Решить квадратное неравенство с параметром. §2. Квадратные уравнения и неравенства с параметром

Многие задачи с параметром сводятся к исследованию квадратного трёхчлена, поэтому рассмотрим эти задачи подробнее.

I. При решении простейших задач бывает достаточно формулы для корней квадратного уравнения и теоремы Виета.

При каких значениях параметра a a множество решений неравенства $$x^2+ax-1

Поскольку коэффициент при x 2 x^2 положителен, решением неравенства является интервал между корнями в случае $$D > 0$$ и пустое множество, если D ≤ 0 D \leq 0 .

Находим дискриминант: D = a 2 + 4 D = a^2+4 ($$D>0$$ при всех a a). Тогда множество решений есть промежуток

x ∈ (- a - a 2 + 4 2 ; - a + a 2 + 4 2) x \in (\dfrac{-a-\sqrt{a^2+4}}{2}; \dfrac{-a+\sqrt{a^2+4}}{2}) . Требуется, чтобы длина этого промежутка была равна 5, т. е.

A + a 2 + 4 2 = - a - a 2 + 4 2 + 5 ⇔ a 2 + 4 = 5 ⇔ a = ± 21 \dfrac{-a+\sqrt{a^2+4}}{2} = \dfrac{-a-\sqrt{a^2+4}}{2} + 5 \Leftrightarrow \sqrt{a^2+4}=5 \Leftrightarrow a = \pm \sqrt{21} .

ОТВЕТ

A = ± 21 a = \pm \sqrt{21}

При каких значениях параметра p p уравнение x 2 + p 2 + 4 p · x + p - 1 x^2+\sqrt{p^2+4p}\cdot x +p-1 имеет корни, а сумма квадратов корней минимальна?

Сумму квадратов корней уравнения удобно выразить с помощью теоремы Виета:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = (- p 2 + 4 p) 2 - 2 (p - 1) = p 2 + 2 p + 2 x_1^2+x_2^2 = (x_1+x_2)^2-2x_1x_2=(-\sqrt{p^2+4p})^2-2(p-1) = p^2 +2p + 2 .

Но прежде, чем применять теорему Виета, обязательно нужно проверить, что уравнение имеет корни! Для этого вычисляем дискриминант: D = p 2 + 4 p - 4 (p - 1) = p 2 + 4 D = p^2+4p-4(p-1) = p^2+4 . Видим, что дискриминант положителен при любых допустимых значениях p p , т. е. при

p ∈ (- ∞ ; - 4 ] ∪ [ 0 ; + ∞)                           (5) p \in (-\infty; -4]\bigcup и пр.), в которых надо самостоятельно нарисовать чертёж и сделать соответствующие выводы.

Замечания. 1. Для уравнений и неравенств вида

$$ax^2 + bx + c = 0,\: ax^2 + bx + c > 0, \: ax^2 + bx + c надо отдельно рассматривать случай a = 0 a =0 . Тогда получится линейное уравнение (неравенство).

2. В большинстве задач важно учесть знак числа a a - от этого зависит направление ветвей параболы.

3. Заметим, что совокупность двух систем

$$\begin{cases} a > 0, \\ f(a) > 0 \end{cases} и \begin{cases} a

равносильна неравенству $$a f(a) > 0$$. Поэтому в условии 1 ° 1^{\circ} можно записать одну систему $$\begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}}

Аналогично можно упростить и другие условия:

$$2^{\circ} \Leftrightarrow \begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}} > A .\end{cases} \:\:\: 3^{\circ} \Leftrightarrow a f(A) 0, \\ a f(A) > 0, \\ a f(B) > 0, \\ A

Перейдём к примерам.

При каких a a уравнение (2 a - 2) x 2 + (a + 1) x + 1 = 0 (2a-2)x^2 + (a+1)x +1 = 0 имеет корни, и все они принадлежат интервалу (- 2 ; 0) (-2; 0) ?

1) Если 2 a - 2 = 0   (a = 1) 2a-2=0\:(a=1) , то уравнение принимает вид 2 x + 1 = 0 2x+1=0 . Это уравнение имеет единственный корень x = - 0,5 x=-0,5 , который принадлежит интервалу (- 2 ; 0) (-2; 0) . Значит, a = 1 a =1 удовлетворяет условию задачи.

