Описание шума природы из разных книг. Шум вокруг нас Как распространяется инфразвук

3.3. Бытовые шумы и вибрация

Шум – это сочетание звуков различной интенсивности и частоты, возникающих при механических колебаниях.

В настоящее время научный прогресс привел к тому, что шум достиг настолько высоких уровней, которые являются уже не просто неприятными для слуха, но и опасными для здоровья человека.

Различают два вида шума: воздушный (от источника до места восприятия) и структурный (шум от поверхности колеблющихся конструкций). Шум в воздухе распространяется со скоростью 344 м/с, в воде – 1500, в металле – 7000 м/с. Помимо скорости распространения, шум характеризуется давлением, интенсивностью и частотой звуковых колебаний. Давление звука – это разность между мгновенным давлением в среде при наличии звука и среднем давлением при его отсутствии. Интенсивностью называют поток энергии в единицу времени на единицу площади. Частота звуковых колебаний находится в широком диапазоне от 16 до 20000 герц. Однако, основной единицей оценки звука является уровень звукового давления, измеряемый в децибелах (дБ).

За последнее время средний уровень шума в крупных городах увеличился на 10–12 децибел. Причина возникновения проблемы шума в городах состоит в противоречии между развитием транспорта и планировкой городов. Высокие уровни шума наблюдаются в жилых домах, школах, больницах, местах отдыха и т. д.; следствием этого являются повышение нервного напряжения населения, снижение работоспособности, увеличение количества заболеваний. Даже ночью в квартире тихого города уровень шума достигает 30–32 дБ.

В настоящее время считается, что для сна и отдыха допустим шум до 30–35 дБ. При работе на предприятии допускается интенсивность шума в пределах 40–70 дБ. Кратковременно шум может повышаться до 80–90 дБ. При интенсивности более 90 дБ шум вреден для здоровья и тем вреднее, чем продолжительнее его воздействие. Шум 120–130 дБ вызывает боль в ушах. При 180 дБ может быть летальный исход.

Как фактор экологического воздействия в доме источники шума можно разделить на внешние и внутренние.

Внешние – это в первую очередь шум городского транспорта, а также производственный шум от предприятий, расположенных вблизи дома. Кроме того, это могут быть звуки магнитофонов, которые на всю громкость включают соседи, нарушающие «акустическую культуру». Внешним источником шума являются также звуки, например, расположенного внизу магазина или почтового отделения, звуки взлетающих или идущих на посадку самолетов, а также электропоездов.

К внешним шумам, пожалуй, надо отнести и шум лифта и постоянно хлопающей входной двери, а также плач соседского ребенка. К сожалению, стены жилых зданий, как правило, плохо звукоизолированы. Внутренние шумы обычно непостоянны (кроме звуков, которые издает телевизор или игра на музыкальных инструментах). Из этих переменных шумов больше всего неприятен шум неправильно установленной или устаревшей сантехники и шум работающего холодильника, который с помощью автоматики включается время от времени. Если под холодильником нет звукоизолирующего коврика или внутри не закреплены полки, то этот шум может быть довольно значительным – кратковременным, но достаточно сильным для того, чтобы испортить настроение человеку. Человеку мешает шум от работающего пылесоса или стиральной машины, если конструкция этих приборов устарела и не соответствует принятым требованиям, в том числе к допустимому уровню шума.

Ремонт в вашей или в соседской квартире – это какофония звуков. Особенно неприятны звуки электродрели (современные бетонные стены очень труднопробиваемы) и резкие звуки от удара молотка. Среди внутренних шумов особенное место занимают звуки радиоприборов. Для того чтобы музыка доставляла удовольствие (какая музыка – это другой разговор), ее уровень не должен быть выше 80 дБ, а длительность – относительно кратковременной. С точки зрения экологии недопустимо, если телевизор или радио включены на большую громкость и работают долго. Знакомый автора сказал соседу, который беспрерывно о чем-то говорил, что он любит радио за то, что его всегда можно выключить. Опасным является постоянное применение плеера. Мало того, что звуки плеера нарушают работу барабанных перепонок, так они еще создают круговые магнитные поля вокруг головы, нарушая работу мозга.

Каждый человек воспринимает шум индивидуально; это зависит от возраста человека, состояния его здоровья и окружающих условий. Органы слуха могут приспосабливаться к постоянным или повторяющимся шумам, но эта приспособляемость не может защитить его от патологических изменений слуха, а лишь временно отодвигает сроки этих изменений.

Ущерб, который причиняет слуху сильный шум, зависит от высоты и частоты звуковых колебаний и характера их изменения. При ухудшении слуха человек начинает в первую очередь хуже слышать высокие звуки, а затем низкие. Воздействие шума в течение длительного времени может повлиять отрицательно не только на слух, но и вызвать другие заболевания в организме человека. Чрезмерный шум может явиться причиной нервного истощения, психической угнетенности, язвенной болезни, расстройства сердечно-сосудистой системы. Особенно сильное влияние шума ощущают люди пожилого возраста. Большее воздействие шума ощущают люди умственного труда, чем физического, что связано с большим утомлением нервной системы при умственном труде.

Бытовой шум значительно ухудшает сон. Особенно неблагоприятны прерывистые, внезапные шумы. Шум уменьшает продолжительность и глубину сна. Шум в 50 дБ увеличивает срок засыпания на час, сон становится более поверхностным, после пробуждения чувствуется усталость, головная боль и сердцебиение.

