Нервные клетки восстанавливаются у мужчин. Не восстанавливаются нервы: причины, понятие, способы восстановления и сроки лечения. Восстанавливаются ли нервные клетки

В научном сообществе довольно долго господствовала теория о статичности и невозобновляемости нервной системы. Было принято считать, что на протяжении всей жизни мозг человека оперирует тем количеством нейронов (нервных клеток), которые ему достались при рождении. Широкое распространение получил миф о том, что нервные клетки не восстанавливаются, который подогревался информацией о закономерной гибели нейронов с первых дней жизни.

Дело в том, что новые нервные клетки не появляются в ходе деления, как это происходит в других органах и тканях организма, а образуются в ходе нейрогенеза. Этот процесс начинается с деления клеток-предшественников нейронов (или нейронных стволовых клеток). Далее они мигрируют, дифференцируются и образуют полностью функционирующий нейрон. Нейрогенез наиболее активен во время внутриутробного развития.

Впервые сообщение об образовании новых нервных клеток во взрослом организме млекопитающих появилось ещё в 1962 году. Но тогда результаты работы Джозефа Олтмана (Joseph Altman), опубликованные в журнале Science, не были восприняты всерьёз, и признание нейрогенеза отложилось почти на двадцать лет.

С тех пор неоспоримые доказательства существования этого процесса во взрослом организме были получены для певчих птиц, грызунов, амфибий и некоторых других животных. И только в 1998 году нейробиологам во главе с Питером Эрикссоном (Peter Eriksson) и Фредом Гейгом (Fred Gage) удалось продемонстрировать образование новых нейронов в гиппокампе человека, чем было доказано существование нейрогенеза в головном мозге взрослых людей.

Сейчас исследование нейрогенеза является одним из самых приоритетных направлений в нейробиологии. В частности, учёные и медики видят в нём большой потенциал для лечения дегенеративных заболеваний нервной системы, таких как болезнь Альцгеймера или болезнь Паркинсона.

Вплоть до настоящего момента считалось, что нейрогенез в головном мозге взрослых млекопитающих локализован в двух областях, которые связанны с памятью (гиппокамп) и обонянием (обонятельные луковицы).

Но в последние несколько лет нейробиологи из Университета Мичигана (MSU) впервые показали, что мозг млекопитающих на протяжении периода полового созревания наращивает количество клеток в миндалевидном теле (миндалине) и взаимосвязанных с ним областях. Причём происходит как увеличение числа нейронов, так и клеток нейроглии – вспомогательных клеток нервной ткани.

Миндалины реагируют на зрительные, слуховые, обонятельные и кожные раздражения, а также на сигналы внутренних органов. На основе полученной информации они участвуют в формировании эмоциональных и двигательных реакций, оборонительного и полового поведения, и многого другого. Миндалевидное тело играет важную роль в восприятии неких социальных ориентиров. Например, хомяки с его помощью анализируют запах феромонов, что обеспечивает общение между животными, а люди воспринимают мимику и язык тела друг друга на основе зрительной информации.

«Мы предположили, что новые нейроны, которые добавляются в эти области головного мозга в период полового созревания, могут оказывать непосредственное влияние на репродуктивную функцию взрослых особей», ‒ рассказывает ведущий автор исследования Мэгги Мор (Maggie Mohr).



Для проверки своей гипотезы Мор в сотрудничестве с профессором психологии Шерил Сиск (Cheryl Sisk) вводили юным самцам сирийских хомячков (Mesocricetus auratus) химический маркер, с помощью которого можно отслеживать появление и дальнейшие перемещения новых нейронов. Инъекции делали с 28 по 49 день после рождения. Через четыре недели после последнего введения препарата, при достижении половой зрелости грызунам дали возможность спариться, после чего проанализировали их мозг.

Согласно данным, опубликованным в журнале PNAS, новые нервные клетки, появившиеся в период полового созревания, были доставлены прямиком в миндалины и смежные области мозга хомячков. А некоторые из них были включены в нейронные сети, которые обеспечивают социальное и сексуальное поведение.

В официальном пресс-релизе исследователи подчёркивают, что им не только удалось доказать выживание новых клеток в зрелом возрасте, но и показать, что они включаются в работу мозга и предназначены для адаптации к «взрослой» жизни.

