Почему большой глаз насекомого имеет сферическую форму. Как выглядит мир глазами обыкновенной мухи? Мухи — зрение мухи и почему ее трудно убить

Показать все


Разновидности строения органов зрения

У насекомых глаза могут быть представлены в трех разновидностях:

  • (фасеточные);
  • (дорсальные, оцелли);
  • личиночные (латеральные, личиночные). (фото)

Они имеют различное строение и неодинаковую способность видеть.

Сложные глазавстречаются у большинства насекомых, причем, чем более высокоразвитыми являются последние, тем лучше у них обычно развиты органы зрения. еще называют фасеточными, потому что их наружная поверхность представлена совокупностью расположенных рядом друг с другом линз - фасеток.

Омматидий

Омматидий

А(слева) - аппозиционный омматидий,

B (справа) - суперпозиционный омматидий

1 - аксоны зрительных клеток, 2 - ретинулярные клетки,

3 - роговица, 4 - кристаллический конус,

5 - пигментные клетки, 6 - световод, 7 - рабдом

Сложный глаз состоит из различного, как правило, большого количества отдельных структурных единиц - омматидиев. включают в себя ряд структур, обеспечивающих проведение, преломление света (фасетка, корнеагенные клетки, хрустальный конус) и восприятие зрительных сигналов (ретинальные клетки, рабдом, нервные клетки). Кроме того, у каждого имеется аппарат пигментной изоляции, благодаря чему, он оказывается полностью или частично защищен от попадания боковых лучей.

Схема строения простого глазка

Из всех разновидностей глаз насекомых обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные .

Особенности зрения насекомых

Изучению зрения насекомых посвящено огромное количество научных трудов. Ввиду такого интереса со стороны специалистов, многие особенности работы глаз у Insectaна сегодняшний день достоверно выяснены. Тем не менее, строение органов зрения у этих организмов отличается настолько большим разнообразием, что качество видения, восприятие цвета и объема, различение движущихся и неподвижных предметов, распознавание знакомых визуальных образов и другие свойства зрения колоссальным образом различаются у разных групп насекомых. На это способны повлиять следующие факторы: в сложном глазу - структура омматидиев и их количество, выпуклость, расположение и форма глаз; в простых глазках и - их число и тонкие черты строения, которые могут быть представлены значительным многообразием вариантов. Лучше всего на сегодня изучено зрение пчел.

Определенную роль в восприятии формы играет движение объекта. Насекомые охотнее садятся на цветы, которые колышутся на ветру, чем на неподвижные. стрекоз бросаются за движущейся добычей, а самцы бабочек реагируют на летящих самок и плохо видят сидящих. Вероятно, дело в определенной частоте раздражения омматидиев глаз при движении, мелькании и мерцании.

Узнавание знакомых объектов

Насекомые узнают знакомые объекты не только по цвету и форме, но и по расположению предметов, находящихся вокруг них, так что представление об исключительной примитивности их зрения нельзя назвать верным. Например, Песчаная оса находит вход в норку, ориентируясь по тем предметам, что располагаются вокруг нее (трава, камни). Если же их убрать или изменить их расположение, это может сбить насекомое с толку.

Восприятие расстояния

Эта особенность лучше всего исследована на примере стрекоз, жужелиц и других хищных насекомых.

Возможность определять расстояние обусловлена наличием у высших насекомых бинокулярного зрения, то есть, двух глаз, поля зрения которых частично пересекаются. Особенности строения глаз определяют, насколько велико расстояние, доступное обзору того или иного насекомого. Например, жуки-скакуны реагируют на добычу и набрасываются на нее, когда находятся от объекта на расстоянии 15 см.

Светокомпасное движение

Многие насекомые двигаются так, что у них постоянно сохраняется один и тот же угол падения света на сетчатку. Таким образом, солнечные лучи являются своеобразным компасом, по которому ориентируется насекомое. По тому же принципу ночные бабочки перемещаются в направлении искусственных источников света.