Звуковые волны, имеющие частоту ниже 16 герц, называются инфразвуком, а выше 20000 Гц – ультразвуком; их не слышно, но они также воздействуют на организм человека; например, бытовой вентилятор может быть источником инфразвука, а писк комаров – ультразвука. Звук снижает не только остроту слуха (как принято думать), но и остроту зрения, поэтому, водителем транспорта не стоит постоянно слушать музыку за рулем. Интенсивный звук повышает кровяное давление; правильно делают люди, изолирующие больных в доме от шумов. Кроме того, шум просто вызывает обычную усталость. Работа, выполняемая в условиях звукового засорения окружающей среды, требует больше энергозатрат, чем работа в тишине, т. е. становится более тяжелой. Если шум постоянен по времени и частоте, он может вызвать неврит, при этом в начале снимается чувствительность к звукам определенной частоты: при 130 дБ возникает боль в ушах, при 150 дБ – поражение слуха при любой частоте. Соседка автора практически полностью потеряла слух, проработав 25 лет на ткацкой фабрике.

Для защиты людей от вредного влияния шума необходимо нормировать его интенсивность, спектральный состав, время действия и другие шумовые характеристики.

При гигиеническом нормировании в качестве допустимого устанавливается такой уровень шума, при котором в течение длительного времени не обнаруживаются изменения в физиологических показателях организма человека.

Для людей творческих профессий рекомендуется уровень шума не более 50 дБА (дБА – это эквивалентная величина уровня звука с учетом ее частоты); для проведения высококвалифицированной работы, связанной с измерениями, – 60 дБА; для работы, требующей сосредоточенности, – 75 дБА; другие виды работ – 80 дБА.

Эти уровни определены для производства, но их не рекомендуется превышать и в домашних условиях.

Санитарные нормы допустимого шума в помещениях жилых и общественных зданий и на территории жилой застройки устанавливают нормативные уровни звукового давления и уровня звука для помещений жилых и общественных зданий, для территорий микрорайонов, больниц, санаториев, мест отдыха.

Важная роль в борьбе с шумовым загрязнением принадлежит системе контроля и методам измерения фактического уровня шума. В настоящее время в крупных городах России проводится мониторинг шума в определенных точках города, составляются шумовые карты. В помощь санитарной службе образованы специальные постоянные комиссии по борьбе с городским шумом.

Установление санитарных норм допустимых уровней и характера шума позволяют разработать технические, планировочные и другие градостроительные мероприятия, направленные на создание благоприятного шумового режима.

Наличие нормативов и знание фактического положения в отношении мест возникновения интенсивности и источников шума позволяют планировать мероприятия по борьбе с шумом и предъявлять необходимые требования к предприятиям, стройкам и различным видам транспорта.

Для измерения уровня шума в быту лучше всего рекомендовать шумомер малогабаритный ШМ-1. Этот прибор можно купить в магазине приборов или в экологических фирмах (например, в «Экосервисе»). Порядок работы с приборами приведен в сопроводительной документации.

Существует ряд возможностей для уменьшения уровня шума в городах и населенных пунктах. К общим мерам по борьбе с интенсивным шумом на производстве можно отнести конструирование маломощных машин и применение бесшумных или малошумных технологических процессов; разработку и использование более эффективных изоляционных материалов при строительстве производственных и жилых зданий; устройство шумозащитных экранов различного вида и т. д.

Большие возможности по защите населения от шума несут в себе различные градостроительные мероприятия. К ним относятся: увеличение расстояния между источником и защищаемым объектом; использование специальных шумозащитных полос озеленения; различные приемы планировки, рациональное размещение шумных и защищаемых объектов микрорайонов.

Зеленые полосы насаждений между проезжей частью и жилой застройкой способствуют концентрации уровня шума (и окислов углерода).

Борьба с бытовым шумом может быть успешной только тогда, когда человек будет проявлять максимум «акустической культуры».

Какие же способы борьбы с бытовым шумом можно рекомендовать жителям?

Так же, как и для других видов излучений, методы защиты человека от вредного влияния шума – это защита временем и расстоянием, уменьшением мощности источника звука, изоляцией и экранированием. Но здесь, как ни при каких других воздействиях, играет роль и социальная защита, вернее, соблюдение норм совместного проживания людей.

По важности способа защиты от шума, по-видимому, надо начать с уменьшения его мощности. Внешние шумы, как правило, своими силами снизить нельзя, если разве что не переехать в другой, более тихий район города. Но устраниться от шума транспорта (включая, например, шум самолетов и электричек) могут не все жители города. Легче бороться со звуковыми хулиганами (молодыми любителями громкой музыки, располагающимися обычно на детских площадках) вплоть до обращения в милицию после 11 часов вечера. Исключение – выпускной вечер, когда в конце мая в течение всей ночи по неизвестно кем установленной традиции разносятся звуки современной музыки с громкостью взлетающего лайнера (более 100 дБ). К исключению относятся взрывы петард в праздничные ночи, особенно в Новогоднюю ночь. Но тут уж обычный житель ничего сделать не сможет, как бы он ни устал за день. Единственный выход – выйти на улицу и самому пустить ракету. Шум лифта можно частично снизить, обратившись в ЖЭК с просьбой провести ремонт и профилактику силового оборудования лифта. Если жилье расположено на последнем этаже от шума и вибрации лифта можно защититься только экранированием (звукоизоляцией) стены, примыкающей к лифту. Влияние хлопанья наружной двери можно предотвратить установкой современной малошумной двери или по старинке приклеиванием к ней, например резиновых прокладок. От плача соседского ребенка или от результатов семейных разборок можно защититься тремя способами: повесить ковер на сопредельную стену (хоть это и не модно), перенести спальню в тихую комнату (т. е. создать у себя зону тихого отдыха) или применить индивидуальное средство защиты от шума – бируши (или ватные тампоны в уши). Сейчас можно купить недорогие и очень эффективные зарубежные бируши в магазинах спецодежды.