Авторы работы настроены весьма оптимистично и надеются, что их работа прольёт свет и на человеческий мозг. Ведь, несмотря на более сложные взаимоотношения между людьми, функции миндалин у нас и хомячков весьма схожи. Вполне вероятно, что именно процесс образования новых нейронов в период полового созревания оказывается решающим в способности людей социализироваться во взрослом человеческом обществе.

Всем известно такое крылатое выражение, как «нервные клетки не восстанавливаются». Его абсолютно все люди с самого детства воспринимают в качестве непреложной истины. Но на самом же деле эта существующая аксиома является не более чем простым мифом, так как новые научные данные в результате проведенных исследований ее полностью опровергают.

Эксперименты над животными

Каждый день в человеческом организме погибает множество нервных клеток. А за год мозг человека может потерять до одного процента и даже больше от общего их числа, и этот процесс запрограммирован самой природой. Поэтому восстанавливаются ли нервные клетки или нет - вопрос, волнующий многих.

Если провести эксперимент над низшими животными, к примеру, над круглыми червями, то у них совсем отсутствует какая-либо гибель нервных клеток. Другой вид червей, аскарида, имеет сто шестьдесят два нейрона при рождении, и умирает с таким же их количеством. Подобная картина и у многих других червей, моллюсков и насекомых. Из этого можно сделать вывод, что нервные клетки восстанавливаются.

Число и принцип расположения нервных клеток у этих низших животных твердо заданы генетическим образом. При этом особи, имеющие неправильную нервную систему, очень часто просто не выживают, но четкие ограничения в структуре нервной системы не позволяют таким животным учиться и изменять свое привычное поведение.

Неизбежность гибели нейронов, или почему нервные клетки не восстанавливаются?

Человеческий организм, если сравнивать его с низшими животными, рождается уже с большим преобладанием нейронов. Этот факт запрограммирован с самого начала, так как природой закладывается в мозг человека огромный потенциал. Абсолютно все нервные клетки мозга случайным образом развивают большое количество связей, однако, прикрепляются только те из них, которые применяются при обучении.

Восстанавливаются ли нервные клетки - очень актуальный вопрос во все времена. Нейроны образуют точку опоры или связь с остальными клетками. Потом организмом производится твердый отбор: умерщвляются нейроны, которые не образовывают достаточного числа связей. Их количество является показателем уровня активности нейронов. В том случае, когда они отсутствуют, нейрон не принимает участия в процессе обработки информации.

Присутствующие нервные клетки в организме и без того являются довольно дорогими по степени наличия кислорода и питательных веществ (по сравнению с большинством других клеток). Кроме того, они употребляют множество энергии даже в те моменты, когда человек отдыхает. Именно поэтому человеческий организм избавляется от свободных неработающих клеток, и восстанавливаются нервные клетки.

Интенсивность гибели нейронов у детей

Большинство нейронов (семьдесят процентов), которые заложены еще в эмбриогенезе, погибают еще до непосредственного рождения младенца. И этот факт считается полностью нормальным, так как именно в этом детском возрасте уровень способности к

Обучению должен быть максимальным, поэтому мозг должен иметь самые значительные резервы. Они, в свою очередь, в процессе обучения постепенно сокращаются, и соответственно, снижается нагрузка на весь организм в целом.

Другими словами, чрезмерное количество нервных клеток является необходимым условием для обучения и для многообразия возможных вариантов процессов развития человека (его индивидуальность).

Пластичность заключается в том, что многочисленные функции умерших нервных клеток ложатся на оставшиеся живые, которые увеличивают свои размеры и образуют уже новые связи, при этом компенсируют потерянные функции. Интересный факт, но одна живая нервная клетка заменяет собой девять умерших.

Значение возраста

Во взрослом возрасте гибель клеток продолжается не так стремительно. Но когда мозг не нагружается новой информацией, то он оттачивает старые присутствующие навыки и сокращает число нервных клеток, которые необходимы для их реализации. Таким образом, клетки будут уменьшаться, а связи их с остальными клетками - увеличиваться, что является совершенно нормальным процессом. Поэтому вопрос о том, почему нервные клетки не восстанавливаются, отпадет сам собой.

