Проверка на значимость коэффициента корреляции необходимо чтобы. Оценка достоверности коэффициента корреляции

Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции , который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):

где - теоретический показатель ковариции , который вычисляется как математическое ожидание произведений отклонений СВ
иот их математических ожиданий.

Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю
не следует, что теоретический коэффициент также
(т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.

Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.

Всегда существует ошибка коэффициента корреляции . Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:

при
; и
при
.

Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.

С этой целью проверяется нулевая гипотеза
о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е.в генеральной совокупности отсутствует корреляция . Альтернативной является гипотеза
.

Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:

.

Которая имеет распределение Стьюдента с
степенями свободы 1 .

По таблицам распределения Стьюдента определяется критическое значение
.

Если рассчитанное значение критерия
, то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью
.

Если же
, тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.

Пример 1 . В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление.

Изучить и измерить тесноту взаимосвязи между заданными показателями.

Тема 4. Парная линейная регрессия. Метод наименьших квадратов

Коэффициент корреляции указывает на степень тесноты взаимосвязи между двумя признаками, но он не дает ответа на вопрос, как изменение одного признака на одну единицу его размерности влияет на изменение другого признака. Для того чтобы ответить на этот вопрос, пользуются методами регрессионного анализа.

Регрессионный анализ устанавливает форму зависимости между случайной величиной и значениями переменной величины
, причем, значения
считаются точно заданными.

Уравнение регрессии – это формула статистической связи между переменными.

Если эта формула линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией (нескольких переменных – множественной ).

Выбор формулы зависимости называется спецификацией уравнения регрессии. Оценка значений параметров выбранной формулы называется параметризацией .

Как же оценить значения параметров и проверить надёжность сделанных оценок?

Рассмотрим рисунок

    На графике (а) взаимосвязь х и у близка к линейной, прямая линия 1 здесь близка к точкам наблюдений и последние отклоняются от неё лишь в результате сравнительно небольших случайных воздействий.

    На графике (б) реальная взаимосвязь величин х и у описывается нелинейной функцией 2, и какую бы мы ни провели прямую линию (например, 1), отклонения точек от неё будут неслучайными.

    На графике (в) взаимосвязь между переменными х и у отсутствует, и результаты параметризации любой формулы зависимости будут неудачными.

Начальным пунктом эконометрического анализа зависимостей обычно является оценка линейной зависимости переменных. Всегда можно попытаться провести такую прямую линию, которая будет «ближайшей» к точкам наблюдений по их совокупности (например, на рисунке (в) лучшей будет прямая 1, чем прямая 2).

Теоретическое уравнение парной линейной регрессии имеет вид:


,

где
называютсятеоретическими параметрами (теоретическими коэффициентами ) регрессии; -случайным отклонением (случайной ошибкой ).

В общем виде теоретическую модель будем представлять в виде:

.

Для определения значений теоретических коэффициентов регрессии необходимо знать все значения переменных Х и Y , т.е. всю генеральную совокупность, что практически невозможно.

Задача состоит в следующем: по имеющимся данным наблюдений
,
необходимо оценить значения параметров
.

Пусть а оценка параметра
,b оценка параметра .

Тогда оценённое уравнение регрессии имеет вид:
,

где
теоретические значения зависимой переменнойy , - наблюдаемые значения ошибок. Это уравнение называетсяэмпирическим уравнением регрессии . Будем его записывать в виде
.

В основе оценки параметров линейной регрессии лежит Метод Наименьших Квадратов (МНК) – это метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции.

Функция Q является квадратичной функцией двух параметров a и b . Т.к. она непрерывна, выпукла и ограничена снизу (
), поэтому она достигает минимума. Необходимым условием существования минимума является равенство нулю её частных производных поa и b :


.

Разделив оба уравнения системы на n , получим:


или

Иначе можно записать:

и  средние квадратические отклонения значений тех же признаков.

Т.о. линия регрессии проходит через точку со средними значениями х и у
, акоэффициент регрессии b пропорционален показателю ковариации и коэффициенту линейной корреляции.

Если кроме регрессии Y на X для тех же эмпирических значений найдено уравнение регрессии X на Y (
, где
), то произведение коэффициентов
:

.

Коэффициент регрессии  это величина, показывающая, на сколько единиц размерности изменится величина при изменении величинына одну единицу ее размерности. Аналогично определяется коэффициент.