С внутренними шумами проще: электроприборы должны быть современными (т. е. тихими). Но, к сожалению, они зачастую очень дороги. Холодильник, стиральная машина и пылесос – непременные атрибуты технического прогресса – должны по возможности включаться ненадолго, на минимальную мощность и подальше от больных детей. Это защита временем, расстоянием и снижением мощности источника излучения волн. Холодильник и стиральную машину к тому же целесообразно устанавливать на резиновый коврик, что защитит жителей не только от шума и вибрации, но и будет дополнительной степенью электроизоляции. Серьезной шумовой проблемой в доме являются радиоаппараты (телевизоры, радиомагнитофоны, радио). Но здесь хозяева могут не только ослабить атаку, например, детей на свои барабанные перепонки, но и своевременно и радикально устранить источник шума выключением. Это зависит от «акустической культуры» жителей квартиры.

Некоторые пожилые люди не выносят громких резких звуков. Например, инвалид ВОВ, один из первых применивших «катюши», очень болезненно воспринимает стуки, заявляя, что он в избытке наслушался их при разрывах мин.

Что касается сантехники, то, к сожалению, краны часто текут (что наносит государству еще и экономический урон, так как в России потребление воды в 2–2,5 раза выше, чем за рубежом, и мы еще никак не можем перейти к пользованию счетчиками воды). Очень удобны зарубежные шаровые краны, которые почти не шумят и не протекают. За сантехникой хозяину необходимо тщательно следить и не допускать поломок. Шум воды в сливном бачке удачно снижается установкой резинового шланга на поплавковом регуляторе, но чаще всего его срывает струей воды, и жители, не заглядывая в бачок, удивляются, почему слив стал таким шумным, что будит домочадцев по ночам. Сильно без нужды открывать краны нецелесообразно и потому, что это шумно, и потому, что кран вибрирует, и потому перерасходуется питьевая вода. Шум в трубах здания устраняется с трудом и только специалистами и нервирует в основном жителей верхних этажей. Для решения этой проблемы иногда достаточно обратиться к сантехникам ЖЭКа, чтобы они устранили воздушные пробки в водопроводной сети.

Что касается защиты расстоянием, то холодильник целесообразно вынести в прихожую, а стиральную машину – в ванную, что, к сожалению, не всегда удается при малых размерах кухни, ванной и прихожей.

В квартире должно быть хотя бы одно помещение без излучений (включая комнату без шума) – это тихая и безопасная зона позволит увеличить срок жизни живущих в квартире людей.

Ремонт квартиры – это, конечно, форс-мажор (ЧС квартирного масштаба). Люди, у которых дома идет ремонт, заметно отличаются от других людей: они нервные, уставшие и бледные. В это состояние вносит свой вклад шум ремонта (рев и вибрация дрели, стук молотков, шум паркетных машинок). К счастью, эта чрезвычайная ситуация длится сравнительно недолго.

В отличие от других излучений, загрязняющих бытовую среду, шум может быть благоприятным и даже комфортным. Автор имеет в виду шум морских волн, ветра в лесу, пение птиц и шум дождя, если находиться в укрытии, и, конечно, музыку (негромкую, мелодичную и лучше всего классическую).

Вспоминается один педагогический эксперимент, проведенный автором в колледже. При замене урока по мировой культуре автор разрешил заниматься студентам своими делами (переписыванием конспектов, тихими разговорами, разгадыванием кроссвордов), но тихо, на 40 дБ включил магнитофон с записью симфонии Моцарта. После урока несколько студентов попросили переписать эту запись, несмотря на их любовь к поп-музыке.

В природе и на производстве существует еще одна разновидность волн – вибрация. К счастью, она для жилья не характерна, если не считать вибрации холодильника, стиральной машины или вентилятора. Значительно хуже, если рядом расположена ТЭЦ или метро мелкого залегания. Основной метод борьбы с вибрацией – применение демпферов (гасителей вибрации), в качестве которых могут использоваться ковры, паласы и резиновые коврики.

<<< Назад
Вперед >>>

Сегодня озвучка театральных пьес и кинофильмов относительно проста. Большинство необходимых шумов существует в электронном виде, недостающие записываются, обрабатываются на компьютере. Но еще полвека назад для имитации звуков использовались удивительной хитроумности механизмы.

Тим Скоренко

Эти удивительные шумовые машины выставлялись на протяжении последних лет в самых разных местах, впервые — несколько лет тому назад в Политехническом музее. Там мы подробно рассмотрели эту занимательную экспозицию. Дерево-металлические устройства, удивительным образом имитирующие звуки прибоя и ветра, проезжающего автомобиля и поезда, цокот копыт и звон мечей, стрекотание кузнечика и кваканье лягушки, лязг гусениц и разрывы снарядов — все эти удивительные машины разработал, усовершенствовал и описал Владимир Александрович Попов — актер и создатель шумового оформления в театре и кино, — которому и посвящена выставка. Наиболее интересна интерактивность экспозиции: приборы не стоят, как нередко у нас принято, за тремя слоями пуленепробиваемого стекла, а предназначены для пользователя. Подходи, зритель, притворись звукооформителем, посвисти ветром, пошуми водопадом, поиграй в поезд — и это интересно, действительно интересно.


