Полимеразная цепная реакция принцип метода применение. Принципы пцр-диагностики. Расшифровка анализа ПРЦ

Полимеразная цепная реакция (ПЦР)

Суть метода ПЦР. ДНК-полимераза

Полимеразная цепная реакция - экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определенных фрагментов нуклеиновой кислоты в биологическом материале. Такой процесс увеличения числа копий ДНК называется амплификацией . Копирование ДНК при ПЦР осуществляется специальным ферментом - полимеразой. ДНК-полимераза(Рис. 3) - фермент, участвующий в репликации (амплификации ДНК в живых организмах) ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент "читает" и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведется считывание.

ДНК-полимераза добавляет свободные нуклеотиды к 3"-концу собираемой цепочки. Это приводит к удлинению цепочки в направлении 5"-3". Ни одна из известных ДНК-полимераз не способна создать цепочку "с нуля": они в состоянии лишь добавлять нуклеотиды к уже существующей 3"-гидроксильной группе. По этой причине ДНК-полимераза нуждается в праймере - короткой последовательности нуклеотидов (чаще 20-25), комплементарной концевым участкам изучаемого гена - к которому она могла бы добавить первый нуклеотид. Праймеры состоят всегда из оснований ДНК и РНК, при этом первые два основания всегда РНК-основания. Праймеры синтезируются другим ферментом - праймазой . Еще один фермент - геликаза - необходим для раскручивания двойной спирали ДНК с формированием одноцепочечной структуры, которая обеспечивает репликацию обеих цепочек в соответствии с полуконсервативной моделью репликации ДНК.

Некоторые ДНК-полимеразы обладают также способностью исправлять ошибки во вновь собираемой цепочке ДНК. Если происходит обнаружение неправильной пары нуклеотидов, ДНК-полимераза откатывается на один шаг назад, исключает из неправильный нуклеотид из цепочки, затем вставляет на его место правильный, после чего репликация продолжается в обычном режиме.

Проведение ПЦР

Полимеразная цепная реакция (ПЦР) - метод амплификации ДНК, с помощью которого в течение нескольких часов можно выделить и размножить определённую последовательность ДНК в миллиарды раз. Возможность получения огромного количества копий одного строго определённого участка генома значительно упрощает исследование имеющегося образца ДНК.

Для проведения полимеразной цепной реакции необходимо соблюдение ряда условий. Для проведения ПЦР в простейшем случае требуются следующие компоненты:

ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать.

Два праймера, комплементарные концам требуемого фрагмента. (Пара искусственно синтезированных олигонуклеотидов, имеющих, как правило, размер от 15 до 30 п. н., идентичные соответствующим участкам ДНК-мишени. Они играют ключевую роль в образовании продуктов реакции амплификации. Правильно подобранные праймеры обеспечивают специфичность и чувствительность тест-системы.)

Термостабильная ДНК-полимераза. Полимераза, используемая в ПЦР, должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза) и другие.

Дезоксинуклеотидтрифосфаты (dATP, dGTP, dCTP, dTTP).

Ионы Mg 2+, необходимые для работы полимеразы.

Буферный раствор, обеспечивающий необходимые условия реакции - pH, ионную силу раствора. Содержит соли, сывороточный альбумин.

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если же используется прибор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата, побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата. Пирофосфат может ингибировать ПЦР-реакцию.

Для многократного увеличения количества копий исходной ДНК нужна цикличность реакции. Как правило, каждый из последовательно повторяющихся циклов ПЦР состоит из трех этапов:

1 . Денатурация, или "плавление" ДНК. Двухцепочечную ДНК-матрицу нагревают до 94 - 96?С (или до 98?С, если используется особенно термостабильная полимераза) на 0,5 - 2 минуты, чтобы цепи ДНК разошлись. Эта стадия называется денатурацией, так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2 - 5 минут для полной денатурации матрицы и праймеров. Такой прием называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

2. Отжиг - связывание праймеров с матричной ДНК . Когда цепи разошлись, температуру медленно понижают, чтобы парймеры могли связаться с одноцепочечной матрицей. Температура отжига зависит от состава праймеров и обычно выбирается 50-65?С. Время стадии - 20 - 60 секунд. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифичных продуктов (при заниженной температуре).

3. Синтез (элонгация цепи). ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве "затравки". Полимераза начинает синтез второй цепи от 3"-конца праймера, который связался с матрицей и движется вдоль матрицы. Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72?С. Время синтеза зависит от типа ДНК-полимеразы и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации , чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7 - 10 минут.

В дальнейшем этапы денатурации, отжига и элонгации многократно повторяются (30 и более раз). На каждом цикле количество синтезированных копий фрагмента ДНК удваивается.

Все реакции проводят в пробирках, погруженных в термостат. Смена температурного режима и его поддержание осуществляется автоматически.

Чтобы понять, как именно происходит амплификация определенного сегмента ДНК в ходе ПЦР, нужно четко представить положение всех праймеров и комплементарных им последовательностей в амплифицируемых цепях в каждом раунде. В первом раунде каждая из новосинтезированных цепей имеет гораздо большую длину, чем расстояние от 3" -гидроксильной группы ее праймера до концевого нуклеотида последовательности, комплементарной второму праймеру. Такие цепи называют "длинными матрицами", именно на них будет идти дальнейший синтез.

Во втором раунде двухцепочечную ДНК, состоящую из сходной и новосинтезированной (длинная матрица) цепей, опять подвергают денатурации, а затем отжигают с праймерами. Во время синтеза в этом раунде вновь синтезируются "длинные матрицы", а также некоторое количество цепей с праймером на одном конце и с последовательностью, комплементарной второму праймеру, на другом ("короткие матрицы"). Во время третьего раунда все гетеродуплексы, образовавшиеся ранее, одновременно подвергаются денатурации и отжигу с праймерами, а затем реплицируются. В последующих раундах "коротких матриц" становится все больше, и к 30-му раунду их число уже в 10 6 раз превышает число исходных цепей или "длинных матриц".

Количество специфического продукта реакции (ограниченного праймерами) теоретически возрастает пропорционально 2 n , где n - число циклов реакции. На самом деле эффективность каждого цикла может быть меньше 100%, поэтому в действительности:

где Р - количество продукта, Е - средняя эффективность цикла.

Число "длинных" копий ДНК тоже растет, но линейно, поэтому в продуктах реакции доминирует специфический фрагмент. Рост требуемого продукта в геометрической прогрессии ограничен количеством реагентов, присутствием ингибиторов, образованием побочных продуктов.

ПЦР - высокочувствительный метод, поэтому при наличии в исследуемом образце даже ничтожного количества ДНК, случайно попавшей из одной реакционной смеси в другую, могут быть получены ложноположительные результаты. Это заставляет тщательно контролировать все используемые для ПЦР растворы и посуду.

Основные принципы подбора праймеров.

При создании ПЦР-тест-системы одной из основных задач является правильный подбор праймеров, которые должны отвечать ряду критериев:

1. Праймеры должны быть специфичны. Особое внимание уделяют 3"-концам праймеров, т.к именно с них начинает достраивать комплементарную цепь ДНК Taq-полимераза. Если их специфичность недостаточна, то, вероятно, что в пробирке с реакционной смесью будут происходить нежелательные процессы, а именно, синтез неспецифической ДНК (коротких или длинных фрагментов). Она видна на электрофорезе в виде тяжелых или легких дополнительных полос. Это мешает оценке результатов реакции, т.к легко перепутать специфический продукт амплификации с синтезированной посторонней ДНК. Часть праймеров и дНТФ расходуется на синтез неспецифической ДНК, что приводит к значительной потере чувствительности.

2. Праймеры не должны образовывать димеры и петли, т.е. не должно образовываться устойчивых двойных цепей в результате отжига праймеров самих на себя или друг с другом.

Проведение ПЦР-анализа (PCR diagnostics) начинается с забора материала для исследования врачом-гинекологом, урологом или дерматовенерологом. Качество, достоверность полученных впоследствии результатов обеспечивается высочайшей квалификацией и огромным опытом работы врачей медицинского центра «Евромедпрестиж» , соблюдающих все необходимые правила проведения ПЦР-анализа: полная стерильность, использование исключительно одноразовых материалов.

Забранный материал со щеточки помещают в контейнер с физраствором. После забора пробы как можно скорее должны быть доставлены в ПЦР — лабораторию.

Проведение в лаборатории ПЦР-анализа происходит в три этапа:

  1. Выделение ДНК
  2. Амплификация ДНК-фрагментов
  3. Детекция ДНК-продуктов амплификации

Выделение ДНК — это первоначальный этап проведения ПЦР-диагностики, суть которого заключается в следующем: врач забирает у пациента материал для исследования и подвергает его специальной обработке. В процессе обработки происходит расщепление двойной спирали ДНК на отдельные нити. В материал пациента добавляется специальная жидкость, растворяющая органические вещества, мешающие «чистоте» проведения реакции. Таким образом удаляются липиды, аминокислоты, пептиды, углеводы, белки и полисахариды. В результате образуется ДНК или РНК.

Принцип метода ПЦР заключается в «строительстве» новых ДНК или РНК инфекций. Без удаления клеточного материала осуществить это невозможно.