Ещё в далёком детстве многие из нас задавались столь пустяковыми, казалось бы, вопросам о насекомых, вроде таких, как: сколько глаз у обыкновенной мухи, почему паук плетёт паутину, а оса может укусить.

Наука энтомология имеет ответы практически на любые из них, но сегодня мы призовём знания исследователей природы и поведения для того, чтобы разобраться с вопросом, что собой являет зрительная система этого вида.

Мы проанализируем в этой статье, как видит муха и почему это назойливое насекомое так трудно прихлопнуть мухобойкой или поймать ладошкой на стене.

Комнатная жительница

Комнатная или домашняя муха относится к семейству настоящих мух. И пусть тема нашего обзора касается всех видов без исключения, мы позволим себе для удобства рассматривать всё семейство на примере именно этого столь хорошо всем знакомого вида домашних нахлебников.

Обыкновенная домашняя муха является весьма непримечательным внешне насекомым. Она имеет серо-чёрную окраску туловища, с некоторыми намёками на желтизну в нижней части брюшка. Длина взрослой особи редко превышает 1 см. Насекомое имеет две пары крыльев и фасеточные глаза.

Фасеточные глаза — в чём суть?

Зрительная система мухи включает в себя два больших глаза, расположенных по краям головы. Каждый из них имеет сложную структуру и состоит из множества мелких шестигранных фасеток, отсюда и название такого типа зрения, как фасеточное.


Всего мушиный глаз имеет в своей структуре более 3,5 тысячи таких микроскопических составляющих. И каждая из них способна улавливать лишь мизерную часть общего изображения, передавая информацию о полученной мини-картинке в мозг, который собирает все пазлы этой картины воедино.

Если сравнивать фасеточное зрение и бинокулярное, которым располагает человек, например, можно быстро убедиться в том, что предназначение и свойства каждого диаметрально противоположны.

Более развитым животным свойственно концентрировать зрение на определённой узкой области или на конкретном объекте. Насекомым же важно не столько видеть конкретный предмет, сколько быстро ориентироваться в пространстве и замечать приближение опасности.

Почему её так сложно поймать?

Этого вредителя действительно очень непросто застать врасплох. Причина не только в повышенной реакции насекомого в сравнении с медлительным человеком и способности срываться с места практически мгновенно. Главным образом, столь высокий уровень реакции обусловлен своевременным восприятием мозга этого насекомого изменений и движений в радиусе обзора его глаз.

Зрение мухи позволяет ей видеть практически на 360 градусов. Такой тип зрения называется ещё панорамным. То есть каждый глаз даёт обзор на 180 градусов. Этого вредителя практически нельзя застать врасплох, даже если подходить к ней сзади. Глаза этого насекомого позволяют контролировать всё пространство вокруг неё, тем самым обеспечивая стопроцентную круговую зрительную оборону.

Есть ещё интересная особенность зрительного восприятия мухой палитры цветов. Ведь почти все виды иначе воспринимают те или иные цвета, привычные нашему глазу. Некоторые из них насекомые не различают вообще, другие выглядят для них иначе, в других тонах.

Кстати, помимо двух фасеточный глаз, у мухи имеются ещё три простых глаза. Они расположены в промежутке между фасеточными, на лобной чисти головы. В отличие от сложных глаз, эти три используются насекомым для распознавания того или иного объекта в непосредственной близости.

Таким образом, на вопрос, сколько все-таки глаз у обыкновенной мухи, можем теперь смело ответить – 5. Два сложных фасеточных, разделённых на тысячи омматидиев (фасеток) и предназначенных для максимально обширного контроля за изменениями окружающей среды вокруг неё, и три простых глаза, позволяющих, что называется, наводить резкость.

Взгляд на мир

Мы уже говорили, что мухи дальтоники, и различают либо не все цвета, либо видят привычные нам предметы в других цветовых тонах. Также этот вид способен различать ультрафиолет.

Следует ещё сказать, что при всей уникальности своего зрения эти вредители практически не видят в темноте. Ночью муха спит, поскольку её глаза не позволяют этому насекомому промышлять в тёмное время суток.