ИСХОДНЫЕ ДАННЫЕ

ОЦЕНКА ДОСТОВЕРНОСТИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

Коэффициент линейной корреляции, исчисленный по выборочным данным является случайной величиной. Полученный из выборки коэффициент корреляции r является оценкой коэффициента корреляцииr в генеральной совокупности. С уменьшением числа наблюдений надежность коэффициента корреляции падает. Оценка существенности (значимости) линейного коэффициента корреляции основана на сопоставлении значения r с его средней квадратической ошибкой :

При оценке значимости коэффициента корреляции обычно рассматриваются следующие ситуации.

1. Если число наблюдений достаточно велико (обычно свыше 30), а значение коэффициента корреляции не превышает 0.9, распределение коэффициента корреляции r можно считать приближенно нормальным со средней квадратической ошибкой

При достаточно большом числе наблюдений r должен превышать свою среднюю ошибку не менее, чем в три раза: . Если это неравенство не выполняется, то существование связи между признаками нельзя считать доказанным.

Задавшись определенной вероятностью, можно построить доверительные границы r:

Так, например, при вероятности 0,95, для которой t = 1,96, доверительные границы составят

,

При вероятности 0,997, для которой коэффициент доверия t = 3, доверительные границы составят

Поскольку значение r не может превышать единицу, то в случае, если > 1, следует указать только нижний предел, то есть утверждать, что реальный r не меньше, чем .

2. Для малого объема выборки, с распределением r далеким от нормального, применяются другие методы оценки значимости коэффициента корреляции. При небольшом числе наблюдений (n< 30), средняя ошибка линейного коэффициента корреляции находится по формуле:

а значимость проверяется на основе t критерия Стьюдента. При этом выдвигается гипотеза о равенстве коэффициента корреляции нулю, то есть об отсутствии связи между y и x в генеральной совокупности. Для этого используется статистика:

,

расчетное значение которой сопоставляется с табличным, из таблиц распределения Стьюдента. Если нулевая гипотеза верна, то есть r =0, то распределение t - критерия подчиняется закону распределения Стьюдента сn-2 степенями свободы и принятым уровнем значимости (обычно 0,05). В каждом конкретном случае по таблице распределения t -критерия Стьюдента находится табличное (критическое) значение t , которое допустимо при справедливости нулевой гипотезы, и с ним сравнивается фактическое (расчетное) значение t . Если t расч. > t табл . , то нулевая гипотеза отклоняется и линейный коэффициент считается значимым, а связь между x и y – существенной. И наоборот.



3. При малом числе наблюдений в выборке и высоком коэффициенте корреляции (распределение r отличается от нормального) для проверки гипотезы о наличии корреляционной связи, а также построения доверительного интервала применяется z-преобразование Фишера.

Для этого рассчитывается величина

Распределение z приближается к нормальному. Вариация z выражается формулой

Рассчитаем zкритерий для примера 1, поскольку в этом случае мы имеем небольшое число наблюдений и высокий коэффициент корреляции.

.

Чтобы не вычислять значения логарифмов, можно воспользоваться специальными таблицами Z-преобразований (Ефимова М.Р. стр. 402, Шмойлова Р.А. стр.446, Елисеева И.И. стр.473). Находим, что коэффициенту корреляции 0,94 соответствуетZ=1,74.

Отношение Z к средней квадратической ошибке равно 3. Таким образом, мы можем полагать действительное наличие связи между величиной выпуска продукции и расходом электроэнергии для всей совокупности предприятий.

Расчет коэффициентов корреляции произведем в программе STATISTICA.

Рисунок 1 – Корреляционная матрица.

Корреляция определяет степень, с которой значения двух переменных «пропорциональны» друг другу. Пропорциональность означает просто линейную зависимость . Корреляция высокая, если на графике зависимость «можно представить» прямой линией (с положительным или отрицательным углом наклона). Таким образом, это простейшая регрессионная модель, описывающая зависимость одной переменной от одного фактора.

Отметим основные характеристики этого показателя.

Он может принимать значения от –1 до +1. Знак «+» означает, что связь прямая (когда значения одной переменной возрастают, значения другой переменной также возрастают), «–» означает, что связь обратная.

Чем ближе коэффициент к 1, величине коэффициента корреляции менее 0,3 связь оценивается как слабая, от 0,31 до 0,5 – умеренная, от 0,51 до 0,7 – значительная, от 0,71 до 0,9 – тесная, 0,91 и выше – очень тесная.