Количество времени, затраченного на выделение ДНК, зависит от возбудителя инфекции и от вида используемого для исследования методом ПЦР материала. Например, для подготовки крови к следующему этапу требуется 1,5-2 часа.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Амплификация ДНК

Для осуществления следующего этапа ДНК-диагностики — амплификации ДНК — врачи используют так называемые ДНК-матрицы — молекулы ДНК инфекций, на которые впоследствии будет происходить «клонирование» ДНК. Уже упоминалось, что наличие полной ДНК инфекции необязательно, для проведения этого этапа достаточно небольшого кусочка молекулы ДНК, который присущ только данному микробу (инфекции).

В основе амплификации ДНК и соответственно в основе всего принципа ПЦР-реакции лежит естественный для всего живого процесс достраивания ДНК — репликации ДНК, который осуществляется путем удвоения единичной цепочки ДНК.

Начав с одного-единственного фрагмента ДНК, врач-лаборант копирует его и увеличивает количество копий в режиме цепной реакции: после первого цикла у вас уже есть 2 фрагмента, после второго цикла — 4, после третьего — 8, после четвертого — 16, затем 32, 64, 128, 256... С каждым циклом происходит удвоение числа копий, и после двадцати циклов счет уже идет на миллионы, а после тридцати — на миллиарды. Цикл длится считанные минуты и сводится к определенному изменению температурного режима в очень небольшом химическом реакторе. Здесь в растворе в достаточном количестве находятся все нужные компоненты синтеза, прежде всего, нуклеотиды А, Г, Т и Ц, а также проведены тонкие подготовительные химические операции для того, чтобы с каждого готового отрезка ДНК тут же снималась точная копия, затем с этой копии — снова копия, в этом и состоит разветвленная цепная реакция.

Путем присоединения к цепи ДНК праймеров — искусственно синтезированных «кусочков» ДНК (нуклеотидных пар), аналогичных ДНК микробов (инфекции) — образуются две короткие, состоящие из двух цепей участков ДНК, спирали, необходимые для синтеза будущей ДНК.

Синтез новой цепи происходит путем достраивания каждой из двух нитей ДНК. Процесс амплификации происходит с помощью специфического участка — ДНК-полимеразы, давшему название лабораторному методу. Полимераза выступает в роли катализатора реакции и следит за последовательным прикреплением нуклеотидных оснований к растущей новой цепи ДНК.

Таким образом, амплификация ДНК представляет собой многократное увеличение числа копий ДНК, которые специфичны, т. е. присущи только определенному организму. Нет необходимости достраивать всю цепь ДНК, чтобы увидеть возбудителя инфекции. Нужен только тот участок, который характерен для данной бактерии как для индивидуальности.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Все многочисленно повторяющиеся этапы амплификации происходят при различных температурах. Для проведения ПЦР-анализа используется специально программируемое оборудование — ПЦР — термостат или амплификатор, которое автоматически осуществляет смену температур. Амплификация проводится по заданной программе, соответствующей виду определяемой инфекции. В зависимости от программы и вида определяемой инфекции процесс автоматизированной ПЦР занимает от 2 до 3 часов.

Важное значение в ПЦР-диагностике играет квалификация врача-лаборанта, проводящего анализ, от него зависит правильность настройки ПЦР-оборудования и интерпретация полученных результатов. Врачи медицинского центра «Евромедпрестиж» имеют большой опыт в проведении ДНК-диагностики, что обеспечивает достоверность полученных результатов исследования и гарантирует положительный успех в лечении инфекционных заболеваний. Чтобы сдать анализы методом ПЦР и провести полную диагностику и лечение инфекционных заболеваний в нашем медицинском центре «Евромедпрестиж».

В процессе детекции продуктов амплификации проходит разделение полученной смеси продуктов амплификации. К смеси добавляется специальные растворы, которые наделяют фрагменты ДНК способностью флуоресцировать — отражаться оранжево-красными светящимися полосами. Образующееся свечение выдает присутствие ДНК вирусов, микробов или бактерий в забранном у пациента на ПЦР-анализ материале.


Для адекватного и эффективного лечения многих инфекционных заболеваний необходимо своевременное установление точного диагноза. В решении этой задачи в наши дни привлекаются высокотехнологичные методы диагностики основанные на методах молекулярной биологии. В настоящий момент полимеразная цепная реакция (ПЦР) уже достаточно широко применяется в практической медицине как наиболее надежный инструмент лабораторной диагностики .

Чем объясняется популярность ПЦР в настоящее время?

Во-первых, данный метод используется для выявления возбудителей различных инфекционных заболеваний с высокой точностью.

Во-вторых, для контроля эффективности проведенного лечения.

В различных руководствах, проспектах, статьях, а также объяснениях врачей-специалистов, мы часто сталкиваемся с употреблением непонятных терминов и слов. Действительно трудно рассказать о высокотехнологичных продуктах науки обыденными словами.

В чем суть и механика ПЦР диагностики?

Каждый живой организм имеет свои уникальные гены. Гены располагаются в молекуле ДНК, которая собственно и является «визитной карточкой» каждого конкретного организма. ДНК (генетический материал) – это очень длинная молекула, которая состоит из «кирпичиков», называемых нуклеотидами. У каждого возбудителя инфекционных заболеваний они расположены строго специфично, то есть в определенной последовательности и комбинации. Когда необходимо понять имеется ли у человека тот или иной возбудитель, забирается биологический материал (кровь, моча, слюна, мазок), который содержит ДНК или фрагменты ДНК микроба. Но количество генетического материала возбудителя очень мало, и невозможно сказать какому именно микроорганизму он принадлежат. Для решения этой задачи и служит ПЦР. Суть полимеразной цепной реакции заключается в том, что берется малое количество материала для исследования, содержащего ДНК, а в процессе ПЦР происходит увеличение количества генетического материала, принадлежащего конкретному возбудителю и, таким образом, его можно идентифицировать.

ПЦР диагностика – генетическое исследование биоматериала.

Идея метода ПЦР принадлежит американскому ученому K.Mullins, которую он предложил в 1983 году. Однако широкое клиническое применение получила лишь в средине 90-х годов XXвека.

Разберемся с терминологией, что же это такое – ДНК и т.д. Каждая клетка любого живого существа (животного, растения, человека, бактерии, вируса) имеет хромосомы. Хромосомы – это хранители генетической информации, которые содержат всю последовательность генов каждого конкретного живого существа.

Каждая хромосома состоит из двух нитей ДНК, закрученных в спираль друг относительно друга. ДНК – химически это дезоксирибонуклеиновая кислота, которая состоит из структурных компонентов – нуклеотидов. Нуклеотидов бывает 5 видов – тимин (Т), аденозин (А), гуанин (Г), цитозин (Ц) и урацил (У). Нуклеотиды располагаются друг за другом в строгой индивидуальной последовательности, образуя гены. Один ген может состоять из 20-200 таких нуклеотидов. Например, ген, кодирующий выработку инсулина, состоит из 60 пар нуклеотидов.

Нуклеотиды имеют свойство комплементарности. Это означает что напротив аденина (А) в одной цепочке ДНК обязательно стоит тимин (Т) в другой цепочке, а напротив гуанина (Г) – цитозин (Ц). Схематически выглядит следующим образом:
Г - Ц
Т - А
А - Т

Данное свойство комплементарности ключевое для проведения ПЦР.

Помимо ДНК такую же структуру имеет РНК – рибонуклеиновая кислота, отличающаяся от ДНК тем, что вместо тимина в ней используется урацил. РНК – является хранителем генетической информации у некоторых вирусов, которые называются ретровирусами (например, ВИЧ).

Молекулы ДНК и РНК могут «размножаться» (данное свойство используется для проведения ПЦР). Происходит это следующим образом: две нити ДНК или РНК, отходят друг от друга в стороны, на каждую нить садится специальный фермент, который синтезирует новую цепочку. Синтез идет по принципу комплементарности, то есть, если в исходной цепочке ДНК стоит нуклеотид А, то во вновь синтезированной будет стоять Т, если Г – то Ц и т.д. Этот специальный фермент -«строитель» для начала синтеза нуждается в «затравке» - последовательности из 5-15 нуклеотидов. Данная «затравка» определена для каждого гена (гена хламидии , микоплазмы , вирусов) экспериментально.

Итак, каждый цикл ПЦР состоит из трех стадий. В первую стадию происходит так называемое раскручивание ДНК – то есть разделение связанных между собой двух цепей ДНК. Во вторую - происходит присоединение «затравки» к участку нити ДНК. И, наконец, удлинение данных нитей ДНК, которое производится ферментом-«строителем». В настоящее время весь этот сложный процесс протекает в одной пробирке и состоит из повторяющихся циклов размножения определяемой ДНК с целью получения большого количества копий, которые могут быть, затем выявлены обычными методами. То есть из одной нити ДНК мы получаем сотни или тысячи.