Фисгармония. «Для передачи шума танка используется музыкальный инструмент фисгармония. Исполнитель нажимает одновременно несколько нижних клавиш (и черных, и белых) на клавиатуре и при этом накачивает воздух с помощью педалей» (В.А. Попов).

Шумовых дел мастер

Владимир Попов начинал карьеру в качестве актера МХАТа, причем еще до революции, в 1908 году. В своих воспоминаниях он писал, что с детства увлекался звукоимитацией, пытался копировать различные шумы, природные и искусственные. С 1920-х годов он окончательно уходит в звуковую отрасль, проектируя разнообразные машины для шумового оформления спектаклей. А в тридцатых его механизмы появились и в кино. Например, с помощью своих удивительных машин Попов озвучивал легендарную картину Сергея Эйзенштейна «Александр Невский».

Он относился к шумам как к музыке, писал партитуры для звукового фона спектаклей и радиопостановок — и изобретал, изобретал, изобретал. Некоторые машины, созданные Поповым, сохранились до сих пор и пылятся в подсобках различных театров — развитие звукозаписи сделало его хитроумные механизмы, требующие определенных навыков обращения, ненужными. Сегодня шум поезда моделируется электронными методами, в поповские же времена целый оркестр по строго заданному алгоритму работал с различными устройствами, чтобы создать достоверную имитацию приближающегося состава. В шумовых композициях Попова порой было задействовано до двадцати музыкантов.


Шум танка. «Если танк появляется на сцене, то в этот момент вступают в действие четырехколесные приборы с металлическими пластинами. Прибор приводится в действие вращением крестовины вокруг оси. Получается сильный звук, очень похожий на лязг гусениц большого танка» (В.А. Попов).

Итогами его работы стали книга «Звуковое оформление спектакля», вышедшая в 1953 году, и полученная тогда же Сталинская премия. Можно привести здесь много различных фактов из жизни великого изобретателя — но мы обратимся к технике.

Дерево и железо

Важнейшим моментом, на который далеко не всегда обращают внимание посетители выставки, является тот факт, что каждая шумовая машина — музыкальный инструмент, на котором нужно уметь играть и который требует определенных акустических условий. Например, «громовая машина» во время спектаклей всегда ставилась на самый верх, на мостки над сценой, чтобы раскаты грома разносились по всему зрительному залу, создавая ощущение присутствия. В небольшой же комнате она производит не такое яркое впечатление, звук ее не столь естественен и находится значительно ближе к тому, чем является на самом деле, — к лязгу железных колес, встроенных в механизм. Впрочем, «ненатуральность» некоторых звуков объясняется тем, что многие из механизмов не предназначены для «сольной» работы — только «в ансамбле».

Иные машины, напротив, идеально имитируют звук независимо от акустических свойств помещения. К примеру, «Перекат» (механизм, издающий шум прибоя), огромный и неповоротливый, настолько точно копирует удары волн о пологий берег, что, закрыв глаза, можно легко вообразить себя где-то у моря, на маяке, в ветреную погоду.


Конный транспорт №4. «Прибор, воспроизводящий шум пожарного обоза. Чтобы в начале действия прибора дать слабый шум, исполнитель отводит ручку регулятора влево, благодаря чему происходит смягчение силы шума. При перемещении оси в другую сторону шум возрастает до значительной силы» (В.А. Попов).

Попов делил шумы на ряд категорий: батальные, природные, индустриальные, бытовые, транспортные и т. д. Некоторые универсальные приемы могли использоваться для имитации различных шумов. Например, подвешенные на определенном расстоянии друг от друга листы железа различной толщины и размеров могли сымитировать и шум приближающегося паровоза, и лязг производственных машин, и даже гром. Универсальным устройством Попов называл также огромный барабан-ворчун, способный работать в разных «отраслях».

Но большинство подобных машин достаточно просты. Специализированные же механизмы, предназначенные для имитации одного и только одного звука, заключают в себе весьма занимательные инженерные мысли. Например, падение капель воды имитируется вращением барабана, боковую сторону которого заменяют натянутые на разных расстояниях веревки. При вращении они приподнимают неподвижно укрепленные кожаные хлыстики, которые хлопают по следующим веревкам — и это действительно похоже на капель. Ветры различной силы также имитируются с помощью барабанов, трущихся о всевозможные ткани.

Кожа для барабана

Пожалуй, самая замечательная история, связанная с реконструкцией машин Попова, случилась во время изготовления большого барабана-ворчуна. Для огромного, диаметром почти в два метра, музыкального инструмента требовалась кожа — но оказалось, что приобрести выделанную, но не выдубленную барабанную кожу в России невозможно. Музыканты отправились на настоящую скотобойню, где купили две свежеснятые с быков шкуры. «В этом было что-то сюрреалистическое, — смеется Петр. — Подъезжаем мы на машине к театру, а у нас в багажнике — окровавленные шкуры. Мы затаскиваем их на крышу театра, там мездрим, сушим — неделю на всю Сретенку запах стоял…» Но барабан в итоге удался на славу.

Каждый прибор Владимир Александрович в обязательном порядке снабжал подробной инструкцией для исполнителя. Например, устройство «Мощный треск»: «Сильные сухие разряды грозы выполняются с помощью прибора «Мощный треск». Встав на площадку станка прибора, исполнитель, подавшись грудью вперед и положив обе руки поверх зубчатого вала, обхватывает его и повертывает по направлению к себе».