А ещё эти вредители имеют свойство хорошо воспринимать только более мелкие и находящиеся в движении объекты. Насекомое не различает такие большие предметы, как человек, например. Для мухи это не более чем ещё одна часть интерьера окружающей среды.

А вот приближение руки к насекомому его глаза прекрасно улавливают и своевременно дают нужный сигнал мозгу. Так же, как и увидеть любую другую стремительно надвигающуюся опасность не составит труда этим пронырам, благодаря сложной и надёжной системе слежения, которой снабдила их природа.

Заключение

Вот мы и проанализировали, как выглядит мир глазами мухи. Теперь мы знаем, что эти вездесущие вредители обладают, как и все насекомые, удивительным зрительным аппаратом, позволяющим им не терять бдительности, и в светлое время суток держать круговую наблюдательную оборону на все сто.

Зрение обыкновенной мухи напоминает сложную систему слежения, включающую в себя тысячи мини-камер наблюдения, каждая из которых предоставляет насекомому своевременную информацию о том, что происходит в ближайшем диапазоне.

И у мух, и у пчел по пять глаз. Три простых глаза расположены в верхней части головы (можно сказать, на темени), а два сложных, или фасеточных - по бокам головы. Сложные глаза мух, пчел (а также бабочек, стрекоз и некоторых других насекомых) - предмет восторженного изучения ученых. Дело в том, что эти органы зрения устроены очень интересно. Они состоят из тысяч отдельных шестиугольников, или, говоря научным языком, фасеток. Каждая из фасеток — это миниатюрный глазок, который дает изображение отдельной части предмета. В сложных глазах комнатной мухи примерно 4000 фасеток, у рабочей пчелы - 5000, у трутня - 8000, у бабочки - до 17 000, у стрекозы - до 30 000. Получается, что глаза насекомых посылают в их мозг несколько тысяч изображений отдельных частей предмета, которые хотя и сливаются в изображение предмета в целом, но все же этот предмет выглядит как бы сложенным из мозаики.

Зачем нужны фасеточные глаза? Считается, что с их помощью насекомые ориентируются в полете. В то время как простые глаза предназначены для рассматривания предметов, находящихся вблизи. Так, если пчеле удалить или заклеить сложные глаза, то она ведет себя как слепая. Если же заклеиваются простые глаза, то кажется, что у насекомого замедленная реакция.

1,2 - Фасеточные (сложные) глаза пчелы или мухи
3
- три простых глаза пчелы или мухи

Пять глаз позволяют насекомым охватывать 360 градусов , то есть видеть все, что происходит спереди, с обоих боков и сзади. Может быть, поэтому к мухе так сложно подобраться незамеченным. А если учесть, что сложные глаза гораздо лучше видят движущийся предмет, чем неподвижный, то остается только удивляться, как у человека иногда все же получается прихлопнуть муху газетой!

Особенность насекомых с фасеточными глазами улавливать даже малейшее движение отображена в следующем примере: если пчелы и мухи усядутся вместе с людьми смотреть кинофильм, то им будет казаться, что двуногие зрители подолгу рассматривают один кадр, прежде чем перейти к рассматриванию следующего. Чтобы насекомые могли смотреть кино (а не отдельные кадры, наподобие фото), то пленку проектора нужно крутить в 10 раз быстрее.

Стоит ли завидовать глазам насекомых? Наверное, нет. К примеру, глаза мухи видят многое, но не способны к пристальному разглядыванию. Вот почему они обнаруживают пищу (каплю варенья, например), ползая по столу и буквально на нее натыкаясь. А пчелы из-за особенностей своего зрения не различают красный цвет - для них он черный, серый или синий.


Тремя путями воспринимают свет насекомые: всей поверхностью тела, простыми глазками и сложными, так называемыми фасеточными глазами.

Как показали опыты, всей поверхностью тела чувствуют свет гусеницы, личинки водяных жуков, тли, жуки (даже слепые пещерные), мучные черви, тараканы и, конечно, многие другие насекомые. Свет через кутикулу проникает к голове и вызывает соответствующие реакции в воспринимающих его клетках мозга.