Этапы проведения ПЦР исследования

Забор биологического материала для исследования

В качестве пробы служит различный биологический материал: кровь и ее компоненты, моча, слюна, отделяемое слизистых оболочек, спинномозговая жидкость, отделяемое раневых поверхностей, содержимое полостей тела. Все биопробы собираются одноразовыми инструментами, а набранный материал заключают в пластиковые стерильные пробирки или помещают на культуральные среды, с последующей транспортировкой в лабораторию.

В забранные пробы добавляют необходимые реагенты и ставят в программируемый термостат – термоциклер (амплификатор). В амплификаторе 30-50 раз повторяется цикл ПЦР, состоящий из трех этапов (денатурация, отжиг и удлинение). Что это означает? Рассмотрим подробнее.

Этапы непостредственно ПЦР реакции, копирование генетического материала


I
этап ПЦР - Подготовка генетического материала для копирования.
Происходит при температуре 95° С, при этом нити ДНК разъединяются, и на них могут садиться «затравки».

«Затравки» изготавливают промышленным способом различные научно-производственные объединения, а лаборатории покупают уже готовые. При этом «затравка» для выявления, например, хламидии, работает только для хламидии и т.д. Таким образом, если тестируется биоматериал на наличие хламидийной инфекции, то в реакционную смесь помещается «затравка» для хламидий; если тестирование биоматериала на вирус Эпштейн-Барра, то и «затравка» для вируса Эпштейн-Барра.

II этап – Объединение генетического материала возбудителя инфекции и «затравки».
Если имеется ДНК определяемого вируса или бактерии , «затравка» садится на эту ДНК. Этот процесс присоединения «затравки» и есть второй этап ПЦР. Данная стадия проходит при температуре 75°С.

III этап - Копирование генетического материала возбудителя инфекции.
Это процесс собственно удлинения или размножения генетического материала, который происходит при 72°С. К «затравкам» подходит фермент- «строитель» и синтезирует новую цепочку ДНК. С окончанием синтеза новой цепочки ДНК, заканчивается и цикл ПЦР. То есть за один цикл ПЦР происходит увеличение количества генетического материала в два раза. Например, в исходной пробе имелось 100 молекул ДНК какого-либо вируса, после первого цикла ПЦР в пробе будет уже 200 молекул ДНК тестируемого вируса. Один цикл длится 2-3 минуты.

Для образования достаточного количества генетического материала для идентификации, обычно производится 30-50 циклов ПЦР, что занимает 2-3 часа.


Этап идентификации размноженного генетического материала

Собственно ПЦР на этом заканчивается и далее идет не менее значимый этап идентификации. Для идентификации используют метод электрофореза или меченые «затравки». При использовании электрофореза полученные нити ДНК разделяются по размерам, и наличие фрагментов ДНК разной длины свидетельствует о положительном результате анализа (то есть о наличии того или иного вируса, бактерии и т.д.). При использовании меченых «затравок», к конечному продукту реакции добавляют хромоген (краситель), вследствие чего ферментативная реакция сопровождается образованием окраски. Развитие окраски прямо свидетельствует, что вирус или другой выявляемый агент присутствуют в исходной пробе.

На сегодняшний день, используя меченые «затравки», а также соответствующее программное обеспечение, можно производить сразу и «чтение» результатов ПЦР. Это так называемаяreal-time ПЦР.

Почему ПЦР диагностика обладает такой ценностью?


Одним из существенных преимуществ метода ПЦР является высокая чувствительность – от 95 до 100%. Однако, эти преимущества должны базироваться на непременном соблюдении следующих условий:

  1. корректный забор, транспортировка биологического материала;
  2. наличие стерильного, одноразового инструментария, специальных лабораторий и обученного персонала;
  3. строгое соблюдение методики и стерильности во время проведения анализа
Чувствительность различается для различных выявляемых микробов. Так, например, чувствительность метода ПЦР для выявления вируса гепатита С составляет 97-98%, чувствительность для выявления уреаплазмы – 99-100%.

Возможности, заложенные в ПЦР-анализе, позволяют достичь непревзойденной аналитической специфичности. Это означает выявление именно того микроорганизма, который искали, а не похожего или близкородственного.
Диагностическая чувствительность и специфичность метода ПЦР, зачастую превосходят таковые и для культурального метода, называемого «золотым стандартом» для выявления инфекционных заболеваний. Учитывая продолжительность выращивания культуры (от нескольких дней до нескольких недель), преимущество метода ПЦР становится очевидным.

ПЦР в диагностике инфекций
Преимущества метода ПЦР (чувствительность и специфичность) определяют широкий спектр применения в современной медицине.
Основные области применения ПЦР-диагностики:

  1. диагностика острых и хронических инфекционных заболеваний различной локализации
  2. контроль эффективности проведенной терапии
  3. уточнение вида возбудителя
ПЦР используется в акушерстве, гинекологии, неонатологии, педиатрии, урологии, венерологии, нефрологии, клинике инфекционных болезней, офтальмологии, неврологии, фтизиопульмонологии и др.

Использование ПЦР-диагностики производится в совокупности с другими методами исследования (ИФА, ПИФ, РИФ и др.). Их сочетание и целесообразность определяет лечащий врач.

Возбудители инфекций, обнаруживаемые методом ПЦР

Вирусы:

  1. ретровирусы HIV-1 и HIV-2
  2. герпетиформные вирусы
  3. вирус простого герпеса 1 и 2 типов

Принципы ПЦР-диагностики

РЕФЕРАТ

разделов, 34 страницы, 5 рисунков, 5 литературных источников

Цель данной работы - краткое изложение основных принципов и технологических особенностей метода ПЦР, его научного и практического применения в диагностике инфекционных заболеваний.

СПИСОК УСЛОВНЫХ СОКРАЩЕНИЙ

ВГС - вирус гепатита С

дАТФ - дезоксиаденозинтрифосфат

дГТФ - дезоксигуанозинтрифосфат

дНТФ - дезоксинуклеотидтрифосфат

дТТФ - дезокситимидинтрифосфат

дЦТФ - дезоксицитозинтрифосфат

ДНК - дезоксирибонуклеиновая кислота

ПЦР - полимеразная цепная реакция

РНК - рибонуклеиновая кислота- иммуноглобулин класса GTime PCR - метод ПЦР в режиме реального времени

ВВЕДЕНИЕ

ПРИНЦИП МЕТОДА ПЦР

СТАДИИ ПРОВЕДЕНИЯ ПЦР-АНАЛИЗА

МЕТОД ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ (Real-Time PCR)

ПРЕИМУЩЕСТВА МЕТОДА ПЦР

ОГРАНИЧЕНИЯ МЕТОДА ПЦР

ПРИМЕНЕНИЕ МЕТОДА ПЦР

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Открытие метода полимеразной цепной реакции (ПЦР) стало одним из наиболее выдающихся событий в области молекулярной биологии за последние десятилетия. Это позволило поднять медицинскую диагностику на качественно новый уровень. Принцип метода полимеразной цепной реакции был разработан Кэрри Мюллисом в 1983 году. За разработку ПЦР-анализа К.Мюллис в 1993 году был удостоен Нобелевской премии в области химии.

После открытия ПЦР она была очень быстро внедрена в практику. Метод стал настолько популярен, что сегодня уже трудно представить работу в области молекулярной биологии без его использования. Особенно бурное развитие метод ПЦР получил благодаря международной программе «Геном человека». Были созданы современные лазерные технологии секвенирования (расшифровки нуклеотидных последовательностей ДНК). Если в недавнем прошлом для расшифровки последовательности ДНК размером в 250 пар нуклеотидов (п.н.) требовалась неделя, то современные лазерные секвенаторы позволяют определять до 5000 п.н. в день. Это в свою очередь способствует значительному росту информационных баз данных, содержащих последовательности ДНК. В настоящее время предложены различные модификации ПЦР, показана возможность создания тест-систем для обнаружения микроорганизмов, выявления точечных мутаций, описаны десятки возможных применений метода.

Появление метода ПЦР было обусловлено определенными достижениями в области молекулярной генетики, прежде всего расшифровкой нуклеотидной последовательности геномов ряда микроорганизмов. Следует отметить, что этому открытию сопутствовало развитие некоторых технологий. В частности, появление приборов, позволяющих автоматически синтезировать одноцепочечные фрагменты ДНК (олигонуклеотиды). В тот же период были обнаружены уникальные микроорганизмы, живущие в гейзерах. Их ферментативная система, в частности ДНК-полимераза, выдерживает высокие температуры горячих источников и сохраняет свою биологическую активность вплоть до 95°С, что является необходимым условием для проведения полимеразной цепной реакции.

Полимеразная цепная реакция в настоящее время является наиболее совершенным диагностическим методом молекулярной биологии, молекулярной генетики и клинической лабораторной диагностики, позволяющим выявлять в тканях и биологических жидкостях организма единичные клетки возбудителей многих инфекционных заболеваний.

В основе метода ПЦР лежит комплиментарное достраивание участка геномной ДНК или РНК возбудителя, осуществляемое in vitrо с помощью фермента термостабильной ДНК-полимеразы. Специфичность метода определяется уникальностью генетического материала выявляемых инфекционных агентов, к которому подобраны олигонуклеотидные праймеры, участвующие в процессе амплификации.

