Неспецифическая устойчивость организма. Резистентность организма. Что будем делать с полученным материалом

Повышение Неспецифической Резистентности - Этому разделу терапии инфекционных осложнений в последние годы придают особое значение. Защита от инфекции связана с выработкой антител и зависит от продукции и доставки к месту бактериального загрязнения клеток, способных фагоцитировать микроорганизмы, а также разрушать их с помощью внутриклеточного переваривания. Доставка фагоцитов может быть недостаточной в связи с уменьшением тока крови через пораженную зону, снижением концентрации их в протекающей крови или введением противовоспалительных веществ (глюкокортикоидов, салицилатов и др.). Фагоцитоз с помощью нейтрофилов и мононуклеарных фагоцитов ретикулоэндотелиальной системы зависит в основном от присутствия в сыворотке и тканевых жидкостях специфических антител и комплемента. Потеря белка при истощении или голодании, кровопотере или гноетечении снижает способность синтезировать антитела и нарушает воспалительную

Реакцию. Дефицит витаминов также снижает синтез антител. Все эти условия ведут к снижению сопротивляемости развивающейся инфекции. Поэтому меры по повышению неспефической резистентности включают прежде всего стимуляцию белкового обмена, эритро- и лейкопоэза, продукции антител, воспалительной реакции и т. п. В этих целях применяют высококалорийное энтеральное и парентеральное питание, альбумин и гамма-глобулин, анаболические препараты, пиримидиновые производные, витамины, переливания цельной крови и лейковзвеси, зимозана, рестима, интерферона и других препаратов.

Среди показателей неспецифической резистентности в ближайшем послеоперационном периоде мы придавали большое значение азотистому и энергетическому балансу. При специальном изучении парентерального питания было установлено, что суточные потери азота после многих вмешательств весьма значительны. Так, например, после пластики дефекта межжелудочковой перегородки сердца в условиях искусственного кровообращения они в среднем составили 24 г, что в 1,5 раза превышает суточные потери азота после резекции пищевода (16 г), в 2 раза после резекции желудка (12 г) и в 4,8 раза после аппендэктомии (5 г). С возрастанием травматичности вмешательства азотистый дефицит увеличивался, что приводило к нарастающей гипопротеинемии. Оральным, зондовым и ректальным введением питательных веществ устранить отрицательный азотистый баланс не удавалось из-за пареза или атонии кишечника, неполноценной всасываемости, анорексии. При выраженной интоксикации продуктами аутолиза тканей и токсическими веществами, возникавшими в результате нарушения обмена веществ, гипопротеинемия нарастала. В результате изучения обмена в случаях так называемого раневого истощения было установлено, что в основе последнего лежит белковое голодание, возникшее вследствие катаболической послестрессовой реакции и нарушения ресинтеза белков в печени и других органах. Наряду с этим нарушался синтез пищеварительных ферментов, ухудшалось переваривание пищи, замедлялся процесс поступления аминокислот в кровь и ткани. Внешним проявлением белковой недостаточности была гипопротеинемия. Она указывала на обеднение органов и тканей пластическим материалом и на снижение иммуногенеза. Таким образом, гипопротеинемия характеризовала снижение неспецифической резистентности .

При белковом голодании нарушалась выработка аскорбиновой кислоты, ферментов, гормонов, иммунных тел, страдала дезинтоксикационная функция печени, перистальтика кишечника, что вело к его атонии или парезу, развивались нарушения трофики, коллоидно-осмотического равновесия (отеки), углублялся метаболический ацидоз и др.

Обычно инфекционное осложнение сопровождалось диспротеинемией: снижением уровня альбуминов и увеличением содержания гамма-глобулинов. При этом значительно изменялся альбуминово-глобулиновый коэффициент, что служило не только диагностическим, но и прогностическим признаком.

Для стимуляции неспецифической резистентности ежедневно вводился внутримышечно гамма-глобулин или полиглобулин в дозе 3 - 6 г.

Диспротеинемия свидетельствовала о том, что под влиянием операционной травмы возникли изменения в печени не только функционального, но и морфологического характера. Они достигали максимума на II и нормализовалась при лечении на V - VII неделе. Изменения белковых фракций находились в непосредственной зависимости и были пропорциональны тяжести оперативного вмешательства.

Одной из причин волемических нарушений у больных с септическими состояниями является уменьшение объема циркулирующего альбумина. Изменения эти носят фазовый характер. В связи с этим непременным компонентом инфузионной терапии при лечении инфекционных осложнений должны быть комбинации препаратов цельных и расщепленных белков: сочетания гидролизатов с 5 - 15% растворами альбумина, протеина, нативной плазмы. Азотистый дефицит чаще всего нормализуется из расчета 1 - 1,5 г нативного белка на 1 кг веса больного в сутки. При тяжелой инфекции из-за выраженной катаболической реакции внутривенное введение 50 - 70 г нативного белка не устраняет гипопротеинемию. В этих случаях необходимо сочетать белковые смеси с анаболическими препаратами и энергетическими продуктами.

Препараты расщепленных белков (белковые гидролизаты, растворы аминокислот) быстро выводятся из кровяного русла, утилизируются тканями и в большей степени, чем растворы, содержащие цельные белки, служат пластическим целям, стимуляции иммуногенеза и эритропоэза, дезинтоксикации.