Стоит заметить, что многие из машин, использованных Поповым, были разработаны до него: Владимир Александрович лишь усовершенствовал их. В частности, ветровые барабаны применялись в театрах еще во времена крепостного права.

Изящная жизнь

Одним из первых фильмов, целиком озвученным с помощью механизмов Попова, была комедия режиссёра Бориса Юрцева «Изящная жизнь». Помимо голосов актёров, в этом фильме, вышедшем на экраны в 1932 году, нет ни одного записанного с натуры звука — всё сымитировано. Стоит заметить, что из шести полнометражных фильмов, снятых Юрцевым, этот — единственный сохранившийся. Попавший в опалу в 1935 году режиссёр был сослан на Колыму; его фильмы, кроме «Изящной жизни», были утеряны.

Новая инкарнация

После появления звуковых библиотек про машины Попова почти забыли. Они отошли в разряд архаизмов, в прошлое. Но нашлись люди, заинтересованные в том, чтобы техника прошлого не только «восстала из пепла», но и вновь стала востребованной.

Идея сделать музыкальный арт-проект (тогда еще не оформившийся как интерактивная выставка) давно теплилась в сознании московского музыканта, пианиста-виртуоза Петра Айду — и вот наконец нашла свое материальное воплощение.


Прибор «лягушка». Инструкция к прибору «Лягушка» значительно сложнее, нежели аналогичные указания к прочим устройствам. Исполнитель квакающего звука должен был хорошо владеть инструментом, чтобы итоговая звукоимитация получилась достаточно натуральной.

Команда, работавшая над проектом, частично базируется в театре «Школа драматического искусства». Сам Петр Айду — помощник главного режиссера по музыкальной части, координатор производства экспонатов Александр Назаров — руководитель театральных мастерских и т. д. Впрочем, в работе над выставкой принимали участие десятки людей, не связанных с театром, но готовых помогать, тратить свое время на странный культурологический проект — и все это было не зря.

Мы беседовали с Петром Айду в одной из комнат с экспозицией, в страшном грохоте и гаме, извлекаемом из экспонатов посетителями. «В этой экспозиции множество пластов, — говорил он. — Некий исторический пласт, поскольку мы подняли на свет историю очень талантливого человека, Владимира Попова; интерактивный пласт, поскольку люди получают удовольствие от происходящего; музыкальный пласт, поскольку по окончании выставки мы планируем использовать ее экспонаты в наших спектаклях, причем не столько для озвучки, сколько как самостоятельные арт-объекты». В то время, как Петр говорил, за его спиной работал телевизор. На экране сцена, где двенадцать человек слаженно играют композицию «Шум поезда» (это фрагмент спектакля «Реконструкция утопии»).


«Перекат». «Исполнитель приводит прибор в действие мерным ритмическим покачиванием резонатора (корпуса прибора) вверх и вниз. Тихий прибой волн выполняется медленным ссыпанием (не до конца) содержимого резонатора с одного его конца в другой. Прекратив ссыпание содержимого в одну сторону, быстрым движением приводят резонатор в горизонтальное положение и сейчас же отводят его в другую сторону. Мощный прибой волн выполняется медленным ссыпанием до конца всего содержимого резонатора» (В.А.Попов).

Автоматы изготовлялись по оставленным Поповым чертежам и описаниям — сохранившиеся в коллекции МХАТа оригиналы некоторых машин создатели выставки увидели уже после окончания работ. Одной из основных проблем было то, что легко добываемые в 1930-х годах детали и материалы сегодня нигде не используются и в свободной продаже не водятся. Например, латунный лист толщиной 3 мм и размерами 1000x1000 мм найти практически нереально, потому что нынешний ГОСТ подразумевает разрезку латуни только 600x1500. Проблемы возникали даже с фанерой: требуемая 2,5-миллиметровая по современным стандартам относится к авиамодельной и достаточно редка, разве что из Финляндии выписывать.


Автомобиль. «Шум автомобиля производится двумя исполнителями. Один из них вращает ручку колеса, а другой нажимает рычаг подъёмной доски и приоткрывает крышки» (В.А. Попов). Стоит заметить, что с помощью рычагов и крышек можно было значительно варьировать звук автомобиля.

Была и еще одна сложность. Сам Попов неоднократно замечал: чтобы сымитировать какой-либо звук, нужно абсолютно точно представлять себе, чего хочешь добиться. Но, например, звук переключения семафора 1930-х годов никто из наших современников никогда не слышал в живую — как же удостовериться в том, что соответствующий прибор изготовлен правильно? Никак — остается только надеяться на интуицию и старые кинофильмы.

Но в общем и целом интуиция создателей не подвела — им все удалось. Хотя изначально шумовые машины предназначались для людей, умеющих с ними обращаться, а не для потехи, в качестве интерактивных экспонатов музея они очень хороши. Вращая рукоять очередного механизма, глядя на транслируемый на стену немой кинофильм, ты ощущаешь себя великим звукорежиссером. И чувствуешь, как под твоими руками рождается не шум, но музыка.

Вследствие поворота в области энергетики возобновляемые виды энергии приобретают в земле Баден-Вюртемберг большое значение. Центральным элементом при этом становится использование энергии ветра. В 2011-м году местными ветроэнергетическими установками было произведено в этой земле около одного процента электроэнергии. Всего в эксплуатации было 380 ветроэнергетических установок. К 2020 году суммарная мощность ветроустановок должна вырасти с 500 мегаватт (состояние на 2012) до 3 500 мегаватт. Около десяти процентов всей электроэнергии должно будет вырабатываться ветроэнергетическими установками. Одна типичная ветроустановка с номинальной мощностью 2 МВт расположенная в благоприятной для этого местности земли Баден-Вюртемберг теоретически может снабжать электроэнергией свыше 1000 домашних хозяйств.