Если все значения переменных увеличить (уменьшить) на одно и то же число или в одно и то же число раз, то величина коэффициента корреляции не изменится.

Коэффициент корреляции – это показатель, оценивающий тесноту линейной связи между признаками.

При r = ±1 корреляционная связь представляет линейную функциональную зависимость. При этом все наблюдаемые значения располагаются на общей прямой. Ее еще называют линией регрессии. При r = 0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общими средними, а линии регрессии параллельны осям координат.

Равенство r = 0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелированности переменных), но не вообще об отсутствии корреляционной, а тем более, статистической зависимости.

Основываясь на коэффициентах корреляции, мы не можем строгодоказать причинной зависимости между переменными, однако можетеопределить ложные корреляции, т. е. корреляции, которые обусловленывлияниями «других», остающихся вне вашего поля зрения переменных.

Основная проблема ложной корреляции состоит в том, что мы не знаем,

кто является еѐ носителем. Тем не менее, если мы знаем, где искать, то

можно воспользоваться частные корреляции, чтобы контролировать (частично исключѐнное) влияние определѐнных переменных.


Рисунок 2 – Диаграммы рассеяния.

Значимость коэффициентов корреляции проверяемся по критерию Стьюдента:

где - среднеквадратическая ошибка коэффициента корреляции, которая определяется по формуле:

Если расчетное значение (выше табличного, то можно сделать заключение о том, что величина коэффициента корреляции является значимой. Табличные значения t находят по таблице значений критериев Стьюдента. При этом учитываются количество степеней свободы (V = п - 1)и уровень доверительной вероятности (в экономических расчетах обычно 0,05 или 0,01). В нашем примере количество степеней свободы равно: п - 1 = 40 - 1 = 39. При уровне доверительной вероятности Р = 0,05; t = 2,02. Поскольку (фактическое (табл. 7.8) во всех случаях выше t-табличного, связь между результативным и факторными показателями является надежной, а величина коэффициентов корреляции - значимой.

Следующий этап корреляционного анализа -расчет уравнения связи (регрессии). Решение проводится обычно шаговым способом. Сначала в расчет принимается один фактор, который оказывает наиболее значимое влияние на результативный показатель, потом второй, третий и т.д. И на каждом шаге рассчитываются уравнение связи, множественный коэффициент корреляции и детерминации, F-отношение (критерий Фишера), стандартная ошибка и другие показатели, с помощью которых оценивается надежность уравнения связи. Величина их на каждом шаге сравнивается с предыдущей. Чем выше величина коэффициентов множественной корреляции, детерминации и критерия Фишера и чем ниже величина стандартной ошибки, тем точнее уравнение связи описывает зависимости, сложившиеся между исследуемыми показателями. Если добавление следующих факторов не улучшает оценочных показателей связи, то надо их отбросить, т.е. остановиться на том уравнении, где эти показатели наиболее оптимальны.

Сравнивая результаты на каждом шаге (табл.7.9), мы можем сделать вывод, что наиболее полно описывает зависимости между изучаемыми показателями пятифакторная модель, полученная на пятом шаге. В результате уравнение связи имеет вид:

Коэффициенты уравнения показывают количественное воздействие каждого фактора на результативный показатель при неизменности других. В данном случае можно дать следующую интерпретацию полученному уравнению: рентабельность повышается на 3,65 % при увеличении материалоотдачи на 1 руб.; на 0,09 % - с ростом фондоотдачи на 1 коп.; на 1,02 %-с повышением среднегодовой выработки продукции на одного работника на 1 млн руб.; на 0,052 %- при увеличении удельного веса продукции высшей категории качества на 1 %. С увеличением продолжительности оборота средств на 1 день рентабельность снижается в среднем на 0,122 %.

Коэффициенты регрессии в уравнении связи имеют разные единицы измерения, что делает их несопоставимыми, если возникает вопрос о сравнительной силе воздействия факторов на результативный показатель. Чтобы привести их в сопоставимый вид, все переменные уравнения регрессии выражают в долях среднеквадратического отклонения, другими словами, рассчитывают стандартизированные коэффициенты регрессии. Их еще называют бетта-коэффициентами по символу, который принят для их обозначения (р).