Изучение основного обмена - наиболее доступного критерия энергетического баланса - у больных с инфекционными осложнениями показало, что суточные энергетические траты у них весьма значительны. В среднем они составили у взрослых 2500 ± 370 кал в сутки (35 - 40 кал на 1 кг веса). У детей отмечалось еще большее повышение основного обмена (70 - 90кал/кг), который при благоприятном течении возвращался к исходному не ранее 10 - 12-го дня после операции. Поэтому белково-углеводные смеси составлялись из расчета не менее 35 кал/кг веса у взрослых и 75 кал/кг - у детей. От достаточного энергетического обеспечения зависел анаболический эффект вводимой смеси. Однако этот вопрос не нашел пока удовлетворительного решения. Затруднения обусловлены следующими обстоятельствами. Основной наиболее доступный источник энергии - глюкоза - обладает низкой энергетической ценностью (4,1 кал/г). В связи с этим возникает необходимость введения больших количеств концентрированных гипертонических растворов глюкозы (20 - 60% 1 - 3 л), что увеличивает риск флебитов при использовании периферических вен, требует постоянного подщелачивания растворов (растворы глюкозы имеют pH 6,0 - 5,4 и ниже).

Против использования глюкозы в качестве единственного источника энергии при парентеральном питании имеются возражения и другого порядка. Длительные внутривенные вливания глюкозы приводили к снижению альбумино-глобулинового коэффициента, угнетению синтеза альбуминов, диспротеинемии, что указывало на ухудшение функционального состояния печени. Отрицательной стороной использования глюкозы является и необходимость введения больших доз инсулина, увеличивающего риск гипергидратации и способствующего переходу аминокислот из печени в мышцы.

Кроме того, глюкоза - хорошая питательная среда для дрожжевых грибов, поэтому сочетание с антибиотиками приводит к развитию кандидамикоза, что несколько ограничивает ее применение. Энергетическое обеспечение больного должно включать, помимо глюкозы, комплекс других препаратов.

Чаще используют 20% растворы глюкозы. Инсулин вводят из расчета 1 ЕД на 4 - 5 г сухого вещества глюкозы. В качестве энергетического продукта применяются также 5 - 6% гексозофосфат, сорбитол, 33% этиловый спирт, диолы и полиолы. Несомненные преимущества перед глюкозой имеет инвертный сахар, который быстрее извлекается из русла вены, меньше раздражает интиму, не требует инсулина.

Наиболее мощным поставщиком энергии и своеобразным биологическим стимулятором являются жировые эмульсии. Речь идет о компенсации лишь части энергетических потребностей: полное восполнение за счет жира недопустимо, в первую очередь, из-за опасности кетоза. Основное преимущество внутривенного введения жира обусловлено высокой его калорийностью (9,3 кал/г), что дает возможность в небольшом объеме жидкости полностью обеспечить энергетические потребности больного. С помощью жировых эмульсий можно вводить такие незаменимые факторы питания, как высоконепредельные жирные кислоты и жирорастворимые витамины. Жировые эмульсии не оказывают осмотических эффектов и не обладают перечисленными недостатками глюкозы.

В настоящее время широко применяются интралипид (Швеция), липифизан (Франция), липомул и инфонутрол (США), ли-пофундин (ФРГ), отечественная жировая эмульсия ЛИПК и другие. В результате клинических испытаний большинство авторов пришли к выводу, что жиры в смесях для парентерального питания не должны превышать 30% суточной калорийности, 50% - должны составлять углеводы, 20% - белковые калории.

Проведенные нами специальные исследования показали, что в послеоперационном периоде при развитии инфекционного осложнения процессы белкового катаболизма значительно преобладают над анаболическими. Заместительная терапия белковыми препаратами была эффективной лишь при условии одновременного применения комплекса анаболических средств. Для ограничения катаболических и стимуляции анаболических процессов применялись сочетания естественных и синтетических андрогенных гормонов. Выраженного побочного действия или осложнений от них не наблюдали. Обычно применяли 5% раствор тестостерона-пропионата по 1 - 2 мл внутримышечно или метиландростендиол по 50 - 100 мг сублингвально, неробол по 40 мг орально, ретаболил по 50 мг внутримышечно (через 3 - 6 дней). В анаболических целях применяли также пиримидиновые производные (пентоксил по 0,4 или метилурацил по 0,25 - 0,5 Зраза в сутки внутрь). Последний применялся и внутримышечно в 0,8% растворе. Был отмечен выраженный анаболический эффект, несколько увеличивалось содержание общего белка, альбуминов, гамма-глобулинов.

Из литературы (Н. В. Лазарев, 1956; В. И. Русаков, 1971, и др.) известно, что пиримидиновые производные близки к естественным азотистым основаниям нуклеиновых кислот и являются стимуляторами белкового обмена. Помимо этого, было доказано, что они оказывают выраженное противовоспалительное действие, уменьшают процессы экссудации, одновременно стимулируя регенерацию, фагоцитоз. Авторы отмечали также способность пентоксила и метилурацила усиливать выработку антител, повышать эффективность антибиотиков. В связи с этим для целесообразно применять пиримидиновые производные.

В настоящее время в целях стимуляции восстановительных процессов применяют, кроме того, пуриновые производные - оротат калия. Пиримидиновые и пуриновые стимуляторы регенерации малотоксичны и практически не имеют противопоказаний. Они ускоряют синтез антител при химиотерапии и вакцинации в случаях нарушений эритро- и лейкопоэза токсико-аллергиче-ской природы. Лучший эффект получен, когда их сочетали с витамином B 12 , С, фолиевой кислотой.