Наиболее примитивные простые глазки, пожалуй, у личинок некоторых комаров. Это пигментные пятна с небольшим числом светочувствительных клеток (их нередко всего две или три). У личинок пилильщиков (отряд перепончатокрылых) и жуков глазки более сложные: пятьдесят и больше светочувствительных клеток, прикрытых сверху прозрачной линзой - утолщением кутикулы.

Красные глаза гусеницы. Фото: Jes

С каждой стороны головы личинки жука-скакуна шесть глазков, два из которых много больше других (в них 6 тысяч зрительных клеток). Хорошо ли они видят? Едва ли они способны передать в мозг впечатление о форме предмета. Однако приблизительные размеры увиденного два больших глазка засекают неплохо.

Личинка сидит в вертикальной норке, вырытой в песке. С расстояния в 3-6 сантиметров она замечает жертву или врага. Если проползающее близко насекомое не больше 3-4 миллиметров, личинка хватает его челюстями. Когда больше, прячется в норку.
Пять-шестъ простых глазков на каждой стороне головы гусениц содержат каждый всего по одной «ритинальной палочке» - зрительному элементу - и прикрыты сверху линзой, способной концентрировать свет.

Каждый глаз в отдельности не дает представления о форме наблюдаемого предмета. Однако в опытах гусеница проявляла поразительные способности. Вертикальные предметы она видит лучше, чем горизонтальные. Из двух столбов или деревьев выбирает более высокое и ползет к нему, даже если заклеить черной краской все ее простейшие глазки, оставив лишь один. В каждый данный момент он видит лишь точку света, но гусеница вертит головой, рассматривая единственным своим глазом поочередно разные пункты предмета, и этого достаточно, чтобы в ее мозгу сложилась приблизительная картина увиденного. Конечно, неясная, нечеткая, но все-таки показанный ей объект гусеница замечает.

Простые глазки типичны для личинок насекомых, есть они, впрочем, и у многих взрослых. У последних главное - так называемые сложные, или фасеточные, глаза: по бокам головы. Сложены они из множества удлиненных простых глазков - омматидиев. В каждом омматидии - соединенная нервом с мозгом воспринимающая свет клетка. Поверх нее - удлиненный хрусталик. Оба, светочувствительная клетка и хрусталик, окружены непроницаемым для света чехлом из пигментных клеток. Лишь сверху оставлено отверстие, но там хрусталик прикрыт прозрачной кутикулярной роговицей. Она общая для всех омматидиев, плотно прилегающих друг к другу и соединенных в один фасеточный глаз. В нем может быть всего 300 омматидиев (самка светлячка), 4000 (комнатная муха), 9000 (жук-плавунец), 17 000 (бабочки) и 10 000-28 000 у разных стрекоз.


Фасеточные глаза у бабочки Монарх. Фото: Monica R.

Каждый омматидий передает в мозг только одну точку из всей сложной окружающей насекомое картины мира. Из множества отдельных точек, увиденных каждым из омматидиев, складывается в мозгу насекомого мозаичное «панно» предметов ландшафта.
У ночных насекомых (светлячков, других жуков, у мотыльков) эта мозаичная картина оптического видения, так сказать, более смазанная. Ночью пигментные клетки, отделяющие омматидии сложного глаза друг от друга, сокращаясь, стягиваются кверху, к роговице. Лучи света, попадающие в каждую фасетку, воспринимаются не только ее светочувствительной клеткой, но и клетками, расположенными в соседних омматидиях. Ведь теперь они не закрыты темными пигментными «шторками». Этим достигается более полное улавливание света, которого не так уж много в ночном мраке.

Днем же пигментные клетки заполняют все промежутки между омматидиями, и каждый из них воспринимает только те лучи, которые концентрирует его собственный хрусталик. Иными словами, «суперпозиционный», так его называют, глаз ночных насекомых, днем функционирует как «аппозиционный» глаз насекомых дневных.