Бетта-коэффициенты и коэффициенты регрессии связаны следующим отношением:

Смотрите также:

Задание . По территориям региона приводятся данные за 199Х г.;
Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х Среднедневная заработная плата, руб., у
1 78 133
2 82 148
3 87 134
4 79 154
5 89 162
6 106 195
7 67 139
8 88 158
9 73 152
10 87 162
11 76 159
12 115 173
Требуется:
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимума х, составляющем 107% от среднего уровня.
5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

Решение находим с помощью калькулятора .
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 0.92, a = 76.98
Уравнение регрессии:
y = 0.92 x + 76.98

1. Параметры уравнения регрессии.
Выборочные средние.



Выборочные дисперсии:


Среднеквадратическое отклонение


Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока :
0.1 < r xy < 0.3: слабая;
0.3 < r xy < 0.5: умеренная;
0.5 < r xy < 0.7: заметная;
0.7 < r xy < 0.9: высокая;
0.9 < r xy < 1: весьма высокая;
В нашем примере связь между среднедневной заработной платы и среднедушевым прожиточным минимумом высокая и прямая.
1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 0.92 x + 76.98
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент b = 0.92 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 руб. среднедушевого прожиточного минимума в день среднедневная заработная плата повышается в среднем на 0.92.
Коэффициент a = 76.98 формально показывает прогнозируемый уровень Среднедневная заработная плата, но только в том случае, если х=0 находится близко с выборочными значениями.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между среднедневной заработной платы и среднедушевого прожиточного минимума в день определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты. Коэффициент эластичности находится по формуле:


Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
Коэффициент эластичности меньше 1. Следовательно, при изменении среднедушевого прожиточного минимума в день на 1%, среднедневная заработная плата изменится менее чем на 1%. Другими словами - влияние среднедушевого прожиточного минимума Х на среднедневную заработную плату Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению средней среднедневной заработной платы Y на 0.721 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.


Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.72 2 = 0.5199
т.е. в 51.99 % случаев изменения среднедушевого прожиточного минимума х приводят к изменению среднедневной заработной платы y. Другими словами - точность подбора уравнения регрессии - средняя. Остальные 48.01% изменения среднедневной заработной платы Y объясняются факторами, не учтенными в модели.

x y x 2 y 2 x o y y(x) (y i -y cp) 2 (y-y(x)) 2 (x i -x cp) 2 |y - y x |:y
78 133 6084 17689 10374 148,77 517,56 248,7 57,51 0,1186
82 148 6724 21904 12136 152,45 60,06 19,82 12,84 0,0301
87 134 7569 17956 11658 157,05 473,06 531,48 2,01 0,172
79 154 6241 23716 12166 149,69 3,06 18,57 43,34 0,028
89 162 7921 26244 14418 158,89 39,06 9,64 11,67 0,0192
106 195 11236 38025 20670 174,54 1540,56 418,52 416,84 0,1049
67 139 4489 19321 9313 138,65 280,56 0,1258 345,34 0,0026
88 158 7744 24964 13904 157,97 5,06 0,0007 5,84 0,0002
73 152 5329 23104 11096 144,17 14,06 61,34 158,34 0,0515
87 162 7569 26244 14094 157,05 39,06 24,46 2,01 0,0305
76 159 5776 25281 12084 146,93 10,56 145,7 91,84 0,0759
115 173 13225 29929 19895 182,83 297,56 96,55 865,34 0,0568
1027 1869 89907 294377 161808 1869 3280,25 1574,92 2012,92 0,6902

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим t крит:
t крит = (10;0.05) = 1.812
где m = 1 - количество объясняющих переменных.
Если t набл > t критич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим.
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:


S 2 y = 157.4922 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

12.5496 - стандартная ошибка оценки (стандартная ошибка регрессии).
S a - стандартное отклонение случайной величины a.


S b - стандартное отклонение случайной величины b.


2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bx p ± ε)
где

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 94

(76.98 + 0.92*94 ± 7.8288)
(155.67;171.33)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H 0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H 1 не равно) на уровне значимости α=0.05.
t крит = (10;0.05) = 1.812


Поскольку 3.2906 > 1.812, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 3.1793 > 1.812, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - t крит S b ; b + t крит S b)
(0.9204 - 1.812 0.2797; 0.9204 + 1.812 0.2797)
(0.4136;1.4273)

(a - t lang=SV>a)
(76.9765 - 1.812 24.2116; 76.9765 + 1.812 24.2116)
(33.1051;120.8478)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=10, Fkp = 4.96
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Этап 3. Нахождение взаимосвязи между данными

Линейная корреляция

Последний этап задачи изучения связей между явлениями – оценка тесноты связи по показателям корреляционной связи. Этот этап очень важен для выявления зависимостей между факторными и результативными признаками, а следовательно, для возможности осуществления диагноза и прогноза изучаемого явления.