В качестве стимулятора синтеза белков и жиров применяют инсулин. При этом необходим круглосуточный контроль за содержанием сахара в крови и моче.

В последние годы усиленно изучаются полисахариды бактериального происхождения, выделенные в основном от грамотрицательных микроорганизмов (ацетоксан, кандан, ауреан и др.). Установлено, что они весьма успешно активируют неспецифическую иммунобиологическую реактивность организма . В клинической практике при лечении инфекционных осложнений мы использовали чаще пирогенал, пирексал, пиромен. Наш опыт применения этих препаратов незначителен, однако первые впечатления весьма обнадеживают.

Большое значение имеют вопросы витаминного обмена и витаминотерапии. В результате многолетних исследований и клинических наблюдений мы пришли к выводу, что у септического больного всегда отмечалось развитие токсического, а иногда и алиментарного авитаминоза. Результатом острого дефицита витамина А является снижение резистентности к инфекции главным образом из-за потери эпителием способности препятствовать проникновению микроорганизмов. Потребность организма в витаминах С и группы В при тяжелой гнойной интоксикации резко возрастала, поэтому в комплексную терапию инфекционных осложнений непременно включались аскорбиновая кислота (внутривенно - 10 г и более в сутки), витамины А, В 1 , В 2 , Be, B 12 , фолиевая и пантотеновая кислоты. Указанные препараты вводились ежедневно парентерально с учетом степени авитаминоза, но не менее, чем в утроенных дозах. Помимо этого, больные получали витамины орально в составе лечебного питания и поливитаминно-дрожжевой терапии. Витаминотерапия стимулировала процессы регенерации и дезинтоксикации (С. М. Навашин, И. П. Фомина, 1974; И. Теодореску-Экзарку, 1972, и др.).

Помимо заместительного, мощным стимулирующим действием обладает кровь и отдельные ее компоненты (альбумин, гамма-глобулин, эритроцитарная масса и др.). В связи с этим гемотрансфузии у больных с инфекционными осложнениями проводились ежедневно или через 1 - 2 дня. Чаще применялась свежее-гепаринизированная кровь. Лучшие результаты получены при вливаниях крови, взятой у предварительно иммунизированных доноров. У больных с тяжелой интоксикацией и нараставшей анемией прямые переливания стали неотъемлемой частью общего лечения. Это обстоятельство позволило исключить значительную анемизацию. Одним из главных преимуществ прямого переливания перед цитратной кровью является его высокая заместительная, стимулирующая и дезинтоксикационная функция. Гемотрансфузии непосредственно от доноров давали немедленный и стойкий эффект. В некоторых случаях прямое переливание сочеталось с вливанием свежее-цитратной крови (не более чем трехдневной давности). Цитратную кровь больших сроков хранения нецелесообразно применять. Специальными исследованиями, проведенными в клинике в 1965 г. (В. И. Немченко, И. М. Маркелов), было показано, что цитратная кровь 3 - 4-дневной давности и больших сроков хранения теряла ферментативную активность, увеличивала риск интоксикации цитратом, пирогенных реакций, гемолиза, ряда неблагоприятных иммунологических сдвигов. Для прямых трансфузий использовался аппарат оригинальной конструкции с роликовым эксцентриком, а также пальчиковый аппарат объединения «Красногвардеец».

В последнее время при септических осложнениях мы используем не классическую методику прямой гемотрансфузии, а переливания свежестабилизированной крови, взятой у донора в сосуд с гепарином непосредственно перед переливанием. Изменение методики объясняется этическими соображениями и риском инфицирования донора. Сравнение приживаемости крови, перелитой непосредственно от донора и свежестабилизированной, не выявило существенных преимуществ первой. В обоих случаях процент функционирующих меченых эритроцитов к концу первых суток был не менее 95, а полупериод длительности жизни превышал 25 суток (Ю. Н. Журавлев, Л. И. Ставинская, 1970).

Наибольшее количество перелитой одному больному свежестабилизированной крови за период лечения (синегнойная бактериемия) - 14,2 л. Проведение повторных гемотрансфузий позволяло поддерживать гемодинамические и иммунологические показатели на вполне удовлетворительных уровнях, несмотря на тяжелую гнойную интоксикацию (даже в разгар инфекции). Прямые гемотрансфузий или переливания свежестабилизированной крови повышали фагоцитарную активность лейкоцитов в среднем в 8 - 9 раз.

В последние годы, наряду с цельной кровью, мы широко применяем и отдельные ее компоненты или заменители (отмытые эритроциты, эритроцитарную и лейкоцитарную массы, тромболейковзвесь, альбумин, гидролизаты и др.). Это вызывается не только экономическими соображениями, но также и тем, что показания к переливанию цельной крови из-за риска осложнений и побочного действия из года в год сужаются.

Таким образом, в целях повышения неспецифической резистентности и для устранения метаболических нарушений при инфекционном осложнении инфузионная терапия должна включать следующие компоненты (табл. 17).

Антибактериальные препараты и средства для дезинтоксикации вводятся по показаниям. Всего суточная доза жидкости - 3450 - 5700 мл, в том числе белка (в пересчете на нативный) - 85 - 150 г, глюкозы - 200 - 600 г, суточная калорийность - 2000 - 4600 кал. При отсутствии жировых эмульсий и спиртов - 2650 - 4000 мл и 1200 - 2800 кал соответственно.