При развитии ветроэнергетики необходимо учитывать воздействие на людей и окружающую среду. Ветроэнергетические установки создают шум. При правильном планировании и достаточном расстоянии до жилищных застроек от ветроэнергетических установок не исходит какого-то акустического беспокойства. Уже на расстоянии нескольких сот метров шум ветроустановки почти не превышает естественного шума ветра в растительности. Наряду со звуковыми волнами, ветроустановки производят, вследствие обтекания воздухом вращающихся лопастей, шум более низкой частоты, так называемый инфразвук или экстремально низкий тон. Слух в этом диапазоне крайне нечувствителен. Все же в рамках развития ветроэнергетики существуют опасения, что эти инфразвуковые волны причиняют вред человеку или могут быть опасными для его здоровья. Эта брошюра призвана способствовать обсуждению данного вопроса.

Что же такое звук?

Звук состоит, если говорить просто, из волн сжатия. При распространении этих колебаний давления через воздух передается звук. Слух человека в состоянии улавливать звук частотой от 20 до 20 000 Герц. Герц - это единица измерения частоты, которая определяется количеством колебаний за секунду. Низкие частоты соответствуют низким тонам, высокие - высоким. Частоты ниже 20 Гц называют инфразвуком. Шум выше звукового диапазона, т.е. выше 20 000 Гц известен как ультразвук. Низкими частотами называют звук, преобладающая часть которого находится в диапазоне ниже 100Гц. Периодические колебания давления воздуха распространяются со скоростью звука, около 340 м/сек. Колебания низких частот имеют большую, а высокочастотные колебания короткую длину волны. Например, длина волны 20-ти герцового тона составляет 17,5 м, а при частоте 20 000 Гц - 1,75 см.

Как распространяется инфразвук?

Распространение инфразвука подчиняется тем же физическим законам что и все виды волн, распространяемые в воздухе. Отдельный источник звука, например генератор ветроэнергетической установки излучает волны, которые распространяются шарообразно во всех направлениях. Так как энергия звука при этом распределяется на все большую площадь, интенсивность звука на квадратный метр имеет обратно- геометрическую зависимость: с ростом расстояния звук становится тише (см. рисунок).

Наряду с этим существует эффект абсорбции волн в воздухе. Небольшая часть энергии звука при распространении превращается в тепло, за счет чего получается дополнительное снижение звука. Эта абсорбция зависит от частоты: звук более низкой частоты снижаются меньше, высокой частоты больше. Снижение интенсивности звука с расстоянием значительно превышает его потерю за счет абсорбции. Особенность состоит в том, что низкочастотные колебания очень легко проходят стены и окна, вследствие чего воздействие происходит внутри здания.

Где встречается инфразвук?

Инфразвук - это обычная составляющая часть нашей окружающей среды. Его излучают огромное число разнообразных источников. К ним принадлежат как природные источники, такие как ветер, водопад или морской прибой, так и технические, например обогреватели и кондиционеры, уличный и рельсовый транспорт, самолеты или аудиосистемы на дискотеках.

Шум ветроэнергетических установок.

Современные ветроэнергетические установки производят в зависимости от силы ветра шум во всем диапазоне частот, в том числе низкочастотные тона и инфразвук. Это происходит за счет срыва турбулентности, особенно на концах лопастей, а также на краях, щелях и распорках. Обтекаемая воздухом лопасть создает шум, похожий на шум крыла планера.

Излучение звука увеличивается с возрастанием скорости ветра до достижения установкой номинальной мощности. После этого она остается постоянной. Специфическое инфразвуковое излучение сопоставимо с излучением других технических установок.


Исследования показали, что инфразвуковое излучение ветроэнергетической установки находится ниже порога восприятия человека. Зеленая линия графика показывает, что на расстоянии 250 метров измеренные значения находятся ниже порога восприятия.

При этом сильный ветер, проходя через естественные препятствия, может создать инфразвук большей интенсивности. Для сравнения: внутри административного здания согласно измерениям, проведенным LUBW, уровень инфразвука лежит ниже зеленой линии. Скорость ветра в обоих случаях составляла ровно 6 м/с. Многие повседневные шумы содержат значительно больше инфразвука.

График вверху показывает как пример шум внутри легкового автомобиля. При скорости 130 км/час инфразвук становится даже слышим. При открытых боковых стеклах шум ощущается как неприятный. Его интенсивность составляет 70 децибел, т.е. в 10 000 000 раз сильнее, чем вблизи ветроагрегата при сильном ветре.

Оценка низкочастотного шума.

В диапазоне низкочастотных колебаний ниже 100 Гц находится плавный переход слухового восприятия от слышания силы звука и высоты тона до ощущения. Здесь изменяется качество и способ восприятия. Восприятие высоты тона снижается и при инфразвуке исчезает совсем. В общем это действует так: чем ниже частота, тем интенсивность звука должна быть сильнее, чтобы, вообще, можно было услышать шум. Низкочастотное воздействие более высокой интенсивности, как например вышеприведенный шум внутри автомобиля, часто воспринимается как давление на уши и вибрации. Длительное воздействие колебаний такой частоты могут вызвать в голове шум, чувство давления или раскачивания. Наряду со слухом существуют также другие органы чувств воспринимающие низкие частоты. Так чувствительные клетки кожи воспринимают давление и вибрацию. Инфразвук может также воздействовать на имеющиеся в теле пустоты, такие как легкие, ноздри и среднее ухо. Инфразвук очень высокой интенсивности имеет замаскированное воздействие в среднем и нижнем звуковом диапазоне. Это значит: При очень сильном инфразвуке слух не в состоянии одновременно воспринимать тихий звук в этом более высоком частотном диапазоне.