Диагностика инфекционных заболеваний, в том числе вызванных трудно культивируемыми агентами, генотипирование микроорганизмов, оценка их вирулентности, определение устойчивости микрофлоры к антибиотикам, пренатальная диагностика, биологический контроль препаратов крови - вот неполный перечень направлений медицины с применением ПЦР. На сегодняшний день ПЦР-анализ остается наиболее распространенной и динамично развивающейся технологией. Ежегодно на рынке появляются десятки новых тест-систем для ПЦР-анализа, предназначенных как для выявления нуклеотидных последовательностей различных микроорганизмов - возбудителей заболеваний, так и для исследования генов человека. Себестоимость ПЦР-анализа неуклонно снижается, что способствует все более широкому использованию метода в лечебных и диагностических учреждениях. Количество ПЦР-лабораторий в странах СНГ растет в геометрической прогрессии и, видимо, в ближайшее время ПЦР-анализ станет одним из самых распространенных методов лабораторной диагностики.

1. ПРИНЦИП МЕТОДА ПЦР

Полимеразная цепная реакция - это метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить единственную специфическую молекулу ДНК в присутствии миллионов других молекул.

Суть метода заключается в многократном копировании (амплификации) в пробирке определенных участков ДНК в процессе повторяющихся температурных циклов. На каждом цикле амплификации синтезированные ранее фрагменты вновь копируются ДНК-полимеразой. Благодаря этому происходит многократное увеличение количества специфических фрагментов ДНК, что значительно упрощает дальнейший анализ.

В основе метода ПЦР лежит природный процесс - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы. Эта реакция носит название репликации ДНК.

Естественная репликация ДНК включает в себя несколько стадий:

) Денатурация ДНК (расплетение двойной спирали, расхождение нитей ДНК);

) Образование коротких двухцепочечных участков ДНК (затравок, необходимых для инициации синтеза ДНК);

) Синтез новой цепи ДНК (комплементарное достраивание обеих нитей).

Данный процесс можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей инфекционных заболеваний.

Открытие термостабильной ДНК-полимеразы (Taq-полимеразы) из термофильных бактерий Thermisaquaticus , оптимум работы которой находится в области 70-72°С, позволило сделать процесс репликации ДНК циклическим и использовать его для работы in vitro. Создание программируемых термостатов (амплификаторов), которые по заданной программе осуществляют циклическую смену температур, создало предпосылки для широкого внедрения метода ПЦР в практику лабораторной клинической диагностики. При многократном повторении циклов синтеза происходит экспоненциальное увеличение числа копий специфического фрагмента ДНК, что позволяет из небольшого количества анализируемого материала, который может содержать единичные клетки микроорганизмов получить достаточное количество ДНК копий для их идентификации.

Комплементарное достраивание цепи начинается не в любой точке последовательности ДНК, а только в определенных стартовых блоках - коротких двунитевых участках. При присоединении таких блоков к специфическим участкам ДНК можно направить процесс синтеза новой цепи только в этом участке, а не по всей длине ДНК цепи. Для создания стартовых блоков в заданных участках ДНК используют две олигонуклеотидные затравки (20 нуклеотидных пар), называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними.

Таким образом, ПЦР представляет собой многократное увеличение числа копий (амплификация) специфического участка ДНК катализируемое ферментом ДНК- полимеразой.

. СТАДИИ ПРОВЕДЕНИЯ ПЦР-АНАЛИЗА

Методика проведения анализа с использованием метода ПЦР включает три этапа:

1. Выделение ДНК (РНК) из клинического образца;

2. Амплификация специфических фрагментов ДНК;

. Детекция продуктов амплификации.

. Выделение ДНК (РНК)

На данной стадии проведения анализа клиническая проба подвергается специальной обработке, в результате которой происходит лизис клеточного материала, удаление белковых и полисахаридных фракций, и получение раствора ДНК или РНК, свободной от ингибиторов и готовой для дальнейшей амплификации. Выбор методики выделения ДНК (РНК) в основном определяется характером обрабатываемого клинического материала.

2.Амплификация специфических фрагментов ДНК

На данной стадии происходит накопление коротких специфических фрагментов ДНК в количестве, необходимом для их дальнейшей детекции.

Для проведения полимеразной цепной реакции необходимо наличие в реакционной смеси ряда компонентов:

·Праймеры - искусственно синтезированные олигонуклеотиды, имеющие, как правило, размер от 15 до 30 п.н., идентичные соответствующим участкам ДНК-мишени. Они играют ключевую роль в образовании продуктов реакции амплификации. Правильно подобранные праймеры обеспечивают специфичность и чувствительность тест-системы.

·Taq-полимераза - термостабильный фермент, обеспечивающий достраивание 3-конца второй цепи ДНК согласно принципу комплиментарности.

·Смесь дезоксинуклеотидтрифосфатов (дНТФ) - дезоксиаденозинтрифосфата (дАТФ), дезоксигуанозинтрифосфата (дГТФ), дезоксицитозинтрифосфата (дЦТФ) и дезокситимидинтрифосфата (дТТФ) - «строительный материал», используемый Taq- полимеразой для синтеза второй цепи ДНК.

·Буфер - смесь катионов и анионов в определенной концентрации, обеспечивающих оптимальные условия для реакции, а также стабильное значение рН.

·Анализируемый образец - подготовленный к внесению в реакционную смесь препарат, который может содержать искомую ДНК, например, ДНК микроорганизмов, служащую мишенью для последующего многократного копирования.

Рис.1 Компоненты реакционной смеси

Каждый цикл амплификации включает 3 этапа, протекающих в различных температурных режима:

1 этап: Денатурация ДНК (расплетение двойной спирали). Протекает при 93-95°C в течение 30-40 сек.

Одна из цепей (+) используется в качестве основной матрицы. Ее пять штрих-концов фиксируются ферментом ДНК-полимеразой, что обеспечивает построение из отдельных нуклеотидов второй цепи ДНК, комплиментарной первой. То же самое, только в обратном направлении, происходит и на второй нити ДНК, однако, поскольку расплетение молекулы ДНК идет в обратном порядке, новая цепь строится небольшими фрагментами, которые затем сшиваются. Для того чтобы фермент ДНК-полимераза начал свою работу, требуется наличие затравки или праймера - небольшого одноцепочечного фрагмента ДНК, который, соединяясь с комплиментарным участком одной из цепей родительской ДНК, образует стартовый блок для наращивания дочерней нити.

2 этап: Присоединение праймеров (отжиг). Присоединение праймеров происходит комплиментарно к соответствующим последовательностям на противоположных цепях ДНК на границах специфического участка. Для каждой пары праймеров существует своя температура отжига, значения которой располагают в интервале 50-65°С. Точно рассчитанная и экспериментально проверенная температура отжига праймеров - одна из определяющих специфичность реакции характеристик, исключающих присоединение праймеров к не полностью комплиментарным последовательностям.

Поскольку наращивание дочерних нитей ДНК может идти одновременно на обеих цепях материнской ДНК, то для работы ДНК-полимеразы на второй цепи тоже требуется свой праймер. Таким образом, в реакционную смесь вносятся два праймера. Фактически праймеры, присоединившись к противоположным цепям молекулы ДНК, ограничивают собой тот ее участок, который будет в дальнейшем многократно удвоен или амплифицирован. Такие фрагменты ДНК называются ампликонами. Длина ампликона может составлять несколько сот нуклеотидов. Меняя пару праймеров, мы можем переходить от анализа одного возбудителя к анализу другого.

Время отжига -20-60 сек.

3 этап: Достраивание цепей ДНК (элонгация).

Механизм копирования таков, что комплементарное достраивание нитей может начаться не в любой точке последовательности ДНК, а только в определенных стартовых блоках (коротких двунитевых участках). Для создания стартовых блоков в заданных участках ДНК используют затравки, представляющие собой олигонуклеотиды длиной около 20 п.н., также называемые праймерами. Они комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что синтез ДНК, осуществляемый ДНК-полимеразой, протекает только между ними.

Комплементарное достраивание цепей ДНК идет в направлении от 5`-конца к 3`-концу цепи в противоположных направлениях, начиная с участков присоединения праймеров. Материалом для синтеза новых цепей ДНК служит вносимый дезоксирибонуклеотидфосфат. Этот процесс катализируется ферментом Tag-полимеразой. Образовавшиеся в первом цикле синтеза новые ДНК служат исходным материалом для второго цикла, в котором происходит образование искомого специфического фрагмента ДНК (ампликона) и т.д.

Рис.2 Принцип амплификации ДНК

В настоящее время применяется несколько способов подготовки образца для проведения ПЦР. Процедура подготовки пробы включает лизис микроба и экстракцию нуклеиновой кислоты. С целью разрушения микробной клетки используют простое кипячение, замораживание-оттаивание в присутствии лизоцима, а также специальные лизирующие буферы, содержащие детергенты и протеиназу. Выбор метода, как правило, диктуется природой микроба, точнее, природой его клеточной стенки. Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, описанная В.R.Marmionetal. (1993). Она включает ферментативный протеолиз с последующей депротеинизацией и осаждением ДНК спиртом. Этот метод позволяет получить чистый препарат ДНК, однако он довольно трудоемок и предполагает работу с такими агрессивными и имеющими резкий запах веществами, как фенол и хлороформ.