Эффективность парентерального питания чаще всего оценивают по азотистому балансу (азот вводимых препаратов - общий азот мочи по Кьельдалю), весу, белковым фракциям, гема-токриту, основному обмену. Помимо этого, нужно учитывать также гемо-гидробаланс (кровопотерю, объем циркулирующей крови, потери жидкости мочой, дыханием) и другие показатели. Все внутривенные вливания должны производиться под контролем центрального венозного давления (ЦВД). Объем вводимой жидкости координируется с количеством выделенной (моча, рвотные массы, экссудация, гноетечение). В целях дезинтоксикации предпочтительнее положительный водный баланс. Если выделительная функция почек не нарушена, расчет количества жидкости для инфузионной терапии у взрослого - 40 мл/кг/24 ч, у ребенка - 80 - 100 мл/кг/24 ч. При повышении температуры на ГС необходимо добавлять в сутки жидкости из расчета (в среднем) 10 - 14 мл на 1 кг веса и 13% суточной калорийности.

При гипергидратации проводилась дегидратационная терапия.

Клинические наблюдения свидетельствуют о наличии частых сочетаний повышенной сенсибилизации к стафилококку и другим возбудителям со сниженной общей иммунологической реактивностью. Это вызывает необходимость проведения, наряду со стимулирующей неспецифические механизмы защиты, десенсибилизирующей терапии.
читайте так-же

Одним из способов профилактики инфекционных заболеваний является искусственная их иммунизация, выработка у животных специфического иммунитета путем введения соответствующего антигена. Другим не менее важным способом предупреждения различных заболеваний является укрепление естественных защитных сил организма, повышение его резистентности.

Под Естественной резистентностью или устойчивостью принято понимать способность животного организма противостоять неблагоприятному воздействию факторов внешней среды. Состояние естественной резистентности определяют неспецифические защитные факторы организма животных, связанные с их видовыми, индивидуальными и конституциональными особенностями.

Для возникновения инфекционного заболевания непременным условием является наличие соответствующих микроорганизмов, восприимчивого животного и определенных условий. Однако на пути проникновения микробов внутрь организма имеется ряд защитных барьеров - кожа и слизистые оболочки, лимфатическая и кровеносная системы.

Неповрежденный многослойный эпителий кожи представляет собой неодолимое препятствие для большинства патогенных микробов. Кожа не только механически преграждает путь микроорганизмам, но обладает и стерилизующими свойствами. Препятствием для проникновения большинства микробов служит также неповрежденная слизистая оболочка, выделяющая секреты бактерицидного свойства. Кроме того, мерцательный эпителий, выстилающий слизистые оболочки дыхательных путей, способствует выведению из организма микробов, если они не успели проникнуть вглубь оболочки.

Особую роль в устойчивости животных играют Гуморальные факторы защиты . Известно, что свежеполученная кровь животных обладает способностью задерживать рост (бактерностатическая способность) или вызывать гибель (бактерицидная способность) микроорганизмов многих видов. Эти свойства крови и ее сыворотки обуславливаются содержащимися в ней различными компонентами (лизоцим, комплемент, интерферон и др.).

Защитную функцию крови обеспечивают также клеточные факторы. Это, прежде всего, фагоцитоз, проявляющийся способностью клеток крови и лимфы (лейкоциты, ретикулярные клетки селезенки и костного мозга и др.), захватывать проникающие в тело животного инородные частицы, в том числе микроорганизмы, с последующим их перевариванием. Явление фагоцитоза было открыто и изучено И. И.Мечниковым. Фагоцитоз является одним из факторов, обусловливающих иммунитет при многих инфекционных заболеваниях. У здоровых животных, не подвергавшихся инфицированию, активность фагоцитоза может свидетельствовать о степени их готовности к защите организма при попадании в него инфекционного начала.

Установлено, что у молодняка первых 3 — 4 дней жизни естественная резистентность к неблагоприятному воздействию факторов внешней среды низка, с чем связаны высокая заболеваемость и отход в этот период. Своевременным скармливанием молозива, созданием благоприятных условий содержания и строгим соблюдением правил кормления можно в значительной степени компенсировать недостаточную резистентность молодняка. Это обстоятельство необходимо учитывать при разработке ветеринарно-санитарных мероприятий и технологий содержания животных. Указанными способами можно в значительной степени повысить защитные силы и у взрослых животных.

На уровень естественных защитных сил организма значительное влияние оказывает воздушная среда, так как в ее окружении животное находится постоянно и в животноводческих помещениях и вне их. Неудовлетворительный температурно-влажностный, газовый, световой режим в сильной степени способствует ослаблению общей резистентности организма животных. Резкие колебания температуры и влажности, повышенная концентрация аммиака и сероводорода в воздухе помещений, высокая его запыленность и микробная обсемененность, сквозняки, недостаточное естественное освещение нередко вызывают массовые легочные заболевания, особенно молодняка.

Естественная резистентность организма животных находится в зависимости от природно-климатических условий зоны, в которой они разводятся. Эти факторы оказывают влияние как непосредственно на животных, так и через микроклимат животноводческих помещений. Характерны и сезонные изменения естественной резистентности. Так, молодняк, родившийся в зимние месяцы, обладает более высокими защитными силами, чем родившийся в поздние месяцы, когда организм матери обычно менее обеспечен витаминами, минеральными веществами. Взрослый скот осенью после пастбищного сезона имеет более высокие показатели естественной резистентности.