У пожилых людей нейроны в мозгу присутствуют в существенном меньшем количестве, чем, скажем, у младенцев или молодых. При этом соображать они могут значительно быстрее и намного больше. Так происходит благодаря тому, что в простроенной при обучении архитектуре присутствует отличная связь между нейронами.

В старости, к примеру, если отсутствует обучение, человеческий мозг и весь организм начинают специальную программу свёртывания, другими словами - процесс старения, который приводит к смерти. При этом, чем меньше уровень востребованности в различных системах организма или физические и интеллектуальные нагрузки, а также, если присутствует движения и общения с остальными людьми, тем быстрее будет процесс. Вот почему требуется постоянно осваивать новую информацию.

Нервные клетки способны восстанавливаться

Сегодня установлено наукой, что нервные клетки восстанавливаются и генерируются сразу в трех местах организма человека. Они не возникают в процессе деления (по сравнению с другими органами и тканями), а появляются при нейрогенезе.

Это явление является самым активным в период внутриутробного развития. Оно берет начала с деления предшествующих нейронов (стволовых клеток), впоследствии проходящих миграцию, дифференциацию и в результате образующих в полной мере работающий нейрон. Поэтому на вопрос о том, нервные клетки восстанавливаются или нет, можно ответить, что да.

Понятие нейрона

Нейрон представляет собой особенную клетку, у которой есть свои отростки. Они имеют длинные и короткие размеры. Первые носят название «аксоны», а вторые, более разветвленные, — «дендриты». Любые нейроны провоцируют генерацию нервных импульсов и передают их к соседним клеткам.

Средние диаметры тел нейронов равны примерно одной сотой миллиметра, а общее число таких клеток в головном мозге человека составляет порядком сто миллиардов штук. При этом если все тела присутствующих в организме нейронов мозга построить в одну сплошную линию, ее длина будет ровняться тысяче километров. Нервные клетки восстанавливаются или нет - вопрос, волнующих многих ученых.

Человеческие нейроны отличаются друг от друга по своим размерам, уровню разветвленности присутствующих дендритов, а также длине аксонов. Наиболее длинные аксоны имеют размер, равный одному метру. Они являются аксонами огромных пирамидных клеток в коре больших полушарий. Тянутся они непосредственно к нейронам, расположенным в нижних отделах спинного мозга, которые контролируют всю двигательную активность туловища и мышц конечностей.

Немного истории

В первый раз новость о присутствии новых нервных клеток у взрослого организма млекопитающих услышали в 1962 году. Однако в то время результаты эксперимента Джозефа Олтмана, которые были опубликованы в журнале «Science», народ не воспринял слишком серьезно, поэтому нейрогенез тогда не был признан. Случилось это почти двадцать лет спустя.

С того самого времени прямые доказательства того, что нервыне клетки восстанавливаются, были зафиксированы у птиц, амфибий, грызунов и других животных. Позже в 1998 году ученые смогли продемонстрировать появление новых нейронов у человека, чем доказали непосредственное существование в головном мозге нейрогенеза.

Сегодня исследование такого понятия, как нейрогенез, является одним из главных направлений среди нейробиологии. Многие ученые находят в нем огромный потенциал, чтобы лечить дегенеративные заболевания нервной системы (болезнь Альцгеймера и Паркинсона). Кроме того, многих специалистов действительно волнует вопрос, как восстанавливаются нервные клетки.

Миграция стволовых клеток в организме

Установлено, что у млекопитающих, также как у низших позвоночных животных и птиц, стволовые клетки находятся в непосредственной близости с боковыми желудочками мозга. Их превращение в нейроны проходит довольно сильно. Так, к примеру, у крыс за один месяц из имеющихся у них в мозгу стволовых клеток получается примерно двести пятьдесят тысяч нейронов. Уровень продолжительности жизни подобных нейронов довольно высок и составляет порядком ста двенадцати дней.

Кроме того, доказано не только то, что восстановление нервных клеток вполне реально, но и то, что стволовые клетки способны мигрировать. В среднем они преодолевают путь, равный двум сантиметрам. А в том случае, когда они находятся в обонятельной луковице, то перевоплощаются там уже в нейроны.