2) Если 2 a - 2 ≠ 0 2a-2 \neq 0 , то уравнение квадратное. Находим дискриминант:

D = (a + 1) 2 - 4 (2 a - 2) = a 2 - 6 a + 9 = (a - 3) 2 D=(a+1)^2-4(2a-2)=a^2-6a+9=(a-3)^2 .

Поскольку дискриминант является полным квадратом, находим корни(как правило, вышеописанные приёмы с расположением корней удобно использовать, если формулы для корней громоздкие. Если дискриминант является полным квадратом и корни получаются “хорошими”, то проще решить задачу напрямую):

Для выполнения условий задачи требуется, чтобы выполнялось неравенство $$-2 \dfrac{3}{2}$$.

ОТВЕТ

A ∈ { 1 } ∪ (3 2 ; + ∞) a \in \{1\}\bigcup (\dfrac{3}{2}; +\infty) .

При каких значениях a a неравенство $$4^{\textrm{sin}\:x}-2\cdot (a-3) \cdot 2^{\textrm{sin}\:x} + a+3 > 0$$ выполняется для всех x x ?

Обозначим 2 sin   x = y 2^{\textrm{sin}\:x}=y . Поскольку - 1 ≤ sin   x ≤ 1 -1 \leq \textrm{sin}\:x \leq 1 , получаем, что 1 2 ≤ 2 sin   x ≤ 2 \dfrac{1}{2} \leq 2^{\textrm{sin}\:x} \leq 2 . Исходное неравенство принимает вид

$$y^2-2(a-3)y+(a+3) > 0$$

Данная задача эквивалентна следующей: «при каких a a неравенство $$y^2-2(a-3)y+(a+3) > 0$$ выполнено для всех y ∈ [ 1 2 ; 2 ] y \in [\dfrac{1}{2};2] ?»

График левой части этого неравенства - парабола с ветвями вверх. Требования задачи будут выполнены в двух случаях. 1) $$D

а) Это расположение параболы (корни находятся слева от отрезка [ 1 2 ; 2 ] [\dfrac{1}{2};2]) задаётся условиями (записываем и решаем систему):

$$\begin{cases} D \geq 0,\\ x_{\text{в}} 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 0 \end{cases} \Leftrightarrow \begin{cases} a \in (-\infty;1]\bigcup]6;+\infty),\\ a 0 \end{cases} \Leftrightarrow a \leq 1 $$.

б) Этот случай задаётся условием $$D

в) Аналогично случаю а) получаем систему:

$$\!\!\!\! \begin{cases} D \geq 0,\\ x_{\text{в}} > 2,\\ f(2) > 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 > 2,\\ 4 - 4(a-3) +a+3 > 0 \end{cases} \Leftrightarrow \begin{cases} a\in (-\infty; 1]\bigcup ?

1) Рассматриваем случай a = 0 a = 0 (тогда уравнение не квадратное). Уравнение принимает вид - 5 x - 6 = 0 -5x-6=0 . Корней на отрезке [ 0 ; 2 ] нет, поэтому a = 0 a = 0 не подходит.

2) Уравнение квадратное. Обозначим левую часть уравнения через f (x) f(x) . Уравнение имеет на отрезке [ 0 ; 2 ] ровно один корень в двух случаях.

А) Уравнение имеет единственный корень, и он принадлежит отрезку [ 0 ; 2 ] . Это возможно при D = 0 D = 0 . Вычисляем дискриминант:

D = (2 a - 5) 2 - 4 a (a - 6) = 4 a + 25 D = (2a-5)^2-4a(a-6) = 4a+25 .

Дискриминант обращается в ноль при a = - 25 4 a=-\dfrac{25}{4} . При этом исходное уравнение принимает вид - 25 4 x 2 - 35 2 x - 49 4 = 0 -\dfrac{25}{4}x^2-\dfrac{35}{2}x - \dfrac{49}{4} = 0 , откуда x = - 7 5 x = -\dfrac{7}{5} . Корней на отрезке [ 0 ; 2 ] нет, значит, этот случай не реализуется ни при каких значениях параметра a a .