Одним из важнейших факторов внешней среды, влияющих на организм животных, в том числе и на его защитные механизмы, является кормление. При этом особое значение приобретает тип и уровень кормления, соотношение отдельных кормов в рационе, сбалансированность рациона по различным питательным веществам.

Важнейшая роль отводится уровню белкового питания животных, его полноценности. Уменьшение количества белка в рационе, недостаток отдельных аминокислот приводит к ослаблению резистентности организма, к снижению сопротивляемости инфекции. У таких животных даже при искусственной иммунизации формируется менее стойкий иммунитет.

Не безразличен для животных и избыток протеина в кормовом рационе. При его распаде в организме развивается ацидоз, сопровождающийся снижением сопротивляемости организма к заболеваниям.

К числу других кормовых факторов, влияющих на уровень защитных сил организма относятся обеспеченность животных витаминами и минеральными веществами, соотношение сахара и протеина в рационе, энергетический уровень рациона.

Физиологическое состояние, интенсивность обменных процессов, а, следовательно, здоровье и продуктивность животных во многом зависят от способов содержания и технологии, принятой в том или ином хозяйстве. Например, беспривязное содержание коров со свободным их передвижением, благоприятным микроклиматом в помещении, сухим логовом и постоянным тренирующим воздействием переменных факторов внешней среды оказывает положительное влияние на естественную резистентность организма. Моцион благоприятно действует на формирование естественных защитных сил у свиней и других животных. Ранний отъем поросят (в 10 — 15 дней) не позволяет получать молодняк с достаточно высокой резистентностью, так как механизмы ее становления к этому возрасту еще недостаточно сформировались.

Таким образом, естественные защитные силы организма сельскохозяйственных животных являются довольно динамичным показателем и определяются как генетическими особенностями организма, так и воздействием различных факторов окружающей среды. Это обстоятельство имеет громадное научное и практическое значение. Изменением силы и продолжительности воздействия того или иного фактора можно направленно влиять на формирование и проявление защитных сил организма. Обеспечение животным благоприятных условий содержания и кормления, максимально отвечающих биологическим особенностям организма, сложившимся в процессе эволюционного развития, способствует более быстрому формированию и лучшему проявлению его защитных сил. И, наоборот, неблагоприятное воздействие окружающей среды приводит к ослаблению устойчивости организма, защитные силы его проявляются недостаточно, что усиливает опасность возникновения и распространения различных заболеваний, в том числе инфекционных. Поэтому в основе борьбы с заболеваниями, особенно в условиях крупных ферм и комплексов, а также интенсивного использования животных должны лежать, прежде всего, профилактические мероприятия.

Известно, что невосприимчивость организма (специфический иммунитет), создаваемая любой вакциной, лишь дополняет естественную резистентность. Поэтому укрепление естественных защитных сил организма является важнейшей задачей охраны здоровья животных, повышения их продуктивности, улучшения качества получаемой продукции.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .


Резистентность (от лат. resistere - противостоять, сопротивляться) - устойчивость организма к действию чрезвычайных раздражителей, способность сопротивляться без существенных изменений постоянства внутренней среды; это важнейший качественный показатель реактивности;

Неспецифическая резистентность представляет собой устойчивость организма к повреждению (Г. Селье, 1961), не к какому-либо отдельному повреждающему агенту или группе агентов, а вообще к повреждению, к разнообразным факторам, в том числе и к экстремальным.

Она бывает врожденной (первичная) и приобретенной (вторичная), пассивной и активной.

Врожденная (пассивная) резистентность обусловливается анатомо-физиологическими особенностями организма (например, устойчивость насекомых, черепах, обусловленная их плотным хитиновым покровом).

Приобретенная пассивная резистентность возникает, в частности, при серотерапии, заместительном переливании крови.

Активная неспецифическая резистентность обусловливается защитно-приспособительными механизмами, возникает в результате адаптации (приспособления к среде), тренировки к повреждающему фактору (например, повышение устойчивости к гипоксии вследствие акклиматизации к высокогорному климату).

Неспецифическую резистентность обеспечивают биологические барьеры: внешние (кожа, слизистые, органы дыхания, пищеварительный аппарат, печень и др.) и внутренние - гистогематические (гематоэнцефалический, гематоофтальмический, гематолабиринтный, гематотестикулярный). Эти барьеры, а также содержащиеся в жидкостях биологически активные вещества (комплемент, лизоцим, опсонины, пропердин) выполняют защитную и регулирующую функции, поддерживают оптимальный для органа состав питательной среды, способствуют сохранению гомеостаза.

Резистентность организма тесно связана с функциональным состоянием и реактивностью организма. Известно, что во время зимней спячки некоторые виды животных более резистентны к воздействию микробных агентов, например к столбнячному и дизентерийному токсинам, возбудителям туберкулеза, чумы, сапа, сибирской язвы. Хроническое голодание, сильное физическое утомление, психические травмы, отравления, простуда и др. снижают резистентность организма и являются факторами, предрасполагающими к заболеванию.

Различают неспецифическую и специфическую резистентность организма. Неспецифическая резистентность организма обеспечивается барьерными функциями, содержанием в жидкостях организма особых биологически активных веществ- комплементов, лизоцима, опсонинов, пропердина, а также состоянием такого мощного фактора неспецифической защиты, как фагоцитоз. Важную роль в механизмах неспецифической резистентности организма играет адаптационный синдром. Специфическая резистентность организма обусловливается видовыми, групповыми или индивидуальными особенностями организма при особых воздействиях на него, например при активной и пассивной иммунизации против возбудителей инфекционных заболеваний.