Перемещение нейронов

Стволовые клетки вполне можно достать из мозга и поместить совершенно в другое место нервной системы, в котором они станут нейронами.

Сравнительно недавно были проведены специальные исследования, которые показали, что новые нервные клетки в мозге взрослого человека могут появляться не только из нейрональных клеток, но из стволовых соединений в крови. Но такие клетки не могут превращаться в нейроны, они только способны сливаться с ними, при этом образуя другие двухъядерные компоненты. После этого прежние ядра нейронов разрушаются и замещают новые.

Неспособность нервных клеток погибать от стресса

Когда присутствует какой-либо стресс в жизни человека, клетки могут гибнуть совсем не от избыточного напряжения. Они вообще не имеют способности погибать от любой

перегрузки. Нейроны могут просто тормозить свою непосредственную деятельность и отдыхать. Поэтому восстановление нервных клеток головного мозга все-таки возможно.

Нервные клетки погибают от развивающегося недостатка различных питательных веществ и витаминов, а также вследствие нарушения процесса кровоснабжения в тканях. Как правило, они приводят в результате к интоксикации и гипоксии организма благодаря продуктам жизнедеятельности, а еще из-за употребления разнообразных лекарственных средств, крепких напитков (кофе и чай), курения, принятия наркотиков и алкоголя, а также при существенных физических нагрузках и перенесенных инфекционных болезнях.

Как восстановить нервные клетки? Это очень просто. Для этого достаточно все время и непрерывно учиться и развивать большую уверенность в себе, получая крепкие связи эмоций со всеми близкими людьми.

Ученые из Швеции наконец-то поставили точку в одном из традиционных нейрофизиологических споров — они убедительно доказали, что нервные клетки взрослого человека могут восстанавливаться. Впрочем, это совсем не говорит о том, что нейроны не следует беречь, поскольку, согласно полученным ими данным, регенерируют далеко не все нервные клетки.

Многие люди до сих пор считают утверждение о том, что "нервные клетки не восстанавливаются" весьма и весьма справедливым. Хотя на самом деле оно является презумпцией в чистом виде, то есть верно до тех пор, пока не доказано обратное. Дело в том, что ученые пришли у этому выводу следующим образом: изучив сам сформировавшийся нейрон, они поняли, что он не способен к делению (как и некоторые другие клетки нашего организма, например те, что составляют сердечную мышцу).

Однако это еще ничего не значит — ведь новые нейроны могут появляться из клеток-предшественников (как это происходит у эмбриона при развитии нервной системы). Тем не менее во взрослом организме млекопитающего эти предшественники обнаружены не были — хотя искали их очень тщательно. Именно это и побудило ученых принять утверждение о том, что нервные клетки не восстанавливаются — но, еще раз повторюсь, как презумпцию. Которую можно опровергнуть, доказав либо способность нейронов к размножению, либо — найдя предшественники нервных клеток во взрослом организме.

Следует заметить, что поиском таких доказательств ученые занимаются уже достаточно давно — еще в 1956 году отечественный нейробиолог И. Рампан, работавший в Институте мозга, заметил одну удивительную вещь — после сильного повреждения мозга у крыс, собак и некоторых других видов млекопитающих сохранившиеся нервные клетки светлеют, внутри них формируются два ядра, далее разделяется пополам цитоплазма, и в результате этого разделения получается два нейрона. То есть нейроны в некоторых случаях могут делиться. Правда, на подобное были способны лишь молодые нервные клетки — у старых животных деление не происходило.

К сожалению, из-за "железного занавеса", который тогда отгораживал от всего мира не только жителей СССР, но и отечественную науку, работа Рампана не попала в ведущие мировые журналы и осталась незамеченной для большинства ученых. Однако всего через шесть лет нейрофизиолог Жозеф Олтман из Университета Пердью (США) проделал похожие исследования — он с помощью электрического тока разрушил одну из структур таламуса крысы и ввел туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны не только там, где он произвел разрушения, но и в другом отделе — коре головного мозга. В течение последующих семи лет Олтман опубликовал еще несколько работ, доказывающих существование нейрогенеза в мозге взрослых млекопитающих. Однако тогда на них так же не обратили внимания — слишком уж фантастической казалась подобная идея.

К теме нейрогенеза в мозгу у взрослых позвоночных вернулись только через 20 лет. На этот раз объектом исследования были птицы. Профессор Фернандо Ноттебуму из Рокфеллеровского университета (США) убедительно доказал, что у взрослых самцов канареек процесс образования новых нейронов постоянно происходит в вокальном центре мозга, хотя их количество подвержено сезонным колебаниям (наиболее активно нейрогенез протекает весной). Примерно тогда же, в середине 80-х годов прошлого века отечественный физиолог А. Поленов открыл нейрогенез в мозгу тритонов и лягушек.

В начале 1990-х годов ученым удалось доказать, что этот процесс идет и у млекопитающих. Группа ученых, которыми руководил профессор Гейдж из Университета Салка (США), построили миниатюрный город, куда запустили обычных мышей, которые играли там, занимались своеобразной "физкультурой", а также отыскивали выходы из лабиринтов. В итоге оказалось, что у таких "городских" мышей новые нейроны возникали в гораздо большем количестве, чем у их пассивных сородичей, погрязших в рутинной жизни в виварии.

Ученые, заинтересовавшись, решили выяснить, каким образом это происходит. Через некоторое время они нашли в мозгу взрослых грызунов клетки, которые, по их предположению, могли являться стволовыми. После этого был проведен следующий эксперимент — мозговую ткань, содержащую "кандидатов" в стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. И что вы думаете, они действительно превратились в нейроны, а ослепленная крыса вновь стала видеть!

Получается, что Рампан был не прав, и на самом деле новые нейроны возникают не в результате деления старых, а из своих предшественников? В реальности все обстоит намного сложнее, в 2003 году группа профессора Гейджа опубликовала работу, в которой показала, что новые нейроны могут образовываться и из стволовых клеток крови! Оказалось, что они могут проникать в мозг при травмах, а дальше происходит следующее: эти клетки сливаются с нейронами, образуя двуядерные конгломераты. Затем "старое" ядро нейрона разрушается, а его замещает "новое" ядро стволовой клетки крови. Видимо, именно этот процесс и наблюдал Рампан, однако он не смог его правильно интерпретировать.

Итак, многочисленные эксперименты основательно пошатнули презумпцию о том, что нервные клетки не восстанавливаются. Однако у скептиков осталось последнее прибежище — хорошо, говорили они, у животных этот процесс возможен, однако у человека подобное никогда не происходит. Впрочем, в 1998 году эксперименты американских ученых показали, что нейрогенез продолжается даже у взрослого человека, а происходит он в гиппокампе — отделе переднего мозга, который лежит под большими полушариями и принимает участие в формирования эмоций, консолидации памяти (то есть переходе кратковременной памяти в долговременную), а так же в "создании" сновидений.

Эта работа произвела сенсацию, однако из-за того, что подобные эксперименты признали опасными для здоровья человека, долгое время никто не решался их повторить. То есть полученные ранее результаты так и не перепроверились в других, независимых исследованиях, поэтому данная работа была поставлена под сомнение. И только недавно группа ученых из Каролинского института (Швеция), которой руководила доктор Кирсти Сполдинг, выяснили, что новые клетки в гиппокампе взрослого человека все-таки образуются. При этом исследователи использовали весьма нестандартную методику — вычисление соотношения изотопов углерода С 14 и С 12 .

Как мы знаем, радиоактивный углерод С 14 весьма нестабилен и быстро разрушается. Поэтому, по соотношению С 14 и С 12 в молекулах клетки можно понять, сколько минуло времени со дня смерти объекта — то есть с момента, когда клетки перестали поглощать радиоактивный углерод. Однако откуда он взялся в мозге человека? Дело в том, что в 50-60-е годы прошлого века все развитые страны мира интенсивно испытывали разнообразные атомные заряды, а во время таких испытаний в окружающую среду в изобилии поступал радиоактивный изотоп углерода С 14 . Потом, после 1963 года (когда был принят Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой) эти испытания сошли на нет и радиоактивного углерода в природе стало на порядки меньше.

Мозг новорожденного младенца содержит 100 миллиардов нервных клеток - нейронов. Считается, что их количество остается неизменным в течение всей жизни. По мере взросления человека и развития его интеллекта увеличивается не число нейронов, а число и сложность соединений между ними. Гибель нервных клеток в результате болезни или травмы невосполнима - человек теряет способность думать, чувствовать, говорить, двигаться - в зависимости от того, какие части мозга повреждены. Поэтому и бытует выражение: "нервные клетки не восстанавливаются".

На вопрос: можно ли восстановить поврежденную нервную ткань? - наука долгое время отвечала отрицательно. Однако исследования академика Российской академии естественных наук, члена Международных институтов эмбриологии и биологии развития Льва Владимировича Полежаева свидетельствуют о другом: в некоторых условиях нервные клетки могут быть восстановлены.

Академик Л. ПОЛЕЖАЕВ.

Загадки нейронов

Медикам давно известно, что при повреждении разных отделов мозга у человека нервные клетки (нейроны) теряют способность проводить электрические импульсы. Кроме того, при травмах мозга нейроны сильно изменяются: их многочисленные ветвистые отростки, принимающие и передающие нервные импульсы, исчезают, клетки сморщиваются и уменьшаются в размере. После такого превращения нейроны уже не способны выполнять свою главную работу в организме. А не работают нервные клетки - нет и мышления, эмоций, сложных проявлений психической жизни человека. Поэтому травмирование нервной ткани, особенно в головном мозге, и приводит к непоправимым последствиям. Это касается не только человека, но и млекопитающих.

А как обстоит дело с другими животными - у всех ли нервная ткань не восстанавливается после повреждения? Оказывается, у рыб, тритонов, аксолотлей, саламандр, лягушек и ящериц нервные клетки мозга способны к восстановлению.

Почему же у одних животных нервная ткань обладает способностью к регенерации, а у других нет? И так ли это на самом деле? Этот вопрос долгие годы занимал умы ученых.

Что такое, вообще, восстановление нервной ткани? Это либо появление новых нервных клеток, которые возьмут на себя функции погибших нейронов, либо возвращение изменившихся в результате травмы нервных клеток в исходное рабочее состояние.

Источником восстановления нервной ткани могут стать еще не развитые клетки глубоких слоев мозга. Они превращаются в так называемые нейробласты - предшественники нервных клеток, а затем уже - в нейроны. Это явление обнаружил в 1967 году немецкий исследователь В. Кирше - сначала у лягушек и аксолотлей, а потом еще и у крыс.

Был замечен и другой путь: после повреждения мозга сохранившиеся нервные клетки светлеют, внутри них формируются два ядра, далее разделяется пополам цитоплазма, и в результате этого разделения получается два нейрона. Так появляются новые нервные клетки. Российский биолог И. Рампан, работавший в Институте мозга, в 1956 году первым открыл именно такой способ восстановления нервной ткани у крыс, собак, волков и других видов животных.

В 1981-1985 годах американский исследователь Ф. Ноттебом обнаружил, что сходные процессы протекают у поющих самцов канареек. У них сильно увеличиваются области мозга, отвечающие за пение - как оказалось, за счет того, что в этих областях появляются новые нейроны.

В 70-е годы в Киевском и Саратовском университетах, в Московском медицинском институте исследователи изучали крыс и собак с повреждениями различных участков мозга. Под микроскопом удалось проследить, как по краям раны нервные клетки размножаются и появляются новые нейроны. Однако нервная ткань в области травмы полностью не восстанавливалась. Напрашивался вопрос: нельзя ли как-то стимулировать процесс деления клеток и тем самым вызвать появление новых нейронов?

Трансплантация нервной ткани
Ученые пытались решить проблему восстановления нервной ткани таким путем - пересадить нервную ткань, взятую от взрослых млекопитающих, в головной мозг других животных того же вида. Но эти попытки не привели к успеху - пересаженная ткань рассасывалась. В 1962-1963 годах автор статьи и его сотрудница Э. Н. Карнаухова пошли другим путем - они осуществили пересадку кусочка мозга от одной крысы к другой, используя для трансплантации растертую, бесклеточную нервную ткань. Опыт оказался удачным - ткань мозга у животных восстановилась.

В 70-е годы во многих странах мира стали проводить пересадки в головной мозг нервной ткани не взрослых животных, а зародышей. При этом эмбриональная нервная ткань не отторгалась, а приживлялась, развивалась и соединялась с нервными клетками мозга хозяина, то есть чувствовала себя как дома. Этот парадоксаль ный факт исследователи объяснили тем, что эмбриональная ткань более устойчива, чем взрослая.

Кроме того, у этого метода были и другие преимущества - кусочек эмбриональной ткани не отторгался при трансплантации. Почему? Все дело в том, что ткань мозга отделена от остальной внутренней среды организма так называемым гематоэнцефалическим барьером. Этот барьер не пропускает в мозг крупные молекулы и клетки из других частей тела. Гематоэнцефалический барьер состоит из плотно сомкнутых клеток внутренней части тонких кровеносных сосудов мозга. Нарушенный во время пересадки нервной ткани гематоэнцефалический барьер через некоторое время восстанавливается. Все, что расположено внутри барьера - в том числе и пересаженный кусочек эмбриональной нервной ткани, - организм считает "своим". Этот кусочек оказывается как бы в привилегированном положении. Поэтому иммунные клетки, обычно способствующие отторжению всего чужеродного, на этот кусочек не реагируют, и он успешно приживается в мозге. Пересаженные нейроны своими отростками соединяются с отростками нейронов хозяина и буквально врастают в тонкую и сложную структуру коры головного мозга.

Важную роль играет и такой факт: при трансплантации из разрушенной нервной ткани и хозяина, и трансплантата выделяются продукты распада нервной ткани. Они каким-то образом омолаживают нервную ткань хозяина. В результате мозг практически полностью восстанавливается.

Этот метод пересадки нервной ткани стал быстро распространяться в разных странах мира. Оказалось, что трансплантацию нервной ткани можно осуществлять и у людей. Так появилась возможность лечить некоторые неврологические и психические заболевания.

Например, при болезни Паркинсона у больного разрушается особый отдел мозга - черная субстанция. В ней вырабатывается вещество - дофамин, которое у здоровых людей передается по нервным отросткам в соседнюю часть мозга и осуществляет регуляцию разнообразных движений. При болезни Паркинсона этот процесс нарушается. Человек не может совершать целенаправленные движения, руки его дрожат, тело постепенно теряет подвижность.

Сегодня с помощью эмбриональной трансплантации в Швеции, Мексике, США, на Кубе прооперирова но уже несколько сотен пациентов с болезнью Паркинсона. Они вновь обрели способность двигаться, а некоторые вернулись к работе.

Пересадка эмбриональной нервной ткани в область раны может помочь и при тяжелых травмах головы. Такая работа проводится сейчас в Институте нейрохирургии в Киеве, которым руководит академик А. П. Ромоданов, и в некоторых американских клиниках.

С помощью эмбриональной трансплантации нервной ткани удалось улучшить состояние пациентов с так называемой болезнью Гентингтона, при которой человек не может контролировать свои движения. Это связано с нарушением работы некоторых частей мозга. После трансплантации эмбриональной нервной ткани в пораженную область больной постепенно обретает контроль над своими движениями.

Возможно, что медикам удастся с помощью пересадки нервной ткани улучшить память и познаватель ные способности тех пациентов, чей мозг разрушен болезнью Альцгеймера.

Нейроны могут восстанавливаться
В лаборатории экспериментальной нейрогенетики Института общей генетики им. Н. И. Вавилова АН СССР несколько лет проводили опыты на животных, чтобы установить причины гибели нервных клеток и понять возможности их восстановления. Автор статьи и его сотрудники обнаружили, что в условиях острого кислородного голодания некоторые нейроны сморщивались или растворялись, остальные же как-то боролись с нехваткой кислорода. Однако при этом в нейронах резко снижалась выработка белка и нуклеиновых кислот, и клетки теряли способность проводить нервные импульсы.

После кислородного голодания в головной мозг крыс пересаживали кусочек эмбриональной нервной ткани. Трансплантаты успешно приживлялись. Отростки их нейронов соединялись с отростками нейронов мозга хозяина. Исследователи обнаружили, что этот процесс как-то усиливают продукты распада нервной ткани, которые выделяются при операции. По-видимому, именно они стимулировали регенерацию нервных клеток. Благодаря каким-то веществам, содержащимся в разрушенной нервной ткани, сморщенные и уменьшившиеся в размере нейроны постепенно восстанавливали свой обычный внешний вид. В них начиналась активная выработка биологически важных молекул, и клетки снова становились способными проводить нервные импульсы.

Какой же именно продукт распада нервной ткани мозга дает толчок регенерации нервных клеток? Поиски постепенно привели к выводу: наиболее важна информационная РНК ("дублер" молекулы наследственности ДНК). На основе этой молекулы в клетке из аминокислот синтезируются специфические белки. Введение в мозг этой РНК привело к полному восстановлению изменившихся после кислородного голодания нервных клеток. Поведение животных после инъекции РНК было таким же, как у их здоровых собратьев.

Гораздо удобнее было бы вводить РНК в кровеносные сосуды животных. Но сделать это оказалось непросто - крупные молекулы не проходили сквозь гематоэнцефалический барьер. Однако проницаемость барьера можно регулировать, например, с помощью инъекции раствора соли. Если таким путем временно раскрыть гематоэнцефалический барьер, а потом сделать инъекцию РНК, то молекула РНК достигнет цели.

Автор статьи вместе с химиком-органиком из Института судебной психиатрии В. П. Чехониным решили усовершенствовать метод. Они соединили РНК с поверхност ноактивным веществом, которое служило как бы "буксиром" и позволило крупным молекулам РНК пройти в мозг. В 1993 году опыты увенчались успехом. С помощью электронной микроскопии удалось проследить, как клетки капилляров мозга как бы "заглатыва ют" и затем выбрасывают в мозг РНК.

Таким образом, был разработан метод регенерации нервной ткани, совершенно безопасный, безвредный и очень простой. Есть надежда, что этот метод даст в руки врачам оружие против тяжелых психических болезней, которые сегодня считаются неизлечимыми. Однако для применения этих разработок в клинике требуется, согласно указаниям Минздрава России и Фармкомитета, провести проверку препарата на мутагенность, канцерогенность и токсичность. Проверка займет 2-3 года. К сожалению, в настоящее время экспериментальная работа приостановлена: нет финансирования. Между тем эта работа имеет огромное значение, так как больных шизофренией, старческим слабоумием, маниакально-депрессивным психозом в нашей стране немало. Во многих случаях врачи бессильны что-либо сделать, а больные медленно погибают.

Литература

Полежаев Л. В., Александрова М. А. Трансплантация ткани мозга в норме и патологии . М., 1986.

Полежаев Л. В. и др. Трансплантация ткани мозга в биологии и медицине . М., 1993.

Полежаев Л. Трансплантация лечит мозг. "Наука и жизнь" № 5, 1989.

Нейроны и мозг

В головном мозге человека и млекопитающих ученые выделяют области и ядра - плотные скопления нейронов. Различают также кору мозга и подкорковые области. Все эти участки мозга состоят из нейронов и связаны между собой отростками нейронов. Каждый нейрон имеет один аксон - длинный отросток и множество дендритов - коротких отростков. Специфические соединения между нейронами называются синапсами. Нейроны окружены клетками другого рода - глиоцитами. Они играют роль поддерживающих и питающих нейроны клеток. Нейроны легко повреждаются, очень ранимы: через 5-10 минут после того, как перестал поступать кислород, они погибают.

Словарик к статье

Нейроны - нервные клетки.

Гематоэнцефалический барьер - структура из клеток внутренней части капилляров мозга, которая не пропускает в мозг крупные молекулы и клетки из других частей тела.

Синапс - особое соединение нервных клеток.

Гипоксия - нехватка кислорода.

Трансплантат - кусочек ткани, который пересаживается другому животному (реципиенту).

РНК - молекула, дублирующая наследственную информацию и служащая основой для синтеза белков.