Не менее важна, чем число фасеток, другая их особенность - угол зрения каждого омматидия. Чем он меньше, тем выше разрешающая способность глаза и тем более мелкие детали наблюдаемого объекта он может увидеть. У омматидия уховертки угол зрения - 8 градусов, у пчелы - 1 градус. Подсчитано, что на каждую точку в мозаичной картине увиденного уховерткой у пчелы приходится 64 точки. Следовательно, мелкие детали наблюдаемого предмета глаз пчелы улавливает в десятки раз лучше.
Но в глаз с меньшим углом зрения проникает и меньше света. Поэтому величина фасеток в сложных глазах насекомых неодинакова. В тех направлениях, где нужна более яркая видимость и не так уж необходимо точное рассматривание деталей, располагаются более крупные фасетки. У слепня, например, в верхней половине глаза фасетки заметно крупнее, чем в нижней.
Подобные же четко разделенные арены с разновеликими омматидиями есть и у некоторых мух. У пчелы иное устройство фасеток: их угол зрения в направлении горизонтальной оси тела в два-три раза больше, чем по вертикали.

У жуков-вертячек и самцов-поденок по существу два глаза с каждой стороны: один с крупными, другой с мелкими фасетками.
Помните, как гусеница, рассматривая предмет всего одним глазом (другие были замазаны краской), могла, однако, составить известное, правда очень грубое, представление о его форме. Она, вертя головой, весь объект разглядывала по частям, а запоминающий аппарат мозга складывал в единое впечатление все увиденные в каждый данный момент точки. Так же поступают и насекомые с фасеточными глазами: рассматривая что-либо, вертят головой. Сходный эффект достигается и без поворота головы, когда наблюдаемый объект движется или когда летит само насекомое. На лету фасеточные глаза видят лучше, чем в покое.
Пчела, например, способна постоянно держать в поле зрения предмет, который мелькает 300 раз в секунду. А наш глаз даже и вшестеро более медленного мелькания не заметит.

Близкие предметы насекомые видят лучше, чем дальние. Они очень близоруки. Четкость увиденного у них намного хуже, чем у нас.
Интересный вопрос: какие цвета различают насекомые? Опыты показали, что пчелы и падальные мухи видят самые коротковолновые лучи спектра (297 миллимикрон), которые только есть в солнечном свете. Ультрафиолет - к нему наш глаз совершенно слеп - различают также муравьи, ночные бабочки и, очевидно, многие другие насекомые.


Глаза насекомого. Фото: USGS Bee Inventory and Monitoring Laboratory

Чувствительность к противоположному концу спектра у насекомых разная. Пчела слепа к красному свету: он для нее все равно, что черный. Самые длинные волны, которые она еще воспринимает, - 650 миллимикрон (где-то на границе между красным и оранжевым). Осы, натренированные прилетать за кормом на черные столики, путают их с красными. Красное не видят и некоторые бабочки, сатиры например. Но другие (крапивница, капустница) красный цвет различают. Рекорд, однако, принадлежит светлячку: он видит темно-красный цвет с длиной волны в 690 миллимикрон. Ни одно из исследованных насекомых на такое не было способно.
Для человеческого глаза самая яркая часть спектра - желтая. Опыты с насекомыми показали, что у одних зеленая часть спектра воспринимается глазом как самая яркая, у пчелы - ультрафиолетовая, у падальной мухи наибольшая яркость отмечалась в красной, сине-зеленой и ультрафиолетовой полосах спектра.

Несомненно, бабочки, шмели, некоторые мухи, пчелы и другие насекомые, посещающие цветы, различают цвета. Но в какой мере и какие именно, мы еще мало знаем. Необходимы дополнительные исследования.
С пчелами в этом отношении были проведены наиболее многочисленные опыты. Пчела видит окружающий мир, окрашенный в четыре основных цвета: красно-желто-зеленый (не каждый из названных в отдельности, а вместе, слитно, как единый неведомый нам цвет), затем - сине-зеленый, сине- фиолетовый и ультрафиолетовый. Тогда как объяснить, что пчелы прилетают и на красные цветы, на маки, например? Они, а также многие белые и желтые цветы отражают много ультрафиолетовых лучей, поэтому пчела их видит. В какой цвет окрашены они для ее глаз, нам неизвестно.