Практически важно, что резистентность организма может быть усилена искусственным путем при помощи специфической иммунизации, а. также введением сывороток или гамма-глобулина реконвалесцентов. Повышение неспецифической резистентности организма использовалось народной медициной с древнейших времен (прижигания и иглоукалывания, создание очагов искусственного воспаления, применение таких веществ растительного происхождения, как женьшень и др.). В современной медицине прочное место заняли такие методы повышения неспецифической резистентности организма, как аутогемотерапия, протеинотерапия, введение антиретикулярной цитотоксической сыворотки. Стимуляция резистентности организма при помощи неспецифических воздействий - эффективный способ общего укрепления организма, повышающий его защитные возможности в борьбе с различными возбудителями болезней.



Резистентность организма - это устойчивость организма к действию различных болезнетворных факторов (физических, химических и биологических).

Резистентность организма тесно связана с (см.).

Резистентность организма зависит от его индивидуальных, в частности конституциональных, особенностей.

Различают неспецифическую резистентность организма, т. е. устойчивость организма к любым патогенным воздействиям, независимо от их природы, и специфическую, обычно к определенному агенту. Неспецифическая резистентность зависит от состояния барьерных систем (кожи, слизистых, и др.), от неспецифических бактерицидных веществ крови (фагоцитов, лизоцима, пропердина и т. д.) и системы гипофиз - кора надпочечников. Специфическая резистентность при инфекциях обеспечивается реакциями иммунитета.

В современной медицине широко применяются методы повышения как специфической, так и неспецифической резистентности организма - (см.), аутогемотерапия (см.), (см.) и т. д.

Резистентность организма (от лат. resistere - оказывать сопротивление) - устойчивость организма к действию патогенных факторов, т. е. физических, химических и биологических агентов, способных вызывать патологическое состояние.

Резистентность организма зависит от его биологических, видовых особенностей, конституции, пола, стадии индивидуального развития и анатомо-физиологических особенностей, в частности уровня развития нервной системы и функциональных отличий в деятельности желез внутренней секреции (гипофиза, коры надпочечников, щитовидной железы), а также от состояния клеточного субстрата, ответственного за продукцию антител.

Резистентность организма тесно связана с функциональным состоянием и реактивностью организма (см.). Известно, что во время зимней спячки некоторые виды животных более резистентны к воздействию микробных агентов, например к столбнячному и дизентерийному токсинам, возбудителям туберкулеза, чумы, сапа, сибирской язвы. Хроническое голодание, сильное физическое утомление, психические травмы, отравления, простуда и др. снижают резистентность организма и являются факторами, предрасполагающими к заболеванию.

Различают неспецифическую и специфическую резистентность организма. Неспецифическая резистентность организма обеспечивается барьерными функциями (см.), содержанием в жидкостях организма особых биологически активных веществ- комплементов (см.), лизоцима (см.), опсонинов, пропердина, а также состоянием такого мощного фактора неспецифической защиты, как фагоцитоз (см.). Важную роль в механизмах неспецифической резистентности организма играет адаптационный синдром (см.). Специфическая резистентность организма обусловливается видовыми, групповыми или индивидуальными особенностями организма при особых воздействиях на него, например при активной и пассивной иммунизации (см.) против возбудителей инфекционных заболеваний.

Практически важно, что резистентность организма может быть усилена искусственным путем при помощи специфической иммунизации, а. также введением сывороток или гамма-глобулина реконвалесцентов. Повышение неспецифической резистентности организма использовалось народной медициной с древнейших времен (прижигания и иглоукалывания, создание очагов искусственного воспаления, применение таких веществ растительного происхождения, как женьшень и др.). В современной медицине прочное место заняли такие методы повышения неспецифической резистентности организма, как аутогемотерапия, протеинотерапия, введение антиретикулярной цитотоксической сыворотки. Стимуляция резистентности организма при помощи неспецифических воздействий - эффективный способ общего укрепления организма, повышающий его защитные возможности в борьбе с различными возбудителями болезней.

Резистентность организма – (от лат. resistere – сопротивляться ) – это свойство организма противостоять действию патогенных факторов или невосприимчивость к воздействиям повреждающих факторов внешней и внутренней среды . Другими словами, резистентность – это устойчивость организма к действию патогенных факторов.

В ходе эволюции организм приобрел определенные приспособительные механизмы, обеспечивающие его существование в условиях постоянного взаимодействия с окружающей средой. Отсутствие или недостаточность этих механизмов могло бы вызвать не только нарушение жизнедеятельности, но и гибели индивида.

Резистентность организма проявляется в различных формах.

Первичная (естественная, наследственная) резистентность – это устойчивость организма к действию факторов, определяемая особенностью строения и функции органов и тканей, передающихся по наследству . Например, кожа и слизистые оболочки представляют собой структуры, которая препятствуют проникновению микроорганизмов и многих токсических веществ в организм. Они осуществляют барьерную функцию. Подкожно-жировая клетчатка, обладая плохой теплопроводимостью, способствует сохранение эндогенного тепла. Ткани опорно-двигательного аппарата (кости, связки) обеспечивают значительное сопротивление к деформации при механических повреждениях.