Одним из наиболее популярных является метод выделения ДНК, предложенный R.Boometal. (1990), основанный на использовании для лизиса клеток сильного лизирующего агента - гуанидинатиоционата (GuSCN) и последующей сорбции ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное «молоко» и т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен, технологичен и пригоден для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок. Особенно большое значение это имеет при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР, поэтому при использовании этого метода очень важен правильный выбор сорбента и тщательное соблюдение технологических нюансов. Следует отметить, что из-за большого числа стадий добавления и удаления растворов при работе с образцом требуется аккуратность, поскольку возможна перекрестная контаминация между пробами и образующимся аэрозолем ДНК.

При классической процедуре фенольно-хлороформной экстракции ДНК достигается хорошая очистка ДНК, в первую очередь от ингибиторов Tag-полимеразы, но неизбежны большие потери нуклеиновой кислоты, особенно заметные при работе с образцами небольшого объема с низкой концентрацией инфекционного агента.

Другая группа методов пробоподготовки основана на использовании ионообменников типа Chilex (США), которые, в отличие от стекла, сорбируют не ДНК, а примеси, мешающие реакции. Как правило, эта технология включает две стадии: кипячение образца и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом. К сожалению, иногда встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, некоторые микроорганизмы не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.

При массовом скрининге, когда важно получить статистические данные, возможно использование простых способов с применением детергентов или обработки биологического материала щелочами с последующей их нейтрализацией. В то же время использование подобных методов для клинической диагностики может приводить к ложноотрицательным результатам вследствие применения в реакционной смеси некачественного препарата ДНК. Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов.

Во время следующей процедуры - амплификации - образец, содержащий ДНК возбудителя, вносится в небольшую пробирку с компонентами, обеспечивающими протекание полимеразной реакции, два вида праймеров, два энзима (Таg-полимераза и N-урацил-гликолаза) и четыре вида нуклеотида A, Г, Ц, У. Для проведения полимеразной реакции используется специальное устройство (термоциклер или ДНК-амплификатор), позволяющее автоматически, по определенной программе изменять температурный режим реакционной смеси. В первом цикле осуществления ПЦР образец нагревается до температуры 94°С для разделения двух комплиментарных нитей ДНК. Затем температура снижается до 40-60°С, при которой праймеры присоединяются к единичной цепи ДНК, после чего температура вновь поднимается до 72°С, когда наиболее выражена активность полимеразы. Весь цикл с изменением температуры продолжается менее 3 минут.

Для правильной оценки результатов ПЦР важно понимать, что данный метод не является количественным. Теоретически продукты амплификации единичных молекул ДНК-мишени могут быть обнаружены с помощью электрофореза уже после 30-35 циклов. Однако на практике это выполняется лишь в случаях, когда реакция проходит в условиях, близких к идеальным, что встречается нечасто. Особенно большое влияние на эффективность амплификации оказывает степень чистоты препарата ДНК, т.е. наличие в реакционной смеси тех или иных ингибиторов, от которых избавиться в некоторых случаях бывает крайне сложно. Иногда из-за их присутствия не удается амплифицировать даже десятки тысяч молекул ДНК-мишени. Таким образом, прямая связь между исходным количеством ДНК-мишени и конечным количеством продуктов амплификации часто отсутствует.

Для визуализации результатов амплификации используют различные методы. Наиболее распространенный на сегодняшний день - электрофорез, основанный на разделении молекул ДНК по размеру. Для этого готовят пластину агарозного геля, представляющего собой застывшую после расплавления в электрофорезном буфере агарозу в концентрации 1,5-2,5% с добавлением специального красителя ДНК, например бромистого этидия. Застывшая агароза образует пространственную решетку. При заливке с помощью гребенок в геле формируют специальные лунки, в которые в дальнейшем вносят продукты амплификации. Пластину геля помещают в аппарат для горизонтального гель-электрофореза и подключают источник постоянного напряжения. Отрицательно заряженная ДНК начинает двигаться в геле от минуса к плюсу. При этом более короткие молекулы ДНК движутся быстрее, чем длинные. На скорость движения ДНК в геле влияют концентрация агарозы, напряженность электрического поля, температура, состав электрофорезного буфера и, в меньшей степени, состав ДНК. Все молекулы одного размера движутся с одинаковой скоростью. Краситель встраивается (интеркалирует) плоскостными группами в молекулы ДНК. После окончания электрофореза, продолжающегося от 10 минут до 1 часа, гель помещают на фильтр трансиллюминатора, излучающего свет в ультрафиолетовом диапазоне (254 - 310 нм). Энергия ультрафиолета, поглощаемая ДНК в области 260 нм, передается на краситель, заставляя его флуоресцировать в оранжево-красной области видимого спектра (590 нм).

В качестве «положительного контроля» используют стандарт ДНК искомого микроорганизма. Размер неспецифических ампликонов может быть как больше, так и меньше по сравнению с «положительным контролем». В худшем случае эти размеры могут совпадать и читаются в электрофорезе как положительные.

«Положительный контроль» позволяет удостовериться, что все компоненты, входящие в состав реакционной смеси, обеспечивают нормальное прохождение реакции. В то же время препарат ДНК, подготовленный для ПЦР из биологического материала, может содержать примеси ингибиторов, заметно снижающих эффективность реакции, а в некоторых случаях приводящих к отсутствию специфических ампликонов даже при наличии искомого возбудителя. Необходимо контролировать ход амплификации в каждой пробирке с реакционной смесью, для чего используют дополнительный, так называемый «внутренний контроль», который представляет собой любой стандарт ДНК, несхожий с ДНК искомого микроорганизма.

Для инфекционных тест-систем иногда, например, используют р-глобиновый ген, к концам которого с помощью генно-инженерных манипуляций пришивают участки ДНК, гомологичные праймерам, входящим в состав тест-системы. Если «внутренний контроль» внести в реакционную смесь, то он станет такой же мишенью для отжига праймеров, как и хромосомальная ДНК искомого возбудителя инфекции. Размер продукта амплификации внутреннего контроля подбирают таким образом, чтобы он был в 2 и более раз больше, чем ампликоны, образуемые от амплификации искомой ДНК микроорганизма. В результате, если внести ДНК «внутреннего контроля» в реакционную смесь вместе с испытуемым образцом, то, независимо от наличия микроорганизма в биологическом образце, «внутренний контроль» станет причиной образования специфических ампликонов, но значительно более длинных (тяжелых), чем ампликон микроорганизма. Наличие тяжелых ампликонов в реакционной смеси свидетельствует о нормальном прохождении реакции амплификации и отсутствии ингибиторов. Если ампликоны нужного размера и «внутреннего контроля» не образовались, можно сделать вывод о наличии в анализируемом образце нежелательных примесей, от которых следует избавиться, но не об отсутствии искомой ДНК.

Несмотря на всю привлекательность такого подхода, у него есть существенный изъян. Так, если в реакционной смеси находится нужная ДНК, то эффективность ее амплификации резко снижается из-за конкуренции с «внутренним контролем» за праймеры. Это принципиально важно при низких концентрациях ДНК в исследуемом образце и может приводить к ложноотрицательным результатам. Тем не менее, при условии решения проблемы конкуренции за праймеры этот способ контроля эффективности амплификации, безусловно, будет весьма полезен.

Рис.3 Второй цикл амплификации ДНК

. Детекция продуктов амплификации

). Метод горизонтального электрофореза

Одним из методов визуализации результатов амплификации является метод электрофореза, основанный на разделении молекул ДНК по размеру. В большинстве методик на данном этапе проводится разделение смеси продуктов амплификации, полученной на 2-ой стадии, методом горизонтального электрофореза в агарозном геле. До проведения электрофоретического разделения, к амплификационной смеси добавляется раствор бромистого этидия, образующий с двухцепочечными фрагментами ДНК прочные соединения внедрения. Эти соединения под действием УФ-облучения способны флуоресцировать, что регистрируется в виде светящихся полос после электрофоретического разделения амплификационной смеси в агарозном геле. Яркость полос продуктов амплификации может быть различной. Поэтому часто в ПЦР-лабораториях принято оценивать результат по трех-, четырех- или пятибалльной системе. Однако нельзя связывать с начальным количеством ДНК-мишени в образце. Часто уменьшение яркости свечения полос связано со снижением эффективности амплификации под влиянием ингибиторов или других факторов.

Рис.4 Детекция продуктов амплификации методом горизонтального электрофореза

). Метод вертикального электрофореза

Метод вертикального электрофореза принципиально схож с горизонтальным электрофорезом. Их отличие заключается в том, что в данном случае вместо агарозы используют полиакриламид. Его проводят в специальной камере для вертикального электрофореза. Электрофорез в полиакриламидном геле имеет большую разрешающую способность по сравнению с агарозным электрофорезом и позволяет различать молекулы ДНК разных размеров с точностью до одного нуклеотида. Приготовление полиакриламидного геля несколько сложнее агарозного. Кроме того, акриламид является токсичным веществом. Поскольку необходимость определить размер продукта амплификации с точностью до 1 нуклеотида возникает редко, то в рутинной работе этот метод не используют.