Б) Уравнение имеет два корня ($$D>0 \Leftrightarrow a>-\dfrac{25}{4}$$), один из которых принадлежит отрезку [ 0 ; 2 ] , а другой - нет. Для выполнения этого условия необходимо и достаточно, чтобы либо (а) функция f (x) f(x) принимала на концах отрезка [ 0 ; 2 ] значения разных знаков - тогда корень лежит в интервале (0 ; 2) (0;2) (в качестве примера(можете самостоятельно рассмотреть и другие возможные расположения параболы) см. рис. 7), либо (б) в одном из концов отрезка обращалась в ноль - тогда корень лежит на одном из концов отрезка.

(а) Условие “числа f (0) f(0) и f (2) f(2) имеют разные знаки” равносильно неравенству $$f(0)\cdot f(2)

$$\left(a-6\right)\left(4a+2\left(2a-5\right)+\left(a-6\right)\right)

(б) Если f (0) = 0 f(0) = 0 , то a = 6 a=6 . Тогда уравнение принимает вид 6 x 2 + 7 x = 0 6x^2+7x=0 . Его корнями являются числа x = 0 x=0 и x = - 7 6 x=-\dfrac{7}{6} , т. е. на отрезке [ 0 ; 2 ] оно имеет ровно один корень.

Если f (2) = 0 f(2) = 0 , то a = 16 9 a=\dfrac{16}{9} . Тогда получаем 16 9 x 2 - 13 9 x - 38 9 = 0 \dfrac{16}{9}x^2 - \dfrac{13}{9}x - \dfrac{38}{9} = 0 , откуда x = 2 x=2 или x = - 19 16 x=-\dfrac{19}{16} , т. е. опять из двух корней только один принадлежит отрезку [ 0 ; 2 ] .

Значит, оба значения a = 6 a=6 и a = 16 9 a=\dfrac{16}{9} и удовлетворяют условию задачи(при f (2) = 0 f(2) = 0 или f (0) = 0 f(0) = 0 обязательно надо найти второй корень и посмотреть, находится ли он на отрезке [ 0 ; 2 ] ).

Объединяя результаты, получаем a ∈ [ 16 9 ; 6 ] a\in [\dfrac{16}{9}; 6] .

ОТВЕТ

16 9 ≤ a ≤ 6 \dfrac{16}{9} \leq a \leq 6

При каких значениях параметра a a уравнение | x 2 - 4 | x | + 3 | = a |x^2-4|x|+3| = a имеет ровно 8 решений?

Изобразим графики левой и правой частей на плоскости xOy.

Чтобы построить график левой части, сначала изображаем параболу y = x 2 - 4 x + 3 y = x^2-4x+3 . Затем отражаем все точки этой параболы, лежащие ниже оси абсцисс, относительно этой оси и получаем график функции y = | x 2 - 4 x + 3 | y=|x^2-4x+3| (рис. 8а). Далее отбрасываем все точки, лежащие слева от оси абсцисс, а оставшиеся точки отражаем относительно этой оси - получаем график функции y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| .

График правой части - это горизонтальная прямая y = a y=a . Уравнение имеет 8 решений, когда эта прямая пересекает график y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| в восьми точках. Несложно видеть, что это происходит при $$0ОТВЕТ

A ∈ (0 ; 1) a\in (0;1)

Найдите все значения параметра p p , при которых уравнение 4 x + 2 x + 2 + 7 = p - 4 - x - 2 · 2 1 - x 4^x+2^{x+2}+7=p-4^{-x}-2\cdot 2^{1-x} имеет хотя бы одно решение.

Перепишем уравнение в виде (4 x + 4 - x) + 4 · (2 x + 2 - x) = p - 7 (4^x+4^{-x})+4\cdot (2^x+2^{-x})=p-7 и сделаем замену 2 x + 2 - x = t 2^x+2^{-x}=t . Возводя обе части последнего равенства в квадрат, получаем, что t 2 = (2 x + 2 - x) 2 = 4 x + 2 + 4 - x t^2=(2^x+2^{-x})^2=4^x+2+4^{-x} , откуда 4 x + 4 - x = t 2 - 2 4^x+4^{-x} = t^2-2 . Уравнение принимает вид t 2 - 2 + 4 t = p - 7 ⇔ (t + 2) 2 = p - 1 t^2-2+4t = p-7 \Leftrightarrow (t+2)^2 = p-1 .