Первичная резистентность может быть абсолютной и относительной :

· абсолютная первичная резистентность – классическим примером является наследственная устойчивость к ряду инфекционных агентов («наследственный иммунитет»). Его наличие объясняется молекулярными особенностями организма, которые не могут служить средой обитания для того или иного микроорганизма, или отсутствуют клеточные рецепторы, необходимые для фиксации микроорганизма, т.е. существуют рецепторная некомплементарность между молекулами агрессии и их молекулярными мишенями. Кроме того, в клетках может не быть веществ, необходимых для существования микроорганизмов, либо имеются в них продукты, мешающие развитию вирусов, бактерий. Благодаря абсолютной резистентности человеческий организм не поражается многими инфекционными заболеваниями животных (абсолютная невосприимчивость человека к чуме рогатого скота), и наоборот – животные не восприимчивы к большой группе инфекционной патологии людей (гонорея – болезнь только человек).

· относительная первичная резистентность – при определенных условиях механизмы абсолютной резистентности могут изменяться и тогда организм способен взаимодействовать с раннее «игнорируемым» им агентом. К примеру, домашние птицы (куры) в обычных условиях не болеют сибирской язвой, на фоне гипотермии (охлаждения) удается вызвать данное заболевание. Верблюды, невосприимчивы к чуме, заболевают ее после сильного утомления.

Вторичная (приобретенная, измененная) резистентность – это устойчивость организма, сформировавшаяся после предварительного воздействия на него определенных факторов. Примером может служить развитие иммунитета после перенесенных инфекционных заболеваний. Приобретенная резистентность к неинфекционным агентам формируется с помощью тренировок к гипоксии, физическим нагрузкам, низким температурам (закаливание) и т.д.

Специфическая резистентность это устойчивость организма квоздействию какого-то одного агента . Например, возникновение иммунитета после выздоровления от таких инфекционных заболеваний как оспа, чума, корь. К этому же виду резистентности относятся и повышенная устойчивость организма после вакцинации.

Неспецифическая резистентность это устойчивость организма квоздействию сразу нескольких агентов . Конечно же, невозможно достичь резистентности ко всему разнообразию факторов внешней и внутренней среды – они различны по своей природе. Однако, если патогенетический фактор встречается при очень многих заболеваниях (вызванных различными этологическими факторами) и его действие при этом играет в их патогенезе одну из ведущих ролей, то резистентность к нему проявляется к большему количеству воздействий. Например, искусственная адаптация к гипоксии значительно облегчает течение большой группы патологии, так как она нередко определяет их течение и исход. Причем, в отдельных случаях, достигнутым таким приемом резистентность, может препятствовать развитию того или иного заболевания, патологического процесса.

Активная резистентность это устойчивость организма, обеспечивающаяся включением защитно-приспособительными механизмами вответ на воздействие агентов . Это может быть активация фагоцитоза, выработка антител, эмиграция лейкоцитов и др. Устойчивость к гипоксии достигается путем увеличения вентиляции легких, ускорения кровотока, повышения количества в крови эритроцитов и др.

Пассивная резистентность это устойчивость организма связаная с анатомо-физиологическими его особенностями, т.е. она не предусматривает активацию реакций защитного плана при воздействие агентов . Данная резистеньность обеспечивается барьерными системами организма (кожа, слизистая, гистогематические и гематолимфатические барьеры), наличием бактерицидных факторов (соляной кислотой в желудке, лизоцима в слюне), наследственным иммунитетом и др.

А.Ш. Зайчик, Л.П. Чурилов (1999) вместо термина «пассивная резистентность » предлагают для обозначения выше описанного состояний организма использовать термин «переносимость ».

Существует и несколько другая трактовка «переносимости ». Во время действия двух и более чрезвычайных (экстремальных) факторов, организм нередко отвечает лишь на один из них, и не реагирует на действие других. Например, животные, подвергшиеся действию радиального ускорения, переносят смертельную дозу стрихнина, у них отмечается больший процент выживаемости в условиях гипоксии и перегревания. При шоке резко снижается ответ организма на механическое воздействие. Такая форма реагирования, по мнению И.А. Аршавского, не может быть названа резистентностью , поскольку в этих условиях организм не в состоянии активно противостоять действию других агентов среды, сохраняя гемостаз, он лишь переносит воздействия в состояние глубокогоугнетения жизнедеятельности . Такое состояния И.А. Аршавский и предложил называть «переносимостью» .

Общая резистентность это устойчивость организма как целого, к действию того или иного агента . Например, общая резистентность к кислородному голоданию обеспечивает функционирование его органов и систем за счет различных защитно-приспособительных механизмов, активируемых на различных уровнях организации живых систем. Это и системные реакции – увеличение активности дыхательной и сердечно-сосудистой систем, это и субклеточные изменения – увеличения объема и количества митохондрий и т.д. Все это обеспечивает защиту организма в целом.

Местная резистентность это устойчивость отдельных органов и тканей организма к воздействию различных агентов . Устойчивость слизистых оболочек желудка и 12-ти перстной кишки к язвообразованию определяется состоянием слизисто-бикарбонатного барьера данных органов, состоянием микроциркуляции, регенераторной активностью их эпителия и т.д. Доступность токсинов в ЦНС во многом определяется состоянием гематоэнцефалического барьера, он для многих токсических веществ и микроорганизмов непроходим.

Многообразие форм резистетности демонстрирует значительные возможности организма в защите от воздействия факторов внешней и внутренней среды. У индивидов, как правило, можно отметить наличие нескольких видов реактивности . К примеру, больному ввели антитела к определенному виду микроорганизма (стафилококку) – формы резистенотности при этом следующие: вторичная, общая, специфическая, пассивная.