У бабочек, очевидно, цветовое зрение более близкое к нашему, чем у пчелы. Мы уже знаем, что некоторые бабочки (крапивница и капустница) различают красный цвет. Ультрафиолет они видят, но он не играет для них такой большой роли, как в зрительных восприятиях пчелы. Наиболее привлекают этих бабочек два цвета - сине-фиолетовый и желто-красный.
Разными методами было доказано, что и многие другие насекомые различают цвета, и лучшим образом цвета растений, на которых кормятся либо размножаются. Некоторые бражники, жуки- листоеды, тли, шведские мушки, клопы сухопутные и водяной клоп гладыш - вот далеко не полный перечень таких насекомых. Интересно, что у гладыша только верхняя и задняя часть глаза обладает цветовым зрением, нижняя и передняя - нет. Почему так, непонятно.

Помимо восприятия ультрафиолетовых лучей другое свойство глаза насекомых, которого лишены наши глаза, - это чувствительность к поляризованному свету и способность ориентироваться по нему. Не только фасеточные глаза, но и простые глазки, как показали опыты с гусеницами и личинками перепончатокрылых, способны воспринимать поляризованный свет. Рассмотрели под электронным микроскопом глаз некоторых, и нашли в ретинальной светочувствительной палочке молекулярные структуры, действующие, очевидно, как поляроид.

Некоторые наблюдения последних лет убеждают: ночные насекомые обладают органами, улавливающими инфракрасные лучи.



Органы зрения развиты у большинства насекомых. Наибольшего развития достигают сложные, или фасеточные, глаза . Число зрительных элементов - омматидиев, или фасеток, в глазу комнатной мухи достигает 4 тыс., а у стрекоз даже 28 тыс. Омматидий состоит из прозрачного хрусталика, или роговицы, в виде двояковыпуклой линзы и лежащего под ней прозрачного хрустального конуса. Вместе они составляют оптическую систему. Под конусом расположена сетчатка, воспринимающая световые лучи. Клетки сетчатки соединены нервными волокнами с зрительными долями мозга. Каждый омматидий окружают пигментные клетки.

В зависимости от восприятия света различной интенсивности различают аппозиционный и суперпозиционный типы глаз. Первая разновидность строения глаз характерна дневным насекомым, вторая – ночным.

В аппозиционном глазе каждый омматидий изолирован в своей верхней части при помощи пигмента от соседних омматидиев. Таким образом, каждая структурная единица глаза работает отдельно от всех остальных, воспринимая только «свою» часть внешнего пространства. Общая картинка складывается в мозге насекомого как бы из множества кусочков мозаики.

В суперпозиционном глазе омматидии лишь частично, хоть и по всей длине, защищены от боковых лучей: они полупроницаемы. С одной стороны, это мешает насекомым при интенсивном освещении, с другой – помогает им лучше видеть в сумерках.

Глазки́ (дорсальные простые глаза) – это мелкие органы зрения, которые имеются у некоторых имаго и располагаются обычно на верхней части головы. Обычно представлены в количестве трех, при этом, один лежит чуть впереди, а еще два – сзади и сбоку от переднего. В их составе нет омматидия, строение простых глазков значительно упрощено. Снаружи располагается роговица, состоящая из корнеагенных клеток, глубже находится световоспринимающий аппарат из ретинальных (чувствительных) клеток, еще ниже лежат пигментные клетки, которые переходят в волокна зрительного нерва.

Из всех разновидностей глаз насекомых простые глазки обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых глазков в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные простые глазки.

Стеммы, или латеральные простые глаза – имеются у личинок насекомых с полным превращением. Во время стадии куколки они «превращаются» в сложные глаза. Выполняют зрительную функцию, но, в связи с упрощенной структурой, видят относительно слабо. Для улучшения зрения личиночные глазки нередко представлены у личинок в количестве нескольких штук. У личинок пилильщиков они сходны с дорсальными, а у гусениц бабочек напоминают омматидий сложного глаза. Гусеницы воспринимают форму предметов, различают мелкие детали на их поверхности.