Найдём множество значений левой части уравнения. Поскольку(используем, что сумма двух взаимно обратных положительных чисел не меньше двух: a + 1 a ≥ 2 a+\dfrac{1}{a} \geq 2 при $$a>0$$ 0 (равенство возможно только при a = 1 a = 1). Это можно доказать, например, с помощью неравенства Коши: для положительных чисел среднее арифметическое не меньше среднего геометрического (a 1 + a 2 + . . . + a k k ≥ a 1 · a 2 · . . · a k k) (\dfrac{a_1+a_2+...+a_k}{k} \geq \sqrt[k]{a_1\cdot a_2\cdot .. \cdot a_k}) , причём равенство достигается только в случае a 1 = a 2 = . . . = a k a_1=a_2=...=a_k . Для двух положительных чисел это неравенство принимает вид a + b 2 ≥ a b \dfrac{a+b}{2} \geq \sqrt{ab} . Если сюда подставить b = 1 a b = \dfrac{1}{a} , то получится требуемое неравенство.) t ≥ 2 t \geq 2 , получаем, что левая часть уравнения принимает значения из промежутка [ 16 ; + ∞) при а € (0; 1);
х € R при а = 0.

Пример 3.

Решить неравенство |1 + x| ≤ аx относительно х.

Решение.

Из условия следует, что правая часть неравенства ах должна быть не отрицательна, т.е. ах ≥ 0. По правилу раскрытия модуля из неравенства |1 + x| ≤ аx имеем двойное неравенство

Ах ≤ 1 + x ≤ аx. Перепишем результат в виде системы:

{аx ≥ 1 + x;
{-ах ≤ 1 + x.

Преобразуем к виду:

{(а – 1)x ≥ 1;
{(а + 1)х ≥ -1.

Исследуем полученную систему на интервалах и в точках (рис. 1) :

При а ≤ -1 х € (-∞; 1/(а – 1)].

При -1 < а < 0 x € [-1/(а – 1); 1/(а – 1)].

При а = 0 x = -1.

При 0 < а ≤ 1 решений нет.

Графический метод решения неравенств

Построение графиков значительно упрощает решение уравнений, содержащих параметр. Использование графического метода при решении неравенств с параметром еще нагляднее и целесообразнее.

Графическое решение неравенств вида f(x) ≥ g(x) означает нахождение значений переменной х, при которых график функции f(x) лежит выше графика функции g(x). Для этого всегда необходимо найти точки пересечения графиков (если они существуют).

Пример 1.

Решить неравенство |x + 5| < bx.

Решение.

Строим графики функций у = |x + 5| и у = bx (рис. 2) . Решением неравенства будут те значения переменной х, при которых график функции у = |x + 5| будет находиться ниже графика функции у = bx.

На рисунке видно:

1) При b > 1 прямые пересекаются. Абсцисса точки пересечения графиков этих функций есть решение уравнения х + 5 = bx, откуда х = 5/(b – 1). График у = bx находится выше при х из интервала (5/(b – 1); +∞), значит это множество и есть решение неравенства.

2) Аналогично находим, что при -1 < b < 0 решением является х из интервала (-5/(b + 1); 5/(b – 1)).

3) При b ≤ -1 x € (-∞; 5/(b – 1)).

4) При 0 ≤ b ≤ 1 графики не пересекаются, а значит, и решений у неравенства нет.

Ответ: x € (-∞; 5/(b – 1)) при b ≤ -1;
x € (-5/(b + 1); 5/(b – 1)) при -1 < b < 0;
решений нет при 0 ≤ b ≤ 1; x € (5/(b – 1); +∞) при b > 1.

Пример 2.

Решить неравенство а(а + 1)х > (a + 1)(a + 4).

Решение.

1) Найдем «контрольные » значения для параметра а: а 1 = 0, а 2 = -1.