5 .4.Взаимосвязь между реактивностью и резистентностью.

В общебиологическом смысле, реактивность есть выражение индивидуальной меры приспособительных возможностей живых систем, всегоспектра реакций , свойственных организму как целому . Она не сводится к количественному понятию и характеризуется определенным набором адаптивных реакций , возможным для данного организма («что имею, то и отдаю»), т.е. имеет качественный характер.

Резистентность уже , приложима к взаимодействию с конкретным патогенным агентом и носит количественный характер, т.е. характеризуется определенным набором защитных реакций от этого водействия и обеспечивающих сохранение гомеостаза, а при заболевании, способствующих возвращению к нему .

Возможность организма противостоять повреждающим воздействиям среды обитания, в конечном счете, определяется его реакцией как единого целого, и поэтому, все механизмы , обеспечивающие резистентность являются одним из основных следствий и выражений реактивности . Нередко реактивность и резистентность изменяются однонаправлено, например – иммунитет при гиперэргической реактивности во время туберкулезного процесса (высокая резистентность на фоне гиперэргии). Однако, полностью их отождествлять не следует, при том же туберкулезе выраженная устойчивость (иммунитет) может наблюдаться и при гипэргическом развитие патологии. Резистентность может снижаться на фоне гиперэргической формы реактивности, что отмечается, например, во время аллергии; и наоборот – чем ниже реактивность, тем выше резистентность. Последнее положение наиболее наглядно демонстрируется у зимне-спящих животных. У них, во время зимней спячки, многие механизмы (проявления) реактивности значительно снижены. Но при этом (снижение реактивности) резистентность к самым разнообразным агентам (гипотермии, гипоксии, отравлениям, инфекциям) значительно повышена.

Дело в том, что выделяющиеся во время спячки опиоидные пептиды (дерморфин) тормозят активность гипоталямо-гипофизарной и других систем мозга. Отсюда, угнетение активности высших вегетативных отделов ЦНС (симпатики) способствует снижению интенсивности обмена веществ, значительно сокращается потребление кислорода тканями, что и позволяет этим животным переносить, например, более значительную гипотермию, чем бодрствующие особи.

Находящиеся в активном состоянии индивиды, активно реагируют на гипотермию - наблюдается значительное напряжение высших вегетативных и нейроэндокринных центров с активацией работ периферической эндокринных желез (надпочечников, щитовидной железы). Отмечается диаметральное противоположный эффект – интенсивность метаболизма возрастает, потребность в кислороде тканями увеличивается, что приводит очень быстро к истощению энергетических и пластических ресурсов организма. Кроме того, одновременная стимуляция функции щитовидной железы и коры надпочечников вызывает определенный антагонизм в конечном механизме действия их гормонов. На уровне клеточных процессов эффект глюкокортикоидов и тиреодных гормонов противоположный (тиреодные гормоны разобщают окислительное фосфорилирование, а глюкокортикоиды его усиливают). Функция коры надпочечников тормозится тиреоидные гормонами. Такая активная, но энергоемкая (энергозатратная) и противоречивая реактивность не обеспечивает должной резистентности к холоду. Ректальная температура у зимне спящих животных может достигать + 5 0 С без каких либо серьезных последствий для организма, смерть же у бодрствующих животных нередко наступает при ректальной температуре + 28 0 С.

Используя искусственную гибернацию (холодовой наркоз) хирурги значительно повышают резистентность организма при длительных и обширных оперативных вмешательствах. Барбитуратовая кома (характеризующаяся угнетением ответов ретикулярной формации, промежуточного мозга и стволовых структур) считается энергетически щадящей для мозга и увеличивает выживаемость в экстремальных состояниях. На этом основании, в анестезиологии и реаниматологии ее применяют для лечения других, более опасных видов комы. Не следует забывать известное высказывание И.П. Павлова о целебной роли сна, как охранительного торможения.

Таким образом: первое - высшая степень устойчивости организма может достигаться при различной интенсивности реагирования на воздействие агентов. И второе – гиперэргическая форма реактивности не всегда приводит к значительной резистентности, т.е. высокая интенсивность ответа организма не во всех случаях выгодна и даже опасна .

Естественно, сразу же возникает вопрос, почему так происходит? Ведь реактивность в конечном итоге направлена на защиту организма от воздействия на него патогенных агентов, а при возникновении болезни – на ликвидацию патологического процесса, заболевания. Мы неоднократно подчеркивали, что защитные, адаптивные реакции организма несут в себе скрытую, а иногда и явную угрозу дальнейшего повреждения, которое может способствовать утяжелению патологию (см. с. 22, 68, 69). Закономерное реагирование организма иногда приводит даже к его гибели: одним из механизмов защиты при наркомании является повышение активности парасимпатической нервной системы, что формирует физическую зависимость к наркотику или, чрезмерная гипертрофия миокарда заканчивается кардиосклерозом. Трудно четко отдифференцировать их положительное и отрицательное назначение. Например, когда заканчивается защитная роль централизации кровообращения при острой гипоксии и где начало ее негативного воздействия на органы и ткани организма, каковы критерии положительного и отрицательного назначения отека, развивающегося при воспалении? Ответить на эти вопросы мы попытаемся в следующем разделе, посвященному рассмотрению основного вопроса патофизиологии – о соотношении полома и защиты в болезни.