Влияние на здоровье

Лабораторные исследования воздействия инфразвука показывают, что высокая интенсивность выше порога восприятия может вызвать усталость, потерю концентрации и обессиливание. Наиболее известной реакцией организма является возрастающая усталость после многочасового воздействия. Может также нарушиться чувство равновесия. Некоторые исследователи ощутили чувство неуверенности и страха, у других уменьшилась частота дыхания.

Дальше, как и при звуковых излучениях, при очень высокой интенсивности временное снижение слуха, этот эффект известен посетителям дискотек. При долговременном воздействии инфразвука может развиться продолжительное расстройство слуха. Уровень шума в непосредственной близости от ветрогенератора очень далек от таких эффектов. Ввиду того, что порог слышимости отчетливо превышен, раздражение от инфразвука не ожидаются. О таких эффектах, о которых мы говорили, нет никакой научной документации.

Выводы:

Ультразвук, производимый ветроэнергетическими установками, находится определенно ниже границы чувствительности человека. Согласно сегодняшнему уровню науки, вредного воздействия ультразвука от ветроэнергетических установок не ожидается.

По сравнению со средствами передвижения, как автомобиль или самолет, инфразвук от ветроэнергетических установок ничтожно мал. Наблюдая общий диапазон звуковых частот, мы видим, что шум от ветроэнергетической установки уже в нескольких сотнях метров почти совсем не слышен на фоне ветра в растительности.

Необходимо обращать внимание на совместимость ветроэнергетических установок и жилых домов. Нормативными актами по использованию энергии ветра земли Баден-Вюртемберг предписывается для местного планирования и планирования использования площадей безопасное расстояние в 700 м между ветроэнергетическими установками и жилыми постройками. Как исключение, при тщательном изучении отдельных случаев, расстояние можно как увеличить, так и уменьшить.

В наш век доступной информации люди не перестали распространять слухи и мифы. Это происходит от лености ума и других особенностей характера индивидуумов.

Напомним, что ветроэнергетика – это большая отрасль мировой экономики, в которую ежегодно вкладываются десятки миллиардов долларов. Поэтому даже ленивый умом гражданин мог бы предположить, что возникающие в процессе развития отрасли вопросы уже где-то кем-то ставились и разбирались.

Для того, чтобы облегчить доступ широкой общественности к правильной информации мы создадим здесь «справочник», в котором будем разбивать мифы об отрасли. Уточним, что мы говорим о промышленной ветроэнергетике, в которой работают крупные ветрогенераторы мегаваттного класса. В отличие от фотоэлектрической солнечной энергетики, в которой небольшие, распределенные электростанции в совокупности занимают весомую долю в генерации, малые ветровые электростанции – нишевая сфера. Ветроэнергетика – это энергетика больших машин и мощностей.

Сегодня рассмотрим миф о вреде ветроэнергетики для окружающей среды и здоровья человека в связи с издаваемым шумом и инфразвуком (звуковыми волнами, имеющими частоту ниже воспринимаемой человеческим ухом).

Отнесемся к этому мифу со всей серьезностью. Дело в том, что о страшных последствиях инфразвука, производимого ветрогенераторами, я слышал лично от уважаемого члена-корреспондента РАН, главы целого Курчатовского института (!), Ковальчука М.В.

Начнем с того, что ветрогенератор – это машина с движущимися частями. Машины, которые совсем бесшумны, вряд ли встречаются. При этом шум ветровой турбины не столь велик по сравнению, скажем, с газовой турбиной или другим генерирующим устройством сопоставимой мощности, работающим на основе сжигания топлива. Как видно на картинке, шум ветровой турбины непосредственно у генератора не выше, чем у работающей газонокосилки.

Разумеется, жить под большим ветряком неприятно и вредно для здоровья. Также шумно и вредно жить у железной дороги, на московском Садовом кольце и т.д.

Для того, чтобы шум не мешал, необходимо строить ветровые электростанции на расстоянии от жилых домов. Каким должно быть это расстояние? Универсальной мировой нормы нет. В документах Международной организации здравоохранения не содержится специальных рекомендаций. Однако, существует документ «Night Noise Guidelines for Europe», рекомендующий максимальный уровень шума в ночное время (40 дБ), который учитывается и при планировании объектов ветроэнергетики. В Великобритании с её развитой ветроэнергетикой норм, устанавливающих дистанцию между ветровыми электростанциями и жилыми домами, нет (рассматривается законопроект). В германской федеральной земле Баден-Вюртемберг установлено минимальное расстояние от жилых домов в 700 метров, при этом проводятся расчеты по каждому конкретному проекту с учетом допустимого уровня шума в ночное время (макс. 35-40 дБ в зависимости от типа жилой застройки)…

Перейдем к инфразвуку.