Диагноз (от греч. diagnosis распознавание) – определение существа и особенностей состояния какого-либо объекта или явления на основе его всестороннего исследования.

Прогноз (от греч. prognosis предвидение, предсказание) – всякое конкретное предсказание, суждение о состоянии какого-либо явления в будущем (прогноз погоды, исхода выборов и т.п.). Прогноз – это научно обоснованная гипотеза о вероятном будущем состоянии изучаемой системы, объекта или явления и характеризующие это состояние показатели. Прогнозирование – разработка прогноза, специальные научные исследования конкретных перспектив развития какого-либо явления.

Вспомним определение корреляции:

Корреляция – зависимость между случайными величинами, выражающаяся в том, что распределение одной величины зависит от значения другой величины.

Корреляционная связь наблюдается не только между количественными, но и качественными признаками. Существуют различные способы и показатели оценки тесноты связей. Мы остановимся лишь на линейном коэффициенте парной корреляции , который используется при наличии линейной связи между случайными величинами. На практике часто возникает необходимость определить уровень связи между случайными величинами неодинаковой размерности, поэтому желательно располагать какой-то безразмерной характеристикой этой связи. Такой характеристикой (мерой связи) является коэффициент линейной корреляции r xy , который определяется по формуле

где , .

Обозначив и , можно получить следующее выражение для расчета коэффициента корреляции

.

Если ввести понятие нормированного отклонения , которое выражает отклонение коррелируемых значений от среднего в долях среднего квадратического отклонения:



то выражение для коэффициента корреляции примет вид

.

Если производить расчет коэффициента корреляции по итоговым значениям исходных случайных величин из расчетной таблицы, то коэффициент корреляции можно вычислить по формуле

.

Свойства коэффициента линейной корреляции:

1). Коэффициент корреляции – безразмерная величина.

2). |r | £ 1 или .

3). , a,b = const, – величина коэффициента корреляции не изменится, если все значения случайных величин X и Y умножить (или разделить) на константу.

4). , a,b = const, – величина коэффициента корреляции не изменится, если все значения случайных величин X и Y увеличить (или уменьшить) на константу.

5). Между коэффициентом корреляции и коэффициентом регрессии существует связь:

Интерпретировать значения коэффициентов корреляции можно следующим образом:

Количественные критерии оценки тесноты связи:

В прогностических целях обычно используют величины с |r| > 0.7.

Коэффициент корреляции позволяет сделать вывод о существовании линейной зависимости между двумя случайными величинами, но не указывает, какая из величин обуславливает изменение другой. В действительности связь между двумя случайными величинами может существовать и без причинно-следственной связи между самими величинами, т.к. изменение обеих случайных величин может быть вызвано изменением (влиянием) третьей.

Коэффициент корреляции r xy является симметричным по отношению к рассматриваемым случайным величинам X и Y . Это означает, что для определения коэффициента корреляции совершенно безразлично, какая из величин является независимой, а какая – зависимой.

Значимость коэффициента корреляции

Даже для независимых величин коэффициент корреляции может оказаться отличным от нуля вследствие случайного рассеяния результатов измерений или вследствие небольшой выборки случайных величин. Поэтому следует проверять значимость коэффициента корреляции.

Значимость линейного коэффициента корреляции проверяется на основе t-критерия Стьюдента :

.

Если t > t кр (P, n -2), то линейный коэффициент корреляции значим, а следовательно, значима и статистическая связь X и Y .

.

Для удобства вычислений созданы таблицы значений доверительных границ коэффициентов корреляции для различного числа степеней свободы f = n –2 (двусторонний критерий) и различных уровней значимости a = 0,1; 0,05; 0,01 и 0,001. Считается, что корреляция значима, если рассчитанный коэффициент корреляции превосходит значение доверительной границы коэффициента корреляции для заданных f и a .

Для больших n и a = 0,01 значение доверительной границы коэффициента корреляции можно вычислить по приближенной формуле

.