2) Решим данное неравенство на каждом подмножестве действительных чисел: (-∞; -1); {-1}; (-1; 0); {0}; (0; +∞).

a) a < -1, из данного неравенства следует, что х > (a + 4)/a;

b) a = -1, тогда данное неравенство примет вид 0·х > 0 – решений нет;

c) -1 < a < 0, из данного неравенства следует, что х < (a + 4)/a;

d) a = 0, тогда данное неравенство имеет вид 0 · х > 4 – решений нет;

e) a > 0, из данного неравенства следует, что х > (a + 4)/a.

Пример 3.

Решить неравенство |2 – |x|| < a – x.

Решение.

Строим график функции у = |2 – |x|| (рис. 3) и рассматриваем все возможные случаи расположения прямой у = -x + а.

Ответ: решений у неравенства нет при а ≤ -2;
x € (-∞; (а – 2)/2) при а € (-2; 2];
x € (-∞; (a + 2)/2) при a > 2.

При решении различных задач, уравнений и неравенств с параметрами открывается значительное число эвристических приемов, которые потом с успехом могут быть применены в любых других разделах математики.

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры. Именно поэтому, овладев методами решения задач с параметрами, вы успешно справитесь и с другими задачами.

Остались вопросы? Не знаете, как решать неравенства?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

решение неравенства в режиме онлайн решение почти любого заданного неравенства онлайн . Математические неравенства онлайн для решения математики. Быстро найти решение неравенства в режиме онлайн . Сайт www.сайт позволяет найти решение почти любого заданного алгебраического , тригонометрического или трансцендентного неравенства онлайн . При изучении практически любого раздела математики на разных этапах приходится решать неравенства онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение неравенства онлайн займет несколько минут. Основное преимущество www.сайт при решении математических неравенства онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические неравенства онлайн , тригонометрические неравенства онлайн , трансцендентные неравенства онлайн , а также неравенства с неизвестными параметрами в режиме онлайн . Неравенства служат мощным математическим аппаратом решения практических задач. C помощью математических неравенств можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины неравенств можно найти, сформулировав задачу на математическом языке в виде неравенств и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое неравенство , тригонометрическое неравенство или неравенства содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения неравенств . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических неравенств онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических неравенств онлайн , тригонометрических неравенств онлайн , а также трансцендентных неравенств онлайн или неравенств с неизвестными параметрами. Для практических задач по нахождению инетравол решений различных математических неравенств ресурса www.. Решая неравенства онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение неравенств на сайте www.сайт. Необходимо правильно записать неравенство и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением неравенства. Проверка ответа займет не более минуты, достаточно решить неравенство онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении неравенств онлайн будь то алгебраическое , тригонометрическое , трансцендентное или неравенство с неизвестными параметрами.

Тип задания: 18

Условие

При каких значениях параметра a неравенство

\log_{5}(4+a+(1+5a^{2}-\cos^{2}x) \cdot \sin x - a \cos 2x) \leq 1 выполняется при всех значениях x ?

Показать решение

Решение

Данное неравенство равносильно двойному неравенству 0 < 4+a+(5a^{2}+\sin^{2}x) \sin x+ a(2 \sin^{2}x-1) \leq 5 .

Пусть \sin x=t , тогда получим неравенство:

4 < t^{3}+2at^{2}+5a^{2}t \leq 1 \: (*) , которое должно выполняться при всех значениях -1 \leq t \leq 1 . Если a=0 , то неравенство (*) выполняется для любого t\in [-1;1] .

Пусть a \neq 0 . Функция f(t)=t^{3}+2at^{2}+5a^{2}t возрастает на промежутке [-1;1] , так как производная f"(t)=3t^{2}+4at+5a^{2} > 0 при всех значениях t \in \mathbb{R} и a \neq 0 (дискриминант D < 0 и старший коэффициент больше нуля).

Неравенство (*) будет выполняться для t \in [-1;1] при условиях

\begin{cases} f(-1) > -4, \\ f(1) \leq 1, \\ a \neq 0; \end{cases}\: \Leftrightarrow \begin{cases} -1+2a-5a^{2} > -4, \\ 1+2a+5a^{2} \leq 1, \\ a \neq 0; \end{cases}\: \Leftrightarrow \begin{cases} 5a^{2}-2a-3 < 0, \\ 5a^{2}+2a \leq 0, \\ a \neq 0; \end{cases}\: \Leftrightarrow -\frac{2}{5} \leq a < 0 .

