатциклаза), способствует выработке внутриклеточных медиаторов (циклический аденин- или гаунинмонофосфат). Последние являются так называемыми внутриклеточными мессенджерами, они усиливают синтез белка или его транспортировку, т.е. оказывают определенный биологический эффект.

3. Цитоплазматические. Находятся в цитоплазме в свободном виде. С ними связывается гормон, комплекс поступает в ядро, где усиливает синтез

Информационной РНК и, таким образом, стимулирует образование белка на рибосомах.

4. Ядерные. Это негистоновый белок, который связан с ДНК. Взаимодействие гормона и рецептора приводит к усилению синтеза белка клеткой.

Эффект гормона зависит от множества факторов, в частности, от его концентрации, от количества рецепторов, плотности их расположения, аффинности (сродства) гормона и рецептора, а также наличия антагонистического или потенцирующего воздействия на эти же клетки или ткани других биологически активных веществ.

Чувствительность рецепторов имеет не только академическое, но и большое клиническое значение, поскольку, например, рецепторная резистентность к инсулину лежит в основе развития сахарного диабета второго типа, а блокирование рецепторов при гормончувствительных опухолях (в частности, молочной железы) значительно увеличивает эффективность лечения.

Инактивация

Гормоны могут подвергаться метаболизму в самих эндокринных железах, если в них нет необходимости, в крови, а также в органах-мишенях после того, как они выполнили свою функцию.

Метаболизм гормонов может осуществляться несколькими путями:

1. Расщепление молекулы (гидролиз).

2. Изменение структуры активного центра за счет присоединения дополнительных радикалов, например, метилирование или ацетилирование.

3. Окисление или восстановление.

4. Связывание молекулы с остатком глюкуроновой или серной кислоты с образованием соответствующей соли.

Разрушение гормонов является не только средством их утилизации после того, как они справились со своей функцией, но и важным механизмом регуляции уровня гормонов в крови и их биологического эффекта. Стоит отметить, что усиление катаболизма повышает пул свободных гормонов, делая их, таким образом, более доступным для органов и тканей. Если достаточно долгое время сохраняется повышенным катаболизм гормонов, то происходит снижение уровня транспортных белков, что также повышает биодоступность.

Выведение из организма

Гормоны могут выводиться всеми без исключения путями, в частности, почками с мочой, печенью через желчь, желудочно-кишечным трактом с пищеварительными соками, дыхательными путями с выдыхаемыми парами, кожей с потом. Пептидные гормоны гидролизируются до аминокислот, которые попадают в общий пул и могут быть снова использованы организмом. Преимущественный способ выведения того или иного гормона определяется его растворимостью в воде, структурой, особенностями метаболизма и так далее.

По количеству гормонов или их метаболитов в моче зачастую удается отследить общую величину секреции гормона за сутки. Поэтому моча является одной из основных сред для функционального изучения эндокринной системы, не меньшее значение для лабораторной диагностики имеет и исследование плазмы крови.

Подводя итог, стоит отметить, что эндокринная система – это сложная и многокомпонентная система, все процессы в которой тесно связаны между собой, а нарушение функционирования может быть связано с патологией на каждом из вышеуказанных этапов: от образования гормона до его выведения.