3). Метод гибридизационных зондов

В качестве альтернативы электрофоретическому методу детекции, имеющему некоторые недостатки: субъективность чтения результатов, ограничения по определению ДНК различных микроорганизмов в одной реакции, могут быть предложены гибридизационные схемы детекции. В этих схемах образующийся в результате амплификации фрагмент ДНК гибридизуется (образует 2-х цепочечные комплексы - "гибриды") со специфическим олигонуклеотидным зондом. Регистрация таких комплексов может быть проведена колориметрически или флуориметрически.

3. МЕТОД ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ (Real-Time PCR)

Метод Real-Time PCR позволяет проводить детекцию продуктов амплификации в процессе реакции и вести мониторинг кинетики накопления ампликонов. Для детекции PCR-продукта используются флуоресцентные красители, обеспечивающие флуоресценцию, прямо пропорциональную количеству ПЦР-продукта - репортерную флуоресценцию. Механизмы ее генерации различаются в зависимости от конкретного типа Real-Time PCR.

Кинетическая кривая в координатах "Уровень репортерной флуоресценции - цикл амплификации" имеет S-образную форму.

В ней можно выделить три стадии:

1.Стадию инициации (когда ПЦР-продукты еще не детектируется флуоресцентной меткой).

2.Экспоненциальную стадию (в которой наблюдается экспоненциальная зависимость количества флуоресценции от цикла ПЦР).

.Плато (стадию насыщения).

Рис.5 График кинетической кривой флуоресценции методом Real-Time PCR

Регистрация флуоресцентного сигнала проводится в процессе амплификации на специальном приборе - амплификаторе для Real-Time PCR. По нарастанию интенсивности флуоресцентного сигнала с помощью программного обеспечения, прилагаемого к амплификатору, вычисляется концентрация исходной матрицы ДНК.

Преимущества метода ПЦР в режиме реального времени

nвозможность детекции накопления продуктов амплификации непосредственно во время проведения амплификации;

nпринципиальным преимуществом является возможность осуществления детекции накопления ампликонов без открытия пробирки, что минимизирует риск получения ложноположительных результатов из-за контаминации проб и реагентов продуктами амплификации;

nсущественное уменьшение количества манипуляций с исследуемым образцом сокращает затраты времени, упрощает анализ и позволяет снизить вероятность ошибок;

nподобный подход позволяет отказаться от стадии электрофореза, что ведет к резкому уменьшению вероятности контаминации исследуемых проб продуктами амплификации;

nснижение требований, предъявляемых к ПЦР лаборатории;

nувеличение объективность интерпретации результатов ПЦР-исследования, поскольку обработка ведется с помощью программного обеспечения прибора;

nзначительно, практически в два раза, сокращается общее время исследования позволяя получить результат уже через 1.5 - 2 часа после поступления клинического материала в лабораторию;

nданный метод впервые позволяет проводить количественную оценку содержания ДНК микроорганизма в клинической пробе;

nприменение наряду с праймерами гибридизационных зондов обеспечивает повышение специфичности анализа;

nвозможность независимой одновременной регистрации флуоресцентного сигнала от нескольких гибридизационных ДНК-зондов допускает выявление в одном исследовании нескольких различных участков одной или различных ДНК-мишеней.

. ПРЕИМУЩЕСТВА МЕТОДА ПЦР

nНепосредственное определение возбудителей инфекционных заболеваний

Метод ПЦР дает прямое указание на присутствие в забранном у пациента материале специфического фрагмента ДНК возбудителя.

nВысокая специфичность ПЦР

Методом ПЦР в исследуемом материале выделяется фрагмент ДНК присущий только конкретному возбудителю - бактерии или вирусу. Данный участок ДНК уникален и не характерен ни для одной инфекции на земле. Специфичность задается нуклеотидной последовательностью праймеров, что исключает возможность получения ложных результатов, в отличие от метода иммуноферментного анализа, где нередки ошибки в связи с перекрестно-реагирующими антигенами.

nВысокая чувствительность ПЦР

Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими, микроскопическими) это сделать невозможно. Чувствительность ПЦР-анализа составляет 10-1000 клеток в пробе (чувствительность иммунологических и микроскопических тестов - 103-105 клеток).

nУниверсальность ПЦР

Поскольку возбудитель может содержаться в любых биологических выделениях и тканях при ПЦР-исследовании может применяться практически любые материалы, в том числе недоступные для исследования другими методами - слизь, моча, кровь, сыворотка, мокрота, эякулят, соскоб эпителиальных клеток.

nВысокая скорость получения результата ПЦР-анализа

Для проведения ПЦР-анализа не требуется выделение и выращивание культуры возбудителя, что занимает большое количество времени. Унифицированный метод обработки биоматериала и детекции продуктов реакции, и автоматизация процесса амплификации дают возможность провести полный анализ за 4-4.5 часа.

nВозможность диагностики любого вида инфекции

Высокая чувствительность метода ПЦР позволяет диагностировать инфекцию не только на острой стадии заболевания, но и хронические инфекции и даже наличие единичных бактерий или вирусов.

В настоящее время преимущество ПЦР-анализа перед культуральным методом обнаружения микроорганизмов состоит в следующем:

Более высокая частота обнаружения микроба, превышающая аналогичный показатель при использовании культурального метода, на 6-7%. Эти различия объясняются возможной гибелью микроба при хранении и транспортировке, тогда как ПЦР способна обнаруживать и нежизнеспособные формы микроорганизма.

Время, необходимое для обнаружения возбудителя культуральным методом, составляет около 4 суток, тогда как использование ПЦР позволяет обнаружить микроб через 4-5 часов.

Использование технологии ПЦР позволяет проводить определение возбудителей, например хламидий, в образцах, взятых неинвазивным путем, например в порциях мочи.

Особенно эффективен метод ПЦР для диагностики трудно культивируемых, некультивируемых и персистирующих форм микроорганизмов, с которыми часто приходится сталкиваться при латентных и хронических инфекциях, поскольку этот метод позволяет избежать сложностей, связанных с выращиванием таких микроорганизмов в лабораторных условиях.

nВозможность проведения мониторинга и оценки эффективности терапии, особенно при вирусных заболеваниях.

nВозможность выявления отдельных субтипов и штаммов вирусов и бактерий.

nВозможность определения нескольких видов возбудителей (Chlamydiatrachomatis, Mycoplasmahominis, Mycoplasmagenitalium, Trichomonasvaginalis, Ureaplasmaurealyticum) из одной пробирки с биологическим материалом.

Данный метод сравним по трудоемкости с классическими методами (иммуноферментным, иммунофлуоресцентным и т.п.), но дает более достоверную диагностическую информацию, позволяя непосредственно обнаруживать ДНК или РНК инфекционного агента в клиническом материале. Поэтому метод ПЦР, наравне с культуральным методом, признается «золотым стандартом» для диагностики инфекционных заболеваний.

5. ОГРАНИЧЕНИЯ МЕТОДА ПЦР

·В ходе реакции амплифицируется ДНК как живого, так и погибшего микроорганизма

·Возможность перекрестной реакции

Подбор праймеров происходит на основе существующих знаний о геноме данного и сходных микроорганизмов. Теоретически существует возможность присутствия такого же фрагмента и у других микроорганизмов, геном которых в настоящее время не расшифрован, и которые не были протестированы на возможность перекрестной реакции. Присутствие в пробе таких микроорганизмов может привести к ложноположительному результату анализа.

·Изменчивость микроорганизмов

Хотя при конструировании тест-системы фрагмент генома, используемый для амплификации, выбирается из высоко консервативной области, изменчивость микроорганизмов может приводить к тому, что некоторые генотипы или штаммы исследуемого возбудителя могут приобретать мутации в амплифицируемом участке генома, и, таким образом, становиться неуловимыми данной тест-системой.

Последние два пункта важны для разработчиков ПЦР-диагностикумов. В настоящее время разработаны стандарты, регламентирующие объем испытаний (включая проверку на перекрестные реакции, а также тестирование известных штаммов определяемого возбудителя), которые должна выдержать тест-система, прежде чем она попадет на рынок.

6. ПРИМЕНЕНИЕ МЕТОДА ПЦР

полимеразный диагностика инфекционный заболевание

ПЦР используется во многих областях для проведения анализов и в научных экспериментах:

1. криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью электрофореза ДНК. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев.

2. установление отцовства

При анализе результатов электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР отец-ребенок-мать обнаруживается, что ребенок унаследует некоторые особенности генетического отпечатка обоих родителей, что дает уникальный отпечаток. Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков. Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

3. медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

4. клонирование генов

Клонирование генов - это процесс выделения генов и, в результате генно-инженерных манипуляций, получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

5. секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

6. мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза (внесения изменений в нуклеотидную последовательность ДНК). Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

7. диагностика инфекционных заболеваний

Использование метода ПЦР для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы имеет колоссальное значение для решения многих проблем микробиологии и эпидемиологии. Применение этого метода также способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний.