Для начала возьмём 70-страничное австралийское «Уровень инфразвука вблизи ветровых ферм и в других районах» с результатами измерений. Замеры делал не абы кто, а специализированное предприятие Resonate Acoustics, занимающиеся акустическими исследованиями, и по заказу Министерства защиты окружающей среды Южной Австралии. Вывод: «уровень инфразвука в домах вблизи оцениваемых ветряных турбин не выше, чем в других городских и сельских районах, и вклад ветровых турбин в измеренные уровни инфразвука является незначительным по сравнению с фоновым уровнем инфразвука в окружающей среде».

Теперь посмотрим на брошюру «Факты: ветроэнергетика и инфразвук », изданную Министерством экономики, энергетики, транспорта и территориального развития немецкой Федеральной земли Гессен: «Нет никаких научных доказательств того, что инфразвук от ветровых турбин может вызвать последствия для здоровья при соблюдении минимальных расстояний, установленных в земле Гессен» (1000 м от границы поселения). «Инфразвук, исходящий от ветровых турбин, ниже порога человеческого восприятия».

В научном журнале Frontiers in Public Health опубликована по поводу влияния шума низкой частоты и инфразвука от ветровых турбин на здоровье («Health-Based Audible Noise Guidelines Account for Infrasound and Low-Frequency Noise Produced by Wind Turbines»). Вывод: звуки низкой частоты ощущаются на расстоянии до 480 м, впрочем, как и вообще шум генератора. Действующие нормы и правила строительства ветровых электростанций надежно защищают потенциальных реципиентов шума, в том числе низкочастотного шума и инфразвука.

Можем также взять исследование Министерства окружающей среды, климата и энергетического хозяйства Земли Баден-Вюртемберг «Низкочастотные шумы и инфразвук от ветроэнергетических установок и других источников»: «Инфразвуки вызываются большим количеством природных и промышленных источников. Они повседневная и повсеместная часть нашей окружающей среды… Инфразвук, производимый ветровыми турбинами, находится значительно ниже пределов человеческого восприятия. Нет никаких научно обоснованных доказательств вреда для этого диапазона».

Государственный департамент здоровья Канады провел большое исследование «Шум от ветровых турбин и здоровье », в котором один из разделов посвящен инфразвуку. Никаких ужасов не нашли.

Кроме того, не удалось найти каких-то серьезных научных подтверждений вреда шума (и инфразвука) ветровых турбин для насекомых и животных.

Подведем итоги.

Шум от ветровых генераторов не является каким-то «особо вредным звуковым загрязнением». Да, оборудование шумит, как это делают машины. Для того, чтобы этот шум не слышать, нужно жить на разумном расстоянии от ветровых электростанций. Законодателям целесообразно устанавливать эти расстояния с учетом данных профессиональных измерений.

Многочисленные научные исследования доказывают, что сверхнизкий шум ветровых турбин (инфразвук) не представляет опасности для человека в случае соблюдения этого разумного расстояния.

Необходимо также учитывать, что в мире продолжаются регулярные исследования, касающиеся всех сторон ветроэнергетической отрасли, в том числе щекотливых вопросов шума и инфразвука. Эти исследования помогают регуляторам повышать безопасность объектов ветроэнергетики, а производителям – создавать более совершенные и тихие машины.

В будущих статьях мы рассмотрим другие мифы о ветроэнергетике.

Для создания различных музыкальных тонов на духовых инструментах, таких, как показанный на рисунке кларнет, музыкант начинает дуть в мундштук и одновременно с этим нажимать на рычажки клапанов, чтобы открывать те или иные отверстия в боковой стенке инструмента. Открывая отверстия, музыкант изменяет длину стоячей волны, определяемую протяженностью столба воздуха внутри инструмента, и тем самым увеличивает или уменьшает высоту тона.

Играя на таких духовых инструментах, как труба или туба, музыкант частично перекрывает проходное сечение раструба и регулирует положение клапанов, изменяя тем самым длину столба воздуха.

В тромбоне воздушный столб регулируется путем перемещения скользящего изогнутого колена. Отверстия в стенках простейших духовых инструментов, таких, как флейта и пикколо, для получения аналогичного эффекта перекрываются пальцами.

Одно из древнейших творений

Утонченная конструкция кларнета, показанного на рисунке вверху, обязана своим появлением грубым бамбуковым свирелям и примитивным флейтам, которые считаются первыми инструментами, созданными человеком на заре цивилизации. Старейшие духовые инструменты опередили струнные на несколько тысячелетий. Раструб на открытом конце кларнета делает поправку на динамическое взаимодействие звуковых волн с окружающим воздухом.

Тонкий язычок в мундштуке кларнета (рисунок вверху) колеблется при поперечном обтекании воздухом. Колебания распространяются в виде волн сжатия по трубке инструмента.

Телескопические трубки

В тромбоне скользящее изогнутое трубчатое колено (цуг) плотно прилегает к основной трубке. Перемещение телескопического цуга внутрь и наружу изменяет длину столба воздуха и, соответственно, тон звука.

Изменение тона при помощи пальцев

Когда отверстия закрыты, колеблющийся столб воздуха занимает всю длину трубки, создавая самый низкий тон.

Открытие двух отверстий приводит к укорачиванию воздушного столба и созданию более высокого тона.

Открытие большего количества отверстий еще сильнее укорачивает воздушный столб и обеспечивает дальнейшее повышение тона.

Стоячие волны в открытых трубах

В трубе, открытой с обоих концов, стоячие волны формируются так, что на каждом конце трубы находится пучность (участок с максимальной амплитудой колебаний).

Стоячие волны в закрытых трубах

В трубе с одним закрытым концом стоячие волны формируются так, что у закрытого конца расположен узел (участок с нулевой амплитудой колебаний), а у открытого - пучность.