Итак, условие выполняется при -\frac{2}{5} \leq a \leq 0 .

Ответ

\left [ -\frac{2}{5}; 0 \right ]

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 18
Тема: Неравенства с параметром

Условие

Найдите все значения параметра a , при каждом из которых неравенство

x^2+3|x-a|-7x\leqslant -2a

имеет единственное решение.

Показать решение

Решение

Неравенство равносильно совокупности систем неравенств

\left[\!\!\begin{array}{l} \begin{cases} x \geqslant a, \\ x^2+3x-3a-7x+2a\leqslant0; \end{cases} \\ \begin{cases}x \left[\!\!\begin{array}{l} \begin{cases} x \geqslant a, \\ x^2-4x-a\leqslant0; \end{cases} \\ \begin{cases}x \left[\!\!\begin{array}{l} \begin{cases} a \leqslant x, \\ a\geqslant x^2-4x; \end{cases} \\ \begin{cases}a>x, \\ a\leqslant -\frac{x^2}{5}+2x. \end{cases}\end{array}\right.

В системе координат Oxa построим графики функций a=x, a=x^2-4x, a=-\frac{x^2}{5}+2x.

Полученной совокупности удовлетворяют точки, заключенные между графиками функций a=x^2-4x, a=-\frac{x^2}{5}+2x на промежутке x\in (заштрихованная область).

По графику определяем: исходное неравенство имеет единственное решение при a=-4 и a=5 , так как в заштрихованной области будет единственная точка с ординатой a , равной -4 и равной 5.

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.

Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.

В моём реферате рассмотрены часто встречающиеся типы уравнений, неравенств и их систем, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов и при поступлении а ВУЗ.

§ 1. Основные определения

Рассмотрим уравнение

¦(a, b, c, …, k, x)=j(a, b, c, …, k, x), (1)

где a, b, c, …, k, x -переменные величины.

Любая система значений переменных

а = а0, b = b0, c = c0, …, k = k0, x = x0,

при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k, x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аÎА, bÎB, …, xÎX. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z.

Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.

Два уравнения, содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.

§ 2. Алгоритм решения.

Находим область определения уравнения.

Выражаем a как функцию от х.

В системе координат хОа строим график функции а=¦(х) для тех значений х, которые входят в область определения данного уравнения.

Находим точки пересечения прямой а=с, где сÎ(-¥;+¥) с графиком функции а=¦(х).Если прямая а=с пересекает график а=¦(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=¦(х) относительно х.

Записываем ответ.

I. Решить уравнение

(1)

Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а:

или

График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.

Если а Î (-¥;-1]È(1;+¥)È

, то прямая у=а пересекает график уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения относительно х.

Таким образом, на этом промежутке уравнение (1) имеет решение

. , то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих точек можно найти из уравнений и , получаем и . , то прямая у=а не пересекает график уравнения (1), следовательно решений нет.

Если а Î (-¥;-1]È(1;+¥)È

, то ; , то , ; , то решений нет.

II. Найти все значения параметра а, при которых уравнение

имеет три различных корня.

Переписав уравнение в виде

и рассмотрев пару функций , можно заметить, что искомые значения параметра а и только они будут соответствовать тем положениям графика функции , при которых он имеет точно три точки пересечения с графиком функции .

В системе координат хОу построим график функции

). Для этого можно представить её в виде и, рассмотрев четыре возникающих случая, запишем эту функцию в виде

Поскольку график функции

– это прямая, имеющая угол наклона к оси Ох, равный , и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три указанные точки пересечения можно получить лишь в случае, когда эта прямая касается графика функции . Поэтому находим производную .

III. Найти все значения параметра а, при каждом из которых система уравнений

имеет решения.

Из первого уравнения системы получим

при Следовательно, это уравнение задаёт семейство “полупарабол” - правые ветви параболы “скользят” вершинами по оси абсцисс.

Выделим в левой части второго уравнения полные квадраты и разложим её на множители