8. диагностика вирусных заболеваний

Наиболее всесторонние преимущества ПЦР при диагностике вирусных заболеваний можно продемонстрировать, рассматривая инфекционный процесс, обусловленный вирусом гепатита С (ВГС). Особую диагностическую ценность ПЦР для обнаружения этого вируса представляет по следующим причинам:

) отсутствие способа культивирования ВГС; 2) наборы для антигенной диагностики не существуют; 3) реакция образования антител к ВГС настолько замедлена, что диагноз во время острой фазы инфекции, как правило, поставить невозможно.

Поэтому в настоящее время становится общепризнанным использование технологии ПЦР для диагностики, контроля качества лечения и эпидемиологического анализа заболеваемости, обусловленной ВГС.

При этом только технология ПЦР позволяет решать следующие задачи: 1) проводить диагностику острой инфекции при позднем выявлении антител к ВГС; 2) осуществлять этиологическую диагностику хронического гепатита С у иммуносупрессированных пациентов; 3) оценивать эффективность противовирусной терапии; 4) выявлять виремию у доноров крови с нормальным уровнем аминотрансфераз; 5) определять возможную контаминацию препаратов крови; 6) оценивать широту распространения ВГС.

9. применение ПЦР в пульмонологии и фтизиатрии

Частой причиной атипичных пневмоний, рецидивирующих хронических бронхитов являются микоплазмы и хламидии. Диагностика этих возбудителей традиционными методами микроскопии и бакпосева неэффективна. ПЦР позволяет не только диагностировать хламидиозы и микоплазмозы, но и проводить видовую идентификацию возбудителя (С. pneumoniae, C. trachomatis, M. hominis, M. pneumoniae). Использование метода ПЦР позволяет значительно улучшить раннюю диагностику туберкулеза. В настоящее время разработаны и появились на рынке ПЦР-наборы для определения устойчивости микобактерий к антибиотикам.

10. применение ПЦР в практике службы крови

Обследование донорской крови на гепатиты, сифилис, ВИЧ серологическим методами не исключает опасности использования инфицированной крови из-за наличия у этих заболеваний определенного серонегативного периода, который может составлять до нескольких недель с момента появления возбудителя в крови. Наиболее эффективным методом анализа крови на присутствие этих возбудителей является метод ПЦР.

11. применение ПЦР в неонатологии

Целый ряд микроорганизмов способны поражать плод во время беременности. Это цитомегаловирус, токсоплазмы, вирус герпеса, вирус краснухи, микоплазмы, хламидии и др. Использование серологических тестов для определения этих инфекций у новорожденных неэффективно, поскольку формирование иммунной системы у ребенка происходит в течение нескольких месяцев, и наличие инфекционного агента может не сопровождаться выработкой специфических антител. С другой стороны, в крови новорожденного длительное время могут присутствовать материнские антитела класса IgG, способные проникать через плацентарный барьер. Таким образом, наличие специфических IgG у ребенка в первые месяцы жизни не свидетельствует о присутствии возбудителя. Применение ПЦР-анализа значительно увеличивает возможности диагностики неонатальных инфекций, в том числе и на внутриутробном этапе.

12. применение ПЦР в урогинекологической практике

Среди инфекционных агентов, поражающих урогенитальный тракт в последнее время большое внимание уделяется возбудителям латентных и хронических инфекций - хламидиям, микоплазмам. Для заболеваний, вызываемых этими возбудителями, характерна стертость клинической симптоматики, хроническое течение, часто приводящее к поражению репродуктивных функций - невынашиванию беременности, бесплодию. Многочисленные исследования по изучению применения метода ПЦР для выявления Сhlamydiatrachomatis, Mycoplasmahominis, Mycoplasmagenitalium, Ureaplasmaurealiticum, проведенные в крупных клиниках разных странах, показали высокую эффективность данного метода. Признано, что по показателям чувствительности и оперативности ПЦР превосходит культуральный метод, принятый в качестве "золотого стандарта".

ЗАКЛЮЧЕНИЕ

Таким образом, технология ПЦР - мощный инструмент, обеспечивающий возможность изучения и диагностики хронических инфекционных процессов, экологии возбудителей инфекционных заболеваний. Метод ПЦР-диагностики дополняет уже существующие приемы микробиологической диагностики, качественно меняет методологию решения прикладных проблем медицинской микробиологии и эпидемиологии.

Учитывая вышесказанное, сформулируем направления исследований в инфекционной патологии, в решении которых ПЦР начинает играть ведущую роль.

Диагностика хронических инфекционных состояний, обусловленных персистенцией бактерий или вирусов. Это наиболее очевидная область применения ПЦР в диагностических целях.

ПЦР - наиболее эффективный метод для выявления и изучения возбудителей, которые, находясь в «некультивируемом» состоянии, способны там сохраняться, переживая неблагоприятные внешние условия.

ПЦР позволяет проводить определение антибиотикорезистентности у медленно растущих и труднокультивируемых бактерий.

Перспективными направлениями практического использования ПЦР-диагностики являются:

· диагностика онкологических заболеваний;

· диагностика лейкемий и лимфом;

· диагностика рака молочной железы;

· диагностика других злокачественных заболеваний;

ДНК-диагностика доброкачественных и злокачественных новообразований ограничивается небольшим, но все возрастающим числом сведений о генах, ассоциированных с этими заболеваниями;

· диагностика генетических заболеваний.

Диагностика генетических заболеваний может развиваться только вслед за проведением широких научных исследований генома человека. Однако медицинское сообщество уже осознало важность изучения генетической основы заболеваний, а также возможность диагностирования и начала лечения болезни до появления ее симптомов;

· идентификация личности: судебная медицина, криминалистика; трансплантация органов и тканей; определение отцовства. Эксперты оценивают это направление на рынке ДНК-диагностикумов как одно из наиболее крупных и быстрорастущих;

Получил Нобелевскую премию .

В начале использования метода после каждого цикла нагревания-охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу , так как она инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура проведения реакции была сравнительно неэффективной, требовала много времени и фермента. В 1986 году метод полимеразной цепной реакции был существенно улучшен. Было предложено использовать ДНК-полимеразы из термофильных бактерий . Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3"→5" экзонуклеазная активность). Полимеразы Pfu и Pwo , выделенные из архей , обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq . Сейчас применяют смеси Taq и Pfu , чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.

В момент изобретения метода Кэри Муллис работал химиком-синтетиком (он синтезировал олигонуклеотиды, которые применялись тогда для выявления точечных мутаций методом гибридизации с геномной ДНК) в компании Цетус (Cetus Corporation), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq -полимеразы компании Хофман-Ла Рош за 300 млн долларов. Однако оказалось, что Taq -полимераза была охарактеризована советскими биохимиками А. Калединым, А. Слюсаренко и С.Городецким в 1980 году , а также за 4 года до этой советской публикации, то есть в 1976 году, американскими биохимиками Alice Chien, David B.Edgar и John M. Trela. В связи с этим компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент . Американский патент на метод ПЦР истёк в марте 2005 г.

Проведение ПЦР

Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro ). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК . В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp ). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20-40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований .

Компоненты реакции

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица , содержащая тот участок ДНК, который требуется амплифицировать .
  • Два праймера , комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.
  • Термостабильная ДНК-полимераза - фермент , который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.
  • Дезоксирибонуклеозидтрифосфаты (dATP, dGTP, dCTP, dTTP).
  • Ионы Mg 2+ , необходимые для работы полимеразы.
  • Буферный раствор , обеспечивающий необходимые условия реакции - рН , ионную силу раствора . Содержит соли, бычий сывороточный альбумин .

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата , побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата . Пирофосфат может ингибировать ПЦР-реакцию .

Праймеры

Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами , короткими синтетическими олигонуклеотидами длиной 18-30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы и ограничивает начало и конец амплифицируемого участка.

После гибридизации матрицы с праймером (отжиг ), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ).

Важнейшая характеристика праймеров - температура плавления (T m) комплекса праймер-матрица.

T m - температура, при которой половина ДНК-матриц образует комплекс с олигонуклеотидным праймером. Усредненная формула подсчета T m для короткого олигонуклеотида (и для длинных ДНК фрагментов), с учетом концентрации ионов K + и DMSO :

где L - количество нуклеотидов в праймере, K + - молярная концентрация ионов калия, G+C - сумма всех гуанинов и цитозинов .

В случае неверного выбора длины и нуклеотидного состава праймера или температуры отжига возможно образование частично комплементарных комплексов с другими участками матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.

При выборе праймеров желательно придерживаться следующих критериев:

Амплификатор

Рис. 1 : Амплификатор для проведения ПЦР

ПЦР проводят в амплификаторе - приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Ход реакции

Фотография геля, содержащего маркерную ДНК (первый и последний слоты) и продукты ПЦР

Обычно при проведении ПЦР выполняется 20-35 циклов, каждый из которых состоит из трёх стадий (рис. 2).

Денатурация

Двухцепочечную ДНК-матрицу нагревают до 94-96 °C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5-2 мин, чтобы цепи ДНК разошлись. Эта стадия называется денатурацией , так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2-3 мин для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

Отжиг

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом . Температура отжига зависит от состава праймеров и обычно выбирается равной температуре плавления праймеров. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре). Время стадии отжига - 30 cек, одновременно, за это время полимераза уже успевает синтезировать несколько сотен нуклеотидов. Поэтому рекомендуется подбирать праймеры с температурой плавления выше 60 °C и проводить отжиг и элонгацию одновременно, при 60-72 °C.

