Моноклоны против рака. За что вручили Нобелевскую премию по медицине? Названы лауреаты нобелевской премии по медицине Саморегулирующийся часовой механизм

Нобелевский комитет сегодня определился с лауреатами премии по физиологии и медицине 2017 года. В этом году премия снова отправится в США: награду разделили Майкл Янг из Рокфеллеровского университета в Нью-Йорке, Майкл Росбаш из Университета Брэндейса и Джеффри Холл из Университета штата Мэн. Согласно решению Нобелевского комитета, эти исследователи награждены «за открытия молекулярных механизмов, контролирующих циркадные ритмы»..

Нужно сказать, что за всю 117-летнюю историю Нобелевской премии это, пожалуй, первая премия за изучение цикла «сон-бодрствование», как и вообще за что-либо связанное с сном. Не получил премию знаменитый сомнолог Натаниэль Клейтман, а совершивший самое выдающееся открытие в этой области Юджин Азеринский, открывший REM-сон (REM - rapid eye movement, фаза быстрого сна), вообще получил за свое достижение лишь степень PhD. Неудивительно, что в многочисленных прогнозах (о них мы писали в своей заметке) звучали какие угодно фамилии и какие угодно темы исследований, но не те, которые привлекли внимание Нобелевского комитета.

За что дали премию?

Итак, что же такое циркадные ритмы и что конкретно открыли лауреаты, которые, по словам секретаря Нобелевского комитета, встретили известие о награде словами «Are you kidding me?».

Джеффри Холл, Майкл Росбаш, Майкл Янг

Circa diem с латинского переводится как «вокруг дня». Так уж сложилось, что мы живем на планете Земля, на которой день сменяется ночью. И в ходе приспособления к разным условиям дня и ночи у организмов и появились внутренние биологические часы - ритмы биохимической и физиологической активности организма. Показать, что у этих ритмов исключительно внутренняя природа, удалось только в 1980-х, отправив на орбиту грибы Neurospora crassa . Тогда стало ясно, что циркадные ритмы не зависят от внешних световых или других геофизических сигналов.

Генетический механизм циркадных ритмов обнаружили в 1960–1970-х годах Сеймур Бензер и Рональд Конопка, которые изучали мутантные линии дрозофил с отличающимися циркадными ритмами: у мушек дикого типа колебания циркадного ритма имели период 24 часа, у одних мутантов - 19 часов, у других - 29 часов, а у третьих ритм вообще отсутствовал. Оказалось, что ритмы регулируются геном PER - period . Следующий шаг, который помог понять, как появляются и поддерживаются такие колебания циркадного ритма, сделали нынешние лауреаты.

Саморегулирующийся часовой механизм

Джеффри Холл и Майкл Росбаш предположили, что кодируемый геном period белок PER блокирует работу собственного гена, и такая петля обратной связи позволяет белку предотвращать собственный синтез и циклически, непрерывно регулировать свой уровень в клетках.

Картинка показывает последовательность событий за 24 часа колебаний. Когда ген активен, производится м-РНК PER. Она выходит из ядра в цитоплазму, становясь матрицей для производства белка PER. Белок PER накапливается в ядре клетки, когда активность гена period заблокирована. Это и замыкает петлю обратной связи.

Модель была очень привлекательной, но для полной картины не хватало нескольких деталей паззла. Чтобы заблокировать активность гена, белку нужно пробраться в ядро клетки, где хранится генетический материал. Джеффри Холл и Майкл Росбаш показали, что белок PER накапливается в ядре за ночь, но не понимали, как ему удается попадать туда. В 1994 году Майкл Янг открыл второй ген циркадного ритма, timeless (англ. «безвременный»). Он кодирует белок TIM, который нужен для нормальной работы наших внутренних часов. В своем изящном эксперименте Янг продемонстрировал, что, только связавшись друг с другом, TIM и PER в паре могут проникнуть в ядро клетки, где они и блокируют ген period .

Упрощенная иллюстрация молекулярных компонентов циркадных ритмов

Такой механизм обратной связи объяснил причину появления колебаний, но было непонятно, что же контролирует их частоту. Майкл Янг нашел другой ген, doubletime . В нем «записан» белок DBT, который может задержать накапливание белка PER. Так и происходит «отладка» колебаний, чтобы они совпадали с суточным циклом. Эти открытия совершили переворот в нашем понимании ключевых механизмов биологических часов человека. В течение последующих лет были найдены и другие белки, которые влияют на этот механизм и поддерживают его стабильную работу.

Сейчас премия по физиологии и медицине традиционно присуждается в самом начале нобелевской недели, в первый понедельник октября. Впервые ее вручили в 1901 году Эмилю фон Берингу за создание сывороточной терапии дифтерии. Всего за всю историю премия была вручена 108 раз, в девяти случаях: в 1915, 1916, 1917, 1918, 1921, 1925, 1940, 1941 и 1942 годах - премия не присуждалась.

За 1901–2017 годы премия присуждена 214 ученым, дюжина из которых - женщины. Пока что не было случая, чтобы кто-то получил премию по медицине дважды, хотя случаи, когда номинировали уже действующего лауреата, были (например, наш Иван Павлов). Если не учитывать премию 2017 года, то средний возраст лауреата составил 58 лет. Самым молодым нобелиатом в области физиологии и медицины стал лауреат 1923 года Фредерик Бантинг (премия за открытие инсулина, возраст - 32 года), самым пожилым - лауреат 1966 года Пейтон Роус (премия за открытие онкогенных вирусов, возраст - 87 лет).

Каждый год, 10 декабря, в Стокгольме вручают одну из самых престижных премий в области научных достижений - Нобелевскую. В понедельник, 1 октября, стали известны имена первых нобелевских лауреатов 2018 года . 70-летний профессор Техасского университета Джеймс Эллисон и его 76-летний коллега Тасуку Хондзё из Киотского университета удостоились наивысшей награды за знаменательный вклад в терапию онкологических заболеваний.

«Так Просто!» расскажет тебе последние и объяснит, что за принципиально новый подход к лечению рака предложили ученые и как он изменит современную медицину.

Нобелевская премия по медицине

Понятие «рак» - это не одна болезнь, их уйма, и все они характеризуются неконтролируемым ростом аномальных клеток, способных поглощать совершенно здоровые органы и ткани человеческого организма. Рак ежечасно отбирает жизни у сотен людей, а для современного здравоохранения эта болезнь - самая большая проблема и один из самых серьезных вызовов.

Нобелевские лауреаты выдвинули исключительно инновационный подход к терапии рака: Джеймс Эллисон и Тасуку Хондзё показали, как «снять иммунную систему с тормоза» и использовать собственные силы организма для борьбы со страшным недугом.

«Лауреаты этого года показали, как разные стратегии сдерживания иммунной системы могут быть использованы в лечении рака. Их совместное открытие - знаменательная веха в борьбе против рака» , - заявила Шведская королевская академия наук.

«Иммунная терапия не обладает самостоятельным противоопухолевым эффектом - она заставляет иммунные клетки убивать опухоль. Правда, снятие с тормоза в ряде случаев приводит к тому, что иммунитет атакует свои собственные клетки.

Это в чём-то похоже на аутоиммунные болезни, и проблема немаленькая. Частые побочные эффекты - усталость, кашель, тошнота, сыпь, зуд, потеря аппетита, диарея, воспаление кишечника и легких», - объясняет онколог Михаил Ласков.

Отечественный онколог не сомневается, что подобная терапия будет настоящим прорывом: «Есть заболевания, которые трудно лечить. Это меланома, рак легких, рак поджелудочной железы, рак желудка и так далее. Иммунотерапия позволила значительно улучшить результаты по некоторым из этих заболеваний, а именно меланоме и раку легких. Некоторые онкологические пациенты, по результатам исследования, могут жить несколько лет без признаков заболевания» .

И если раньше такая терапия использовалась в основном для метастатического рака в почти безнадежных случаях, то сейчас подобные препараты назначают в качестве послеоперационной терапии, например, при меланоме.

© DepositPhotos

Эллисон и Хондзё вдохновили исследователей в разных уголках мира объединять различные стратегии активизации иммунной системы, чтобы как можно эффективнее противостоять раковым клеткам. В настоящее время проводится множество тестов и клинических опытов в области иммунотерапии рака и в качестве цели тестируются новые контрольные белки, обнаруженные нобелевскими лауреатами.

© DepositPhotos

Многие препараты для иммунотерапии рака есть в России, но все они очень дорогие и доступны единицам. «Это, например, пембролизумаб (“Китруда”), ниволумаб (“Опдиво”), ипилимумаб (“Ервой”) и атезолизумаб (“Тецентрик”) . К сожалению, нельзя сказать, что такие лекарства всем доступны.

По одному тарифу в государственной больнице на него могут выделять 180 тысяч рублей, хотя в реальной жизни препарат будет стоить 300 и больше. То есть лекарство просто не назначат, потому что не на что покупать», - объясняет Михаил Ласков.

© DepositPhotos

В попытках победить смертельный недуг, ученые пытались вовлечь иммунную систему в борьбу с раком на протяжение 100 лет, но все попытки были тщетны. До открытий, сделанных Джеймсом Эллисоном и Тасуку Хондзё, клинический прогресс в этой области был весьма скромным.

Нобелевская премия по медицине в 2018 году присуждена ученым Джеймсу Аллисону и Тасуко Хонджо, которые разработали новые методы иммунотерапии рака, сообщает Нобелевский комитет при Каролинском медицинском институте.

«Премией 2018 года в области физиологии и медицины награждаются Джеймс Эллисон и Тасуку Хондзt за их открытия терапии рака путем ингибирования отрицательной иммунной регуляции», – приводит ТАСС заявление представитель комитета на церемонии объявления лауреатов.

Ученые разработали методику лечения рака посредством замедления действия тормозных механизмов иммунной системы. Эллисон изучал белок, способный замедлять работу иммунной системы, и обнаружил возможность активизировать систему путем нейтрализации белка. Работавший параллельно с ним Хондзе открыл наличие протеина в иммунных клетках.

Ученые создали основу для новых подходов в лечении раковых заболеваний, которые станут новой вехой в борьбе с опухолями, полагает Нобелевский комитет.

Тасуку Хондзе родился в 1942 году в Киото, в 1966 году закончил медицинский факультет Киотского университета, который считается одним из самых престижных в Японии. После получения докторской степени несколько лет работал в качестве приглашенного специалиста на факультете эмбриологии в Институте Карнеги в Вашингтоне. С 1988 года – профессор Киотского университета.

Джеймс Эллисон родился в 1948 году в США. Является профессором Техасского университета и заведует кафедрой иммунологии в Онкологическом центре М.Д. Андерсона в Хьюстоне (Техас).

По правилам фонда, с именами всех кандидатов, представленных к награде в 2018 году, можно будет ознакомиться лишь через 50 лет. Предугадать их почти невозможно, однако из года в год эксперты называют своих фаворитов, передает РИА «Новости» .

В пресс-службе Нобелевского фонда сообщили также, что во вторник, 2 октября, и в среду, 3 октября, Нобелевский комитет Королевской шведской академии наук назовет имена призеров в области физики и химии.

Нобелевского лауреата по литературе озвучат в 2019 году из-за , которая отвечает за эту работу.

В пятницу, 5 октября, в Осло Норвежский нобелевский комитет назовет обладателя или обладателей награды за работу по укреплению мира. В этот раз в списке 329 кандидатов, из которых 112 – общественные и международные организации.

Неделя присуждения престижной премии завершится 8 октября в Стокгольме, где в Королевской шведской академии наук назовут призера в области экономики.

Сумма каждой из Нобелевских премий в 2018 году составляет 9 млн шведских крон – это около 940 тыс. долларов США.

Работа над списками кандидатов ведется почти круглый год. Ежегодно в сентябре множество профессоров разных стран, а также академические учреждения и бывшие нобелевские лауреаты получают письма с приглашением принять участие в номинации кандидатов.

После, с февраля по октябрь, идет работа над присланными номинациями, составлением списка кандидатов и голосованием по выбору лауреатов.

Список кандидатов является секретным. Имена награжденных называют в начале октября.

Церемония вручения премий проходит в Стокгольме и Осло всегда 10 декабря – в день кончины основателя Альфреда Нобеля.

В 2017 году обладателями премии стали 11 человек, которые работают в США, Великобритании, Швейцарии, и одна организация – Международная кампания по запрещению ядерного оружия ICAN.

В минувшем году Нобелевская премия по экономике была присуждена американскому экономисту Ричарду Талеру за то, что он научил мир .

Среди медиков – лауреатов премии оказался норвежский ученый и врач, прибывший в Крым в составе крупной делегации. Он о присуждении премии при посещении международного детского центра «Артек».

Президент РАН Александр Сергеев , что Россию, как и СССР, обделяют Нобелевскими премиями, ситуация вокруг которых политизирована.

В Стокгольме прошла церемония объявления лауреатов Нобелевской премии по физиологии и медицине. Ими стали Джеймс Эллисон (James P. Allison) и Таску Хондзё (Tasuku Honjo) за открытие терапии рака путем снятия ограничения иммунного ответа.

Джеймс Эллисон, профессор Онкологического центра им. М.Д. Андерсона Техасского университета, выделил белок CTLA-4 . Его молекулы находятся на поверхности Т-клеток и способны связываться с белками CD80 и CD86 на поверхности другого компонента иммунной системы - антигенпрезентирующих клеток . Когда такое связывание происходит, антигенпрезентирующие клетки, показывающие всем остальным компонентам иммунной системы, на что реагировать, инактивируются - перестают подавