Мрт лучевая диагностика лекция. Лучевая диагностика (рентген, рентгеновская компьютерная томография, магнитно-резонансная томография). Минусы диагностики лучевой

Виды лучевых методов диагностики

К лучевым методам диагностики относятся:

  • Рентгенодиагностика
  • Радионуклидное исследование
  • УЗИ диагностика
  • Компьютерная томография
  • Термография
  • Рентгенодиагностика

Является самым распространённым (но не всегда самым информативным!!!) методом исследования костей скелета и внутренних органов. Метод основан на физических законах, согласно которым человеческое тело неравномерно поглощает и рассеивает специальные лучи - рентгеновские волны. Рентгеновское излучение является одним из разновидностей гамма излучения. С помощью рентгеновского аппарата генерируется пучок, который направляется через тело человека. При прохождении рентгеновских волн через исследуемые структуры, они рассеиваются и поглощаются костями, тканями, внутренними органами и на выходе образуется своего рода скрытая анатомическая картина. Для её визуализации используются специальные экраны, рентгеновская плёнка (кассеты) или сенсорные матрицы, которые после обработки сигнала позволяют видеть модель исследуемого органа на экране ПК.

Виды рентгенодиагностики

Различают следующие виды рентгенодиагностики:

  1. Рентгенография - графическая регистрация изображения на рентгеновской плёнке или цифровых носителях.
  2. Рентгеноскопия - изучение органов и систем с помощью специальных флюоресцирующих экранов, на которые проецируется изображение.
  3. Флюорография - уменьшенный размер рентгеновского снимка, который получают путём фотографирования флюоресцирующего экрана.
  4. Ангиография - комплекс рентгенологических методик, с помощью которых изучают кровеносные сосуды. Изучение лимфатических сосудов носит название - лимфография.
  5. Функциональная рентгенография - возможность исследования в динамике. Например, регистрируют фазу вдоха и выдоха при исследовании сердца, лёгких или делают два снимка (сгибание, разгибание) при диагностике заболеваний суставов.

Радионуклидное исследование

Этот метод диагностики делится на два вида:

  • in vivo. Больному в организм вводят радиофармпрепарат (РФП) - изотоп, который избирательно накапливается в здоровых тканях и патологических очагах. С помощью специальной аппаратуры (гамма-камера, ПЭТ, ОФЭКТ) накопление РФП фиксируются, обрабатываются в диагностическое изображение и полученные результаты интерпретируются.
  • in vitro. При этом виде исследования РФП не вводится в организме человека, а для диагностики исследуются биологические среды организма - кровь, лимфа. Этот вид диагностики имеет ряд преимуществ - отсутствие облучения пациента, высокая специфичность метода.

Диагностика in vitro позволяет проводить исследования на уровне клеточных структур, по сути являясь методом радиоиммунного анализа.

Радионуклидное исследование применяется как самостоятельный метод лучевой диагностики для постановки диагноза (метастазирование в кости скелета, сахарный диабет, болезни щитовидной железы), для определения дальнейшего плана обследования при нарушении работы органов (почки, печень) и особенностей топографии органов.

УЗИ диагностика

В основе метода лежит биологическая способность тканей отражать или поглощать ультразвуковые волны (принцип эхолокации). Используются специальные детекторы, которые одновременно являются и излучателями ультразвука, и его регистратором (детекторами). Пучок ультразвука с помощью этих детекторов направляют на исследуемый орган, который «отбивает» звук и возвращает его на датчик. С помощью электроники отражённые от объекта волны обрабатываются и визуализируются на экране.

Преимущества перед другими методами — отсутствие лучевой нагрузки на организм.

Методики УЗИ диагностики

  • Эхография - «классическое» УЗИ-исследование. Применяется для диагностики внутренних органов, при наблюдении за беременностью.
  • Допплерография - исследование структур, содержащих жидкости (измерение скорости движения). Чаще всего используется для диагностики кровеносной и сердечно-сосудистой систем.
  • Соноэластография - исследование эхогенности тканей с одновременным измерением их эластичности (при онкопатологии и наличии воспалительного процесса).
  • Виртуальная сонография - совмещает в себе УЗИ диагностику в реальном времени со сравнением изображения, сделанным с помощью томографа и записанного заранее на УЗИ аппарат.

Компьютерная томография

С помощью методик томографии можно увидеть органы и системы в двух- и трёхмерном (объёмном) изображении.

  1. КТ - рентгеновская компьютерная томография . В основе лежат методы рентгенодиагностики. Пучок рентгеновских лучей проходит через большое количество отдельных срезов организма. На основании ослабления рентгеновских лучей формируется изображение отдельного среза. С помощью компьютера происходит обработка полученного результата и реконструкция (путём суммации большого количества срезов) изображения.
  2. МРТ - магнитно-резонансная диагностика. Метод основан на взаимодействии протонов клетки с внешними магнитами. Некоторые элементы клетки имеют способность поглощать энергию при воздействии электромагнитного поля, с последующей отдачей специального сигнала - магнитного резонанса. Этот сигнал считывается специальными детекторами, а потом преобразовывается в изображение органов и систем на компьютере. В настоящее время считается одним из самых эффективных методов лучевой диагностики , так как позволяет исследовать любую часть тела в трёх плоскостях.

Термография

Основана на способности регистрировать специальной аппаратурой инфракрасные излучения, которые излучают кожные покровы и внутренние органы. В настоящее время в диагностических целях используется редко.

При выборе метода диагностики необходимо руководствоваться несколькими критериями:

  • Точность и специфичность метода.
  • Лучевая нагрузка на организм — разумное сочетание биологического действия излучения и диагностической информативности (при переломе ноги нет необходимости в радионуклидном исследовании. Достаточно сделать рентгенографию поражённого участка).
  • Экономическая составляющая. Чем сложнее диагностическая аппаратура, тем дороже будет стоить обследование.

Начинать диагностику надо с простых методов, подключая в дальнейшем более сложные (если необходимо) для уточнения диагноза. Тактику обследования определяет специалист. Будьте здоровы.

Литература.

Тест-вопросы.

Магнитно-резонансная томография (МРТ).

Рентгеновская компьютерная томография (КТ).

Ультразвуковое исследование (УЗИ).

Радионуклидная диагностика (РНД).

Рентгенодиагностика.

Часть I. ОБЩИЕ ВОПРОСЫ ЛУЧЕВОЙ ДИАГНОСТИКИ.

Глава 1.

Методы лучевой диагностики .

Лучевая диагностика занимается применением различных видов проникающих излучений, как ионизационных, так и не ионизационных, с целью выявления заболеваний внутренних органов.

Лучевая диагностика в настоящее время достигает 100% применения в клинических методах обследования больных и состоит из следующих разделов: рентгенодиагностика (РДИ), радионуклидная диагностика (РНД), ультразвуковая диагностика (УЗД), компьютерная томография (КТ), магнитно-резонансная томография (МРТ). Порядок перечисления методов определяет хронологическую последовательность внедрения каждого из них в медицинскую практику. Удельный вес методов лучевой диагностики по данным ВОЗ на сегодня составляет: 50% УЗД, 43% РД (рентгенография легких, костей, молочной железы – 40%, рентгенологическое исследование желудочно-кишечного тракта – 3%), КТ – 3%, МРТ –2%, РНД-1-2%, ДСА (дигитальная субтракционная артериография) – 0,3%.

1.1. Принцип рентгенодиагностики заключается в визуализации внутренних органов с помощью направленного на объект исследования рентгеновского излучения, обладающего высокой проникающей способностью, с последующей регистрацией его после выхода из объекта каким-либо приемником рентгеновских лучей, с помощью которого непосредственно или опосредственно получается теневое изображение исследуемого органа.

1.2. Рентгеновские лучи являются разновидностью электромагнитных волн (к ним относятся радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, гамма-лучи и др.). В спектре электромагнитных волн они располагаются между ульрафиолетовыми и гамма-лучами, имея длину волны от 20 до 0,03 ангстрем (2-0,003 нм, рис. 1). Для рентгенодиагностики применяются самые коротковолновые рентгеновские лучи (так называемое жёсткое излучение) с длиной от 0,03 до 1,5 ангстрем (0,003-0,15 нм). Обладая всеми свойствами электромагнитных колебаний – распространение со скоростью света

(300000 км/сек), прямолинейность распространения, интерференция и дифракция, люминесцентное и фотохимическое действие, рентгеновское излучение имеет и отличительные свойства, которые и обусловили применение их в медицинской практике: это проникающая способность – на этом свойстве базируется рентгенодиагностика, и биологическое действие – составляющее сущность рентгенотерапия.. Проникающая способность помимо длины волн («жёсткости») зависит от атомного состава, удельного веса и толщины исследуемого объекта (обратная зависимость).


1.3. Рентгеновская трубка (рис. 2) является стеклянным вакуумным баллоном, в которомвстроены два электрода: катод в виде вольфрамовой спирали и анод в виде диска, который при работе трубки вращается со скоростью 3000 оборотов в минуту. На катод подается напряжение до 15 в, при этом спираль нагревается и эмиссирует элекроны, которые вращаются вокруг нее, образуя облако электронов. Затем подается напряжение на оба эектрода (от 40 до 120 кВ), цепь замыкается и электроны со скоростью до 30000 км/сек летят к аноду, бомбардируя его. При этом кинетическая энергия летящих электронов превращается в два вида новой энергии – энергию рентгеновских лучей (до 1,5%) и в энергию инфракрасных, тепловых, лучей (98-99%).

Получаемые рентгеновские лучи состоят из двух фракций: тормозной и характеристической. Тормозные лучи образуются вследствие сталкивания летящих от катода электронов с электронами наружных орбит атомов анода, вызывая перемещение их на внутренние орбиты, результатом чего и является освобождение энергии в виде квантов тормозного рентгеновского излучения малой жёсткости. Характеристическая фракция получается вследствие проникновения элетронов до ядер атомов анода, результатом чего является выбивание квантов характеристического излучения.

Именно эта фракция, в основном, и используется для диагностических целей, так как лучи этой фракции более жёсткие, то есть обладают большой проникающей способностью. Долю этой фракции увеличивают, подавая более высокое напряжение на рентгеновскую трубку.

1.4. Рентгенодиагностический аппарат или, как сейчас принято обозначать, рентгенодиагностический комплекс (РДК) состоит из следующих основных блоков:

а) рентгеновский излучатель,

б) рентгеновское питающее устройство,

в) устройства для формирования рентгеновских лучей,

г) штатив(ы),

д) приемник(и) рентгеновских лучей.

Рентгеновский излучатель состоит из рентгеновской трубки и системы охлаждения, которая необходима для поглощения тепловой энергии, в большом количестве образующейся при работе трубки (иначе анод быстро разрушится). В качестве охлаждающих систем используется трансформаторное масло, воздушное охлаждение с помщью вентиляторов, или их сочетание.

Следующий блок РДК - рентгеновское питающее устройство , куда входят низковольтный трансформатор (для разогрева спирали катода необходимо напряжение 10-15 вольт), высоковольтный трансформатор (для самой трубки необходимо напряжение от 40 до 120 кВ), выпрямители (для эффективной работы трубки нужен постоянный ток) и пульт управления.

Устройства для формирования излучения состоят из алюминиевого фильтра, который поглощает «мягкую» фракцию рентгеновских лучей, делая его более однородным по жёсткости; диафрагмы, которая формирует рентгеновский пучок по размеру снимаемого органа; отсеивающей решётки, которая отсекает рассеянные лучи, возникающие в теле пациента, с целью улучшения резкости изображения.

Штатив(ы ) служат для расположения пациента, а в ряде случаев и рентгеновской трубки.. Выделяют штативы предназначенные только для рентгенографии - рентгенографические, и универсальные, на которых можно проводить и рентгенографию, и рентгеноскопию.. В рентгенодиагностический комплекс может входить разное количество штативов – один, два, три, что определяется комплектацией РДК в зависимости от профиля ЛПУ.

Приемник(и) рентгеновских лучей . В качестве приемников применяют флюоресцирующий экран для просвечивания, рентгеновскую плёнку (при рентгенографии), усиливающие экраны (плёнка в кассете располагается между двумя усиливающими экранами), запоминающие экраны (для люминисцентной s. компьютерной рентгенографии), усилитель рентгеновского изображения - УРИ, детекторы (при использовании цифровых технологий).

1.5. Технологии получения рентгеновского изображения в настоящее время существуют в трёх вариантах:

прямая аналоговая,

непрямая аналоговая,

цифровая (дигитальная).

При прямой аналоговой технологии (рис. 3) рентгеновские лучи, идущие от рентгеновской трубки и проходя через исследуемую область тела, неравномерно ослабляются, так как по ходу рентгеновского пучка встречаются ткани и органы с различным атомным

и удельным весом и различной толщины. Попадая на простейшие приемники рентгеновских лучей - рентгеновскую пленку или флюоресцирующий экран, они формируют суммационное теневое изображение всех тканей и органов, попавших в зону прохождения лучей. Это изображение изучается (интерпретируется) или непосредственно на флюоросцерующем экране или на рентгеновской плёнке после её химической обработки. На этой технологии основаны классические (традиционные) методы рентгенодиагностики:

рентгеноскопия (флюороскопия за рубежом), рентгенография, линейная томография, флюорография.

Рентгеноскопия в настоящее время используется, в основном, при исследовании желудочно-кишечного тракта. Её достоинствами явлется а) изучение функциоальных характеристик исследуемого органа в масштабе реального времени и б) полное изучение его топографических характеристик, так как больного можно установить в разные проекции, вращая его за экраном. Существенными недостатками рентгеноскопии является высокая лучевая нагрузка на пациента и малая разарешающая способность, поэтому она всегда сочетается с рентгенографией..

Рентгенография является основным, ведущим методом рентгенодиагностики. Её достоинствами является: а) высокая разрешающая способность рентгеновского изображения (на рентгенограмме можно обнаружить патологические очаги размером в 1-2 мм), б) минимальная лучевая нагрузка, так как экспозиции при получении снимка составляют, в основном, десятые и сотые доли секунды, в) объективность получения информации, так как рентгенограмма может анализироваться и другими, более квалифицированными специалистами, г) возможность изучения динамики патологического процесса по рентгенограммам, сделанным в разные периода болезни, д) рентгенограмма является юридическим документом. К недостаткам рентгеновского снимка относят неполные топографические и функциоальные характеристики исследуемого органа.

Обычно при рентгенографии применяются две проекции, которые называют стандартными: прямая (передняя и задняя) и боковая (правая и левая). Проекция определяется придлежанием кассеты с плёнкой к поверхности тела. Например, если кассета при рентгенографии грудной клетки располагается у передней поверхности тела (в этом случае рентгеновская трубка будет располагаться сзади), то такая проекция будет называться прямой передней; если же кассета располагается вдоль задней поверхности тела, получается прямая задняя проекция. Помимо стандартных проекций существуют дополнительные (атипичные) проекции, которые применяются в тех случаях, когда в стандартных проекциях вследствие анатомо-топографических и скиалогических особенностей мы не можем получить полное представление об анатомических характеристиках исследуемого органа. Это косые проекции (промежуточные между прямой и боковой), аксиальная (при этом рентгеновский луч направляется вдоль оси туловища или исследуемого органа), тангенциальная (в этом случае рентгеновский луч направляют касательно к поверхности снимаемого органа). Так, в косых проекциях снимают кисти, стопы, крестцово-подвздошные сосчленения, желудок, двенадцатиперстную кишку и др., в аксиальной – затылочную кость, пяточную кость, молочную железу, органы малого таза и др., в тангенциальной – кости носа, скуловую кость, лобные пазухи и др.

Помимо проекций при рентгенодиагностике используют разные позиции пациента, что определяется методикой исследования или состоянием больного. Основной позицией является ортопозиция – вертикальное положение пациента при горизонтальном направлении рентгеновских лучей (применяется при рентгенографии и рентгеноскопии легких, желудка, при флюорографии). Другими позициями являются трохопозиция – горизонтальное положение пациента при вертикальном ходе рентгеновского пучка (применяется при рентгенографии костей, кишечника, почек, при исследовании пациентов в тяжелом состоянии) и латеропозиция - горизонтальное положение пацикнта при горизонтальном же направлении рентгеновских лучей (применяется при специальных методиках исследования).

Линейная томография (рентгенография слоя органа, от tomos – слой) применяется для уточнения топографии, размеров и структуры патологического очага. При этом методе (рис. 4) в процессе рентгенографии рентгеновская трубка двигается над поверхностью исследуемого органа под углом 30, 45 или 60 градусов в течение 2-3 сек., а кассета с плёнкой в это же время двигается в противоположном направлении. Центром их вращения является выбранный слой органа на определённой глубине от его поверхности, глубина это

Это обусловлено использованием методов исследования, основанных на высоких технологиях с применением широкого спектра электромагнитных и ультразвуковых (УЗ) колебаний.

На сегодняшний день не менее 85 % клинических диагнозов устанавливается или уточняется с помощью различных методов лучевого исследования. Данные методы успешно применяются для оценки эффективности различных видов терапевтического и хирургического лечения, а также при динамическом наблюдении за состоянием больных в процессе реабилитации.

Лучевая диагностика включает следующий комплекс методов исследования:

  • традиционная (стандартная) рентгенодиагностика;
  • рентгеновская компьютерная томография (РКТ);
  • магнитно-резонансная томография (МРТ);
  • УЗИ, ультразвуковая диагностика (УЗД);
  • радиснуклидная диагностика;
  • тепловидение (термография);
  • интервенционная радиология.

Безусловно, с течением времени перечисленные методы исследования будут пополняться новыми способами лучевой диагностики. Данные разделы лучевой диагностики представлены в одном ряду неслучайно. Они имеют единую семиотику, в которой ведущим признаком болезни является «теневой образ».

Иными словами, лучевую диагностику объединяет скиалогия (skia - тень, logos - учение). Это особый раздел научных знаний, изучающий закономерности образования теневого изображения и разрабатывающий правила определения строения и функции органов в норме и при наличии патологии.

Логика клинического мышления в лучевой диагностике основана на правильном проведении скиалогического анализа. Он включает в себя подробную характеристику свойств теней: их положение, количество, величину, форму, интенсивность, структуру (рисунка), характер контуров и смещаемости. Перечисленные характеристики определяются четырьмя законами скиалогии:

  1. закон абсорбции (определяет интенсивность тени объекта в зависимости от его атомного состава, плотности, толщины, а также характера самого рентгеновского излучения);
  2. закон суммации теней (описывает условия формирования образа за счет суперпозиции теней сложного трехмерного объекта на плоскость);
  3. проекционный закон (представляет построение теневого образа с учетом того, что пучок рентгеновского излучения имеет расходящийся характер, и его сечение в плоскости приемника всегда больше, чем на уровне исследуемого объекта);
  4. закон тангенциалъности (определяет контурность получаемого образа).

Формируемое рентгеновское, ультразвуковое, магнитно-резонансное (MP) или другое изображение является объективным и отражает истинное морфо-функциональное состояние исследуемого органа. Трактовка врачом-специали-стом полученных данных - этап субъективного познания, точность которого зависит от уровня теоретической подготовки исследующего, способности к клиническому мышлению и опыта.

Традиционная рентгенодиагностика

Для выполнения стандартного рентгенологического исследования необходимы три составляющих:

  • источник рентгеновского излучения (рентгеновская трубка);
  • объект исследования;
  • приемник (преобразователь) излучения.

Все методики исследования отличаются друг от друга только приемником излучения, в качестве которого используются: рентгеновская пленка, флюоресцирующий экран, полупроводниковая селеновая пластина, дозиметрический детектор.

На сегодняшний день в качестве приемника излучения основной является та или иная система детекторов. Таким образом, традиционная рентгенография целиком переходит на цифровой (дигитальный) принцип получения изображений.

Основными преимуществами традиционных методик рентгенодиагностики являются их доступность практически во всех лечебных учреждениях, высокая пропускная способность, относительная дешевизна, возможность многократных исследований, в том числе и в профилактических целях. Наибольшую практическую значимость представленные методики имеют в пульмонологии, остеологии, гастроэнтерологии.

Рентгеновская компьютерная томография

Прошло три десятилетия с того момента, как в клинической практике стала применяться РКТ. Вряд ли авторы этого метода, А. Кормак и Г. Хаунсфилд, получившие в 1979 г. Нобелевскую премию за его разработку, могли предположить, насколько быстрым окажется рост их научных идей и какую массу вопросов поставит это изобретение перед врачами-клиницистами.

Каждый компьютерный томограф состоит из пяти основных функциональных систем:

  1. специальный штатив, называемый гентри, в котором находятся рентгеновская трубка, механизмы для формирования узкого пучка излучения, дозиметрические детекторы, а также система сбора, преобразования и передачи импульсов на электронно-вычислительную машину (ЭВМ). В центре штатива располагается отверстие, куда помещается пациент;
  2. стол для пациента, который перемещает пациента внутри гентри;
  3. ЭВМ-накопитель и анализатор данных;
  4. пульт управления томографом;
  5. дисплей для визуального контроля и анализа изображения.

Различий в конструкциях томографов обусловлены, прежде всего, выбором способа сканирования. К настоящему времени имеется пять разновидностей (поколений) рентгеновских компьютерных томографов. Сегодня основной парк данных аппаратов представлен приборами со спиральным принципом сканирования.

Принцип работы рентгеновского компьютерного томографа заключается в том, что интересующий врача участок тела человека сканируется узким пучком рентгендвского излучения. Специальные детекторы измеряют степень его ослабления, сравнивая число фотонов на входе и выходе из исследуемого участка тела. Результаты измерения передаются в память ЭВМ, и по ним, в соответствии с законом абсорбции, вычисляются коэффициенты ослабления излучения для каждой проекции (их число может составлять от 180 до 360). В настоящее время для всех тканей и органов в норме, а также для ряда патологических субстратов разработаны коэффициенты абсорбции по шкале Хаунсфилда. Точкой отсчета в этой шкале является вода, коэффициент поглощения которой принят за ноль. Верхняя граница шкалы (+1000 ед. HU) соответствует поглощению рентгеновских лучей кортикальным слоем кости, а нижняя (-1000 ед. HU) - воздухом. Ниже в качестве примера приведены некоторые коэффициенты абсорбции для различных тканей организма и жидкостей.

Получение точной количественной информации не только о размерах, пространственном расположении органов, но и о плотностных характеристиках органов и тканей - важнейшее преимущество РКТ перед традиционными методиками.

При определении показаний к применению РКТ приходится учитывать значительное число различных, порой взаимоисключающих факторов, находя компромиссное решение в каждом конкретном случае. Вот некоторые положения, определяющие показания для данного вида лучевого исследования:

  • метод является дополнительным, целесообразность его применения зависит от результатов, полученных на этапе первичного клинико-рентгенологического исследования;
  • целесообразность компьютерной томографии (КТ) уточняется при сравнении ее диагностических возможностей с другими, в том числе и нелучевыми, методиками исследования;
  • на выбор РКТ влияет стоимость и доступность этой методики;
  • следует учитывать, что применение КТ связано с лучевой нагрузкой на пациента.

Диагностические возможности КТ, несомненно, будут расширяться по мере совершенствования аппаратуры и программного обеспечения, позволяющих выполнять исследования в условиях реального времени. Возросло ее значение при рентгенохирургических вмешательствах как инструмента контроля во время операции. Построены и начинают применяться в клинике компьютерные томографы, которые можно разместить в операционной, реанимации или палате интенсивной терапии.

Мультиспиральная компьютерная томография (МСКТ) - методика, отличающаяся от спиральной тем, что за один оборот рентгеновской трубки получается не один, а целая серия срезов (4, 16, 32, 64, 256, 320). Диагностическими преимуществами являются возможность выполнения томографии легких на одной задержке дыхания в любую из фаз вдоха и выдоха, а следовательно, отсутствие «немых» зон при исследовании подвижных объектов; доступность построения различных плоскостных и объемных реконструкций с высоким разрешением; возможность выполнения МСКТ-ангиографии; выполнение виртуальных эндоскопических исследований (бронхографии, колоноскопии, ангиоскопии).

Магнитно-резонансная томография

МРТ - один из новейших методов лучевой диагностики. Он основан на явлении так называемого ядерно-магнитного резонанса. Суть его заключается в том, что ядра атомов (прежде всего водорода), помещенные в магнитное поле, поглощают энергию, а затем способны испускать ее во внешнюю среду в виде радиоволн.

Основными компонентами MP-томографа являются:

  • магнит, обеспечивающий достаточно высокую индукцию поля;
  • радиопередатчик;
  • приемная радиочастотная катушка;

На сегодняшний день активно развиваются следующие направления МРТ:

  1. МР-спектроскопия;
  2. МР-ангиография;
  3. использование специальных контрастных веществ (парамагнитных жидкостей).

Большинство MP-томографов настроено на регистрацию радиосигнала ядер водорода. Именно поэтому МРТ нашла наибольшее применение в распознавании заболеваний органов, которые содержат большое количество воды. И напротив, исследование легких и костей является менее информативным, чем, например, РКТ.

Исследование не сопровождается радиоактивным облучением пациента и персонала. Об отрицательном (с биологической точки зрения) воздействии магнитных полей с индукцией, которая применяется в современных томографах, достоверно пока ничего не известно. Определенные ограничения использования МРТ необходимо учитывать, выбирая рациональный алгоритм лучевого обследования больного. К ним относится эффект «затягивания» в магнит металлических предметов, что может вызвать сдвиг металлических имплантатов в теле пациента. В качестве примера можно привести металлические клипсы на сосудах, сдвиг которых может повлечь кровотечение, металлические конструкции в костях, позвоночнике, инородные тела в глазном яблоке и др. Работа искусственного водителя ритма сердца при МРТ также может быть нарушена, поэтому обследование таких больных не допускается.

Ультразвуковая диагностика

У ультразвуковых приборов имеется одна отличительная особенность. УЗ-дат-чик является одновременно и генератором, и приемником высокочастотных колебаний. Основа датчика - пьезоэлектрические кристаллы. Они обладают двумя свойствами: подача электрических потенциалов на кристалл приводит к его механической деформации с той же частотой, а механическое сжатие его от отраженных волн генерирует электрические импульсы. В зависимости от цели исследования, используют различные типы датчиков, которые различаются по частоте формируемого УЗ-луча, своей форме и предназначению (трансабдоминальные, внутриполостные, интраоперационные, внутрисосудистые).

Все методики УЗИ подразделяют на три группы:

  • одномерное исследование (эхография в А-режиме и М-режиме);
  • двухмерное исследование (ультразвуковое сканирование - В-режим);
  • допплерография.

Каждая из вышеперечисленных методик имеет свои варианты и применяется в зависимости от конкретной клинической ситуации. Так, например, М-режим особенно популярен в кардиологии. Ультразвуковое сканирование (В-режим) широко используется при исследовании паренхиматозных органов. Без доппле-рографии, позволяющей определить скорость и направление тока жидкости, невозможно детальное исследование камер сердца, крупных и периферических сосудов.

УЗИ практически не имеет противопоказаний, так как считается безвредным для больного.

За последнее десятилетие данный метод претерпел небывалый прогресс, и поэтому целесообразно отдельно выделить новые перспективные направления развития этого раздела лучевой диагностики.

Цифровая УЗД предполагает использование цифрового преобразователя изображения, что обеспечивает повышение разрешающей способности аппаратов.

Трехмерная и объемная реконструкции изображений повышают диагностическую информативность за счет лучшей пространственно-анатомической визуализации.

Использование контрастных препаратов позволяет повысить эхогенность исследуемых структур и органов и достичь лучшей их визуализации. К таким препаратам относят «Эховист» (микропузырьки газа, введенные в глюкозу) и «Эхоген» (жидкость, из которой уже после введения ее в кровь выделяются микропузырьки газа).

Цветное допплеровское картирование, при котором неподвижные объекты (например, паренхиматозные органы) отображаются оттенками серой шкалы, а сосуды - в цветной шкале. При этом оттенок цвета соответствует скорости и направлению кровотока.

Интрасосудистые УЗИ не только позволяют оценить состояние сосудистой стенки, но и при необходимости выполнить лечебное воздействие (например, раздробить атеросклеротическую бляшку).

Несколько обособленно в УЗД стоит метод эхокардиографии (ЭхоКГ). Это наиболее широко применяемый метод неинвазивной диагностики заболеваний сердца, основанный на регистрации отраженного УЗ-луча от движущихся анатомических структур и реконструкции изображения в реальном масштабе времени. Различают одномерную ЭхоКГ (М-режим), двухмерную ЭхоКГ (В-режим), чреспищеводное исследование (ЧП-ЭхоКГ), допплеровскую ЭхоКГ с применением цветного картирования. Алгоритм применения этих технологий эхокардиографии позволяет получить достаточно полную информацию об анатомических структурах и о функции сердца. Становится возможным изучить стенки желудочков и предсердий в различных сечениях, неинвазивно оценить наличие зон нарушений сократимости, обнаружить клапанную регургитацию, изучить скорости потока крови с расчетом сердечного выброса (СВ), площади клапанного отверстия, а также целый ряд других параметров, имеющих важное значение, особенно в изучении пороков сердца.

Радионуклидная диагностика

Все методики радионуклидной диагностики основаны на использовании так называемых радиофармацевтических препаратов (РФП). Они представляют собой некое фармакологическое соединение, имеющее свою «судьбу», фармакокинетику в организме. Причем каждая молекула этого фармсоединения помечена гамма-излучающим радионуклидом. Однако РФП - не всегда химическое вещество. Это может быть и клетка, например эритроцит, меченный гамма-излучателем.

Существует множество радиофармпрепаратов. Отсюда и многообразие методических подходов в радионуклидной диагностике, когда применение определенного РФП диктует и конкретную методику исследования. Разработка новых и совершенствование используемых РФП - основное направление развития современной радионуклидной диагностики.

Если рассматривать классификацию методик радионуклидного исследования с точки зрения технического обеспечения, то можно выделить три группы методик.

Радиометрия. Информация представляется на дисплее электронного блока в виде цифр и сравнивается с условной нормой. Обычно таким образом исследуются медленно протекающие физиологические и патофизиологические процессы в организме (например, йод-поглотительная функция щитовидной железы).

Радиография (гамма-хронография) применяется,для изучения быстропротекающих процессов. Например, прохождение крови с введенным РФП по камерам сердца (радиокардиография), выделительная функция почек (радиоренография) и т. д. Информация представляется в виде кривых, обозначающихся как кривые «активность - время».

Гамма-томография - методика, предназначенная для получения изображения органов и систем организма. Представлена четырьмя основными вариантами:

  1. Сканирование. Сканер позволяет, построчно пройдя над исследуемой областью, произвести радиометрию в каждой точке и нанести информацию на бумагу в виде штрихов различного цвета и частоты. Получается статическое изображение органа.
  2. Сцинтиграфия. Быстродействующая гамма-камера позволяет проследить в динамике практически все процессы прохождения и накопления РФП в организме. Гамма-камера может получать информацию очень быстро (с частотой до 3 кадров в 1 с), поэтому становится возможным динамическое наблюдение. Например, исследование сосудов (ангиосцинтиграфия).
  3. Однофотонная эмиссионная компьютерная томография. Вращение блока детекторов вокруг объекта позволяет получить срезы исследуемого органа, что существенно повышает разрешающую способность гамма-томографии.
  4. Позитронная эмиссионная томография. Самый молодой способ основанный на применении РФП, меченных позитрон-излучающими радионуклидами. При их введении в организм происходит взаимодействие позитронов с ближайшими электронами (аннигиляция), в результате чего «рождаются» два гамма-кванта, разлетающиеся противоположно под углом 180°. Это излучение регистрируется томографами по принципу «совпадения» с очень точными топическими координатами.

Новым в развитии радионуклидной диагностики является появление совмещенных аппаратных систем. Сейчас в клинической практике начинает активно применяться совмещенный позитронно-эмиссионный и компьютерный томограф (ПЭТ/КТ). При этом за одну процедуру выполняется и изотопное исследование, и КТ. Одновременное получение точной структурно-анатомической информации (при помощи КТ) и функциональной (с помощью ПЭТ) существенно расширяет диагностические возможности, прежде всего в онкологии, кардиологии, неврологии и нейрохирургии.

Отдельное место в радионуклидной диагностике занимает метод радиоконкурентного анализа (радионуклидная диагностика in vitro). Одним из перспективных направлений метода радионуклидной диагностики является поиск в организме человека так называемых онкомаркеров для ранней диагностики в онкологии.

Термография

Методика термографии основана на регистрации естественного теплового излучения тела человека специальными детекторами-тепловизорами. Наиболее распространена дистанционная инфракрасная термография, хотя в настоящее время разработаны методики термографии не только в инфракрасном, но и в миллиметровом (мм) и дециметровом (дм) диапазонах длин волн.

Основным недостатком метода служит его малая специфичность по отношению к различным заболеваниям.

Интервенционная радиология

Современное развитие методик лучевой диагностики позволило использовать их не только для распознавания болезней, но и для выполнения (не прерывая исследования) необходимых лечебных манипуляций. Данные методы также называют малоинвазивной терапией или малоинвазивной хирургией.

Основными направлениями интервенционной радиологии являются:

  1. Рентгеноэндоваскулярная хирургия. Современные ангиографические комплексы высокотехнологичны и позволяют врачу-специалисту суперселективно достичь любого сосудистого бассейна. Становятся возможными такие вмешательства, как баллонная ангиопластика, тромбэктомия, эмболизация сосудов (при кровотечениях, опухолях), длительная регионарная инфузия и др.
  2. Экстравазальные (внесосудистые) вмешательства. Под контролем рентгенотелевидения, компьютерной томографии, ультразвука стало возможным выполнение дренирования абсцессов и кист в различных органах, осуществление эндобронхиального, эндобилиарного, эндоуринального и других вмешательств.
  3. Аспирационная биопсия под лучевым контролем. Ее используют для установления гистологической природы внутригрудных, абдоминальных, мягкотканевых образований у больных.

Лучевая диагностика, лучевая терапия - это две составные части радиологии. В современной медицинской практике они используются все шире и чаще. Это можно объяснить их отличной информативностью.

Диагностика лучевая - это практическая дисциплина, которая изучает использование разного рода излучений с целью обнаружения и распознавания большого количества заболеваний. Она помогает изучить морфологию и функции нормальных и пораженных болезнью органов и систем человеческого организма. Существует несколько видов лучевой диагностики, и каждая из них по-своему уникальна и позволяет обнаружить болезни в разных областях организма.

Лучевая диагностика: виды

На сегодняшний день существует несколько методов лучевой диагностики. Каждый из них по-своему хорош, так как позволяет провести исследования в определенной области человеческого организма. Виды лучевой диагностики:

  • Рентгенодиагностика.
  • Радионуклидное исследование.
  • Компьютерная томография.
  • Термография.

Эти методы исследования лучевой диагностики могут позволить выдать данные о состоянии здоровья пациента только в той области, которая ими исследуется. Но существуют и более усовершенствованные методы, которые дают более подробные и обширные результаты.

Современный метод диагностирования

Современная лучевая диагностика - это одна из быстро развивающихся медицинских специальностей. Она непосредственно связана с общим прогрессом физики, математики, вычислительной техники, информатики.

Диагностика лучевая - это наука, применяющая излучения, которые помогают изучать строение и функционирование нормальных и поврежденных болезнями органов и систем человеческого организма с целью проведения профилактики и распознавания заболевания. Подобный метод диагностирования играет важную роль как в обследовании пациентов, так и в радиологических процедурах лечения, которые зависят от информации, полученной во время исследований.

Современные методы лучевой диагностики позволяют с максимальной точностью выявить патологию в конкретном органе и помочь найти лучший способ для ее лечения.

Разновидности диагностики

Инновационные методы диагностирования включают в себя большое количество диагностических визуализаций и отличаются друг от друга физическими принципами получения данных. Но общая сущность всех методик заключается в информации, которую получают путем обработки пропускаемого, испускаемого или отраженного электромагнитного излучения или механических колебаний. В зависимости от того, какие из явлений положены в основу получаемого изображения, диагностика лучевая делится на такие виды исследований:

  • Рентгенодиагностика основывается на умении поглощать тканями рентгеновские лучи.
  • В его основе лежит отражение пучка направленных ультразвуковых волн в тканях по направлению к датчику.
  • Радионуклидное - характеризуется испусканием изотопами, которые накапливаются в тканях.
  • Магнитно-резонансный метод основывается на испускании радиочастотного излучения, которое возникает во время возбуждения непарных ядер атомов в магнитном поле.
  • Исследование инфракрасными лучами - самопроизвольное испускание тканями инфракрасного излучения.

Каждый из этих методов позволяет с большой точностью выявить патологию в органах человека и дает больше шансов на положительный исход лечения. Как диагностика лучевая выявляет патологию в легких, и что с ее помощью можно обнаружить?

Исследование легких

Диффузное поражение легких - это изменения в обоих органах, представляющие собой рассеянные очаги, увеличение ткани в объеме, а в некоторых случаях и объединение двух этих состояний. Благодаря рентгеновскому и компьютерному методам исследований удается определять легочные заболевания.

Только современные методы исследования позволяют быстро и точно установить диагноз и приступить к оперативному лечению в условиях стационара. В наше время современных технологий имеет большое значение лучевая диагностика легких. Поставить диагноз в соответствии с клинической картиной в большинстве случаев очень трудно. Это объясняется тем, что патологии легких сопровождаются сильными болями, острой дыхательной недостаточностью и кровоизлиянием.

Но даже в самых тяжелых случаях на помощь врачам и пациентам приходит неотложная лучевая диагностика.

В каких случаях показано проведение исследования?

Рентгеновский метод диагностики позволяет быстро выявить проблему при возникновении угрожающей жизни пациента ситуации, которая требует неотложного вмешательства. Срочная рентгенодиагностика может быть полезна во многих случаях. Чаще всего ее используют при повреждении костей и суставов, внутренних органов и мягких тканей. Очень опасны для человека травмы головы и шеи, живота и брюшной полости, грудной клетки, позвоночника, тазобедренных и длинных трубчатых костей.

Метод рентгеновского исследования назначают пациенту сразу после того, как будет проведена противошоковая терапия. Осуществлять его можно прямо в приемном отделении, используя передвижной аппарат, или же пациента доставляют в кабинет рентгена.

При травмах шеи и головы проводят обзорную рентгенограмму, при необходимости добавляют специальные снимки отдельных частей черепа. В специализированных учреждениях можно провести скорую ангиографию сосудов мозга.

При травмировании грудной клетки диагностику начинают с обзорной делают с прямого и бокового обзора. При травмах живота и таза нужно проводить обследование с использованием контрастирования.

Также срочное проводят и при других патологиях: острая боль в животе, харканье кровью и кровотечения из пищеварительного тракта. Если данных будет недостаточно для установления точного диагноза, назначают компьютерную томографию.

Редко используют рентгенодиагностику в случаях подозрения на присутствие инородных тел в дыхательных путях или пищеварительном тракте.

При всех видах повреждений и в сложных случаях, возможно, потребуется провести не только компьютерную томографию, но и магнитно-резонансную. Назначить то или иное исследование может только лечащий доктор.

Плюсы лучевой диагностики

Этот метод исследования считают одним из самых эффективных, поэтому, рассматривая его плюсы, хочется выделить такие:

  • Под воздействием лучей опухолевые новообразования уменьшаются, погибает часть раковых клеток, а оставшиеся перестают делиться.
  • Многие сосуды, из которых поступает питание к зарастают.
  • Больше всего положительных моментов заключается в лечении некоторых видов рака: легких, яичников и вилочковой железы.

Но не только положительные стороны есть у данного метода, отрицательные также имеются.

Минусы диагностики лучевой

Большинство врачей считают, каким бы удивительным ни был этот метод исследования, свои отрицательные стороны у него также есть. К ним можно отнести:

  • Побочные эффекты, которые возникают во время терапии.
  • Низкая чувствительность к радиоактивному излучению таких органов, как хрящи, кости, почки и мозг.
  • Максимальная чувствительность эпителия кишечника к данному облучению.

Лучевая диагностика показала хорошие результаты при выявлении патологии, но не каждому пациенту она подходит.

Противопоказания

Не всем больным с раковыми новообразованиями этот метод исследований подходит. Назначают его только в некоторых случаях:

  • Наличие большого количества метастазов.
  • Лучевая болезнь.
  • Врастание раковых корней в крупнейшие сосуды и органы половой системы.
  • Лихорадка.
  • Тяжелейшее состояние пациента с выраженной интоксикацией.
  • Обширное онкологическое поражение.
  • Анемия, лейкопения, а также тромбоцитопения.
  • Распад раковых новообразований с кровотечением.

Заключение

Лучевая диагностика применяется уже несколько лет и показала очень хорошие результаты в быстрой постановке диагнозов, особенно в сложных случаях. Благодаря ее использованию удалось определить диагнозы очень тяжелым больным. Даже несмотря на ее недостатки, других исследований, которые бы давали такие результаты, пока нет. Поэтому можно точно сказать, что в настоящее время лучевая диагностика стоит на первом месте.

Лучевая диагностика — наука о применении излучений для изучения строения и функции нормальных и патологически измененных органов и систем человека в целях профилактики и диагностики заболеваний.

Роль лучевой диагностики

в подготовке врача и в медицинской практике в целом постоянно возрастает. Это связано с созданием диагностических центров, а также диагностических отделений, оснащенных компьютерными и магнитно-резонансными томографами.

Известно, что большая часть (около 80%) заболеваний диагностируется с помощью приборов лучевой диагностики: ультразвуковых, рентгеновских, термографических, компьютерных и магниторезонансных томографических аппаратов. Львиная доля в этом перечне принадлежит рентгеновским приборам, имеющим много разновидностей: базовые, универсальные, флюорографы, маммографы, дентальные, передвижные и др. В связи с обострением проблемы туберкулеза в последнее время особенно возросла роль профилактических флюорографических осмотров с целью диагностирования этого недуга на ранних стадиях.

Есть еще одна причина, сделавшая актуальной именно проблему рентгенодиагностики. Удельный вес последней в формировании коллективной дозы облучения населения Украины за счет искусственных источников ионизирующей радиации составляет около 75%. Для уменьшения дозы облучения пациента современные рентгенаппараты имеют в своем составе усилители рентгеновского изображения, но таких в Украине сегодня менее 10% от наличного парка. А он весьма внушителен: в лечебно-профилактических учреждениях Украины по состоянию на январь 98 г. функционировало свыше 2460 рентгеновских отделений и кабинетов, где ежегодно выполнялось 15 млн. рентгенодиагностических и 15 млн. флюорографических обследований пациентов. Есть основания утверждать, что состояние этой отрасли медицины определяет здоровье всей нации.

История становления лучевой диагностики

Лучевая диагностика за последнее столетие претерпела бурное развитие, трансформацию методик и аппаратуры, завоевала прочные позиции в диагностике и продолжает удивлять своими поистине неисчерпаемыми возможностями.
Родоначальник лучевой диагностики, рентгеновский метод появился после открытия в 1895 г. рентгеновского излучения, что дало начало развитию новой медицинской науке — рентгенологии.
Первыми объектами исследования были костная система и органы дыхания.
В 1921 году была разработана методика рентгенографии на заданной глубине — послойно, и в практику широко вошла томография, значительно обогатившая диагностику.

На глазах одного поколения в течение 20-30 лет рентгенология вышла из темных кабинетов, изображение с экранов перешло на телемониторы, а затем трансформировалось в цифровое на мониторе компьютера.
В 70-80-е годы в лучевой диагностике происходят революционные преобразования. В практику внедряются новые методы получения изображения.

Этот этап характеризуется следующими особенностями:

  1. Переходом от одного вида излучения (рентгеновского), применяемого для получения изображения к другим:
  • ультразвуковому излучению
  • длинноволновому электромагнитному излучению инфракрасного диапазона (термография)
  • излучению радиочастотного диапазона (ЯМР — ядерно-магнитный резонанс)
  1. Использованием ЭВМ для обработки сигналов и построения изображения.
  2. Переходом от одномоментного изображения к сканированию (последовательная регистрация сигналов от разных точек).

Ультразвуковой метод исследования пришел в медицину значительно позже рентгеновского, но развивался еще стремительнее и стал незаменимым благодаря своей простоте, отсутствию противопоказаний вследствие безвредности для пациента и большой информативности. За короткое время был пройден путь от серо-шкального сканирования до методик с цветным изображением и возможностью изучения сосудистого русла — допплерографии.

Один из методов — радионуклидная диагностика тоже получила в последнее время широкое распространение благодаря низким лучевым нагрузкам, атравматичности, неаллергичности, широкому спектру изучаемых явлений, возможности сочетания статических и динамических методик.