Элонгация

ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки. Это - стадия элонгации . Полимераза начинает синтез второй цепи от 3"-конца праймера, который связался с матрицей, и движется вдоль матрицы, синтезируя новую цепь в направлении от 5" к 3" концу. Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72 °C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации , чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7-10 мин.

Рис. 2 : Схематическое изображение первого цикла ПЦР. (1) Денатурация при 94-96 °C. (2) Отжиг при 68 °C (например). (3) Элонгация при 72 °C (P=полимераза). (4) Закончен первый цикл. Две получившиеся ДНК-цепи служат матрицей для следующего цикла, поэтому количество матричной ДНК в ходе каждого цикла удваивается

Количество специфического продукта реакции (ограниченного праймерами) теоретически возрастает пропорционально 2 n - 2n, где n - число циклов реакции . На самом деле эффективность каждого цикла может быть меньше 100 %, поэтому в действительности P ~ (1+E) n , где P - количество продукта, Е - средняя эффективность цикла.

Число «длинных» копий ДНК тоже растет, но линейно, поэтому в продуктах реакции доминирует специфический фрагмент.

Рост требуемого продукта в геометрической прогрессии ограничен количеством реагентов, присутствием ингибиторов , образованием побочных продуктов. На последних циклах реакции рост замедляется, это называют «эффектом плато».

Разновидности ПЦР

  • Вложенная ПЦР (Nested PCR (англ.) ) - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
  • Инвертированная ПЦР (Inverse PCR (англ.) ) - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов (лигирование). В результате известные фрагменты оказываются на обоих концах неизвестного участка, после чего можно проводить ПЦР как обычно.
  • ПЦР с обратной транскрипцией (Reverse Transcription PCR, RT-PCR (англ.) ) - используется для амплификации, выделения или идентификации известной последовательности из библиотеки РНК. Перед обычной ПЦР проводят на матрице мРНК синтез одноцепочечной молекулы ДНК с помощью ревертазы и получают одноцепочечную кДНК , которая используется в качестве матрицы для ПЦР. Этим методом часто определяют, где и когда экспрессируются данные гены.
  • Асимметричная ПЦР (англ. Asymmetric PCR ) - проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке. Модификаций этого метода является англ. Linear- After- The- Exponential-PCR (LATE-PCR), в котором используются праймеры с разной концентрацией, и праймер с низкой концентрацией подбирается с высокой (температурой плавления), чем праймер с высокой концентрацией. ПЦР проводят при высокой температуре отжига, тем самым удаётся поддержать эффективности реакции на протяжении всех циклов .
  • Количественная ПЦР (Quantitative PCR, Q-PCR (англ.) ) или ПЦР в реальном времени - используется для непосредственного наблюдения за измерением количества конкретного ПЦР продукта в каждом цикле реакции. В этом методе используют флуоресцентно-меченые праймеры или ДНК-зонды для точного измерения количества продукта реакции по мере его накопления; или используется флуоресцентный интеркалирующий краситель Sybr Green I , который связывается с двухцепочечной ДНК. Sybr Green I обеспечивает простой и экономичный вариант для детекции и количественного определения ПЦР-продуктов в ходе ПЦР в режиме реального времени без необходимости использования специфичных флуоресцентных зондов или праймеров. В ходе амплификации краситель SYBR Green I встраивается в малую бороздку ДНК ПЦР продуктов и испускает более сильный по сравнению с несвязанным красителем флуоресцентный сигнал при облучении синим лазером. SYBR Green I совместим со всеми известными на сегодняшний день приборами для проведения ПЦР в режиме реального времени. Максимум поглощения для SYBR Green I находится при длине волны 494 нм. Кроме главного, в спектре красителя имеются два небольших дополнительных максимума поглощения - при 290 нм и 380 нм. Максимум испускания для SYBR Green I находится при длине волны 521 нм (зелёный) .
  • Ступенчатая ПЦР (Touchdown PCR (англ.) ) - с помощью этого подхода уменьшают влияние неспецифического связывания праймеров. Первые циклы проводят при температуре выше оптимальной температуры отжига, затем каждые несколько циклов температуру отжига постепенно снижают до оптимальной. Это делается для того, чтобы праймер гибридизовался с комплементарной цепью всей своей длиной; тогда как при оптимальной температуре отжига, праймер частично гибридизуется с комплементарной цепью. Частичная гибридизация праймера на геномной ДНК приводит к неспецифической амплификации, если участков связывания для праймера достаточно много. В большинстве случаев, первые десять ПЦР циклов, можно проводить при температуре отжига в 72-75°С, а затем сразу снизить до оптимальной, например до 60-65°С.
  • Метод молекулярных колоний (ПЦР в геле, англ. Colony - PCR Colony ) - акриламидный гель полимеризуют со всеми компонентами ПЦР на поверхности и проводят ПЦР. В точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
  • ПЦР с быстрой амплификацией концов кДНК (англ. Rapid amplification of cDNA ends, RACE-PCR ).
  • ПЦР длинных фрагментов (англ. Long-range PCR ) - модификация ПЦР для амплификации протяженных участков ДНК (10 тысяч и более оснований). Используют смесь двух полимераз, одна из которых - Taq-полимераза с высокой процессивностью (то есть, способная за один проход синтезировать длинную цепь ДНК), а вторая - ДНК полимераза с 3"-5" экзонуклеазной активностью, обычно это Pfu полимераза. Вторая полимераза необходима для того, чтобы корректировать ошибки, внесённые первой, так как Taq-полимераза останавливает синтез ДНК если был добавлен не комплементарный нуклеотид. Этот не комплементарный нуклеотид удаляет Pfu полимераза. Смесь полимераз берется в отношении 50:1 или даже меньше 100:1, где Taq-полимераза берётся в 25-100 раз больше по отношению к Pfu полимеразе.
  • RAPD (англ. Random Amplification of Polymorphic DNA ), ПЦР со случайной амплификацией полиморфной ДНК - используется тогда, когда нужно различить близкие по генетической последовательности организмы, например, разные сорта культурных растений, породы собак или близкородственные микроорганизмы. В этом методе обычно используют один праймер небольшого размера (около 10 п.н.). Этот праймер будет частично комплементарен случайным участкам ДНК исследуемых организмов. Подбирая условия (длину праймера, его состав, температуру и пр.), удаётся добиться удовлетворительного отличия картины ПЦР для двух организмов.
  • Групп-специфическая ПЦР (англ. group-specific PCR ) - ПЦР для родственных последовательностях внутри одного или между разными видами , используя консервативные праймеры к этим последовательностям. Например, подбор универсальных праймеров к рибосомальным 18S и 26S генам для амплификации видоспецифического межгенного спейсера: последовательность генов 18S и 26S консервативна между видами, поэтому ПЦР между этими генами будет проходить для всех исследуемых видов. Противоположный этому методу является - уникальная ПЦР (англ. unique PCR ), в котором задача состоит в подборе праймеров для амплификации только конкретной последовательности среди родственных последовательностей.
  • ПЦР с использованием горячего старта (англ. Hot-start PCR ) - модификация ПЦР с использованием ДНК-полимеразы, в которой полимеразная активность блокируется при комнатной температуре антителами или имитирующие антитела небольшими молекулами типа Affibody , то есть в момент постановки реакции до первой денатурации в ПЦР. Обычно первая денатурация проводится при 95 °C в течение 10 минут.
  • Виртуальная ПЦР (англ. in silico PCR , цифровая ПЦР, электронная ПЦР, е-ПЦР) - математический метод компьютерного анализа теоретической полимеразной цепной реакции c использованием списка последовательностей праймеров (или ДНК-зондов) для предсказания потенциальной амплификации ДНК исследуемого генома , хромосомы , кольцевой ДНК или любого другого участка ДНК.

Если нуклеотидная последовательность матрицы известна частично или неизвестна вовсе, можно использовать вырожденные праймеры , последовательность которых содержит вырожденные позиции, в которых могут располагаться любые основания. Например, последовательность праймера может быть такой: …ATH… , где Н - А, Т или С.

Применение ПЦР

ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью электрофореза ДНК. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев (англ. genetic fingerprint ).

Установление отцовства

Рис. 3 : Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. (1) Отец. (2) Ребёнок. (3) Мать. Ребёнок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций . Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Иногда лекарства оказываются токсичными или аллергенными для некоторых пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием (англ. prospective genotyping ).

Клонирование генов

Клонирование генов (не путать с клонированием организмов) - это процесс выделения генов и, в результате генноинженерных манипуляций , получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Рис. 4 : Клонирование гена с использованием плазмиды.
(1) Хромосомная ДНК организма A. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В.

Секвенирование ДНК

В методе секвенирования с использованием меченных флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченные флуоресцентной или радиоактивной меткой. Присоединение дидезоксинуклеотида к синтезируемой цепи приводит к обрыву синтеза, позволяя определить положение специфических нуклеотидов после разделения в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза (внесения изменений в нуклеотидную последовательность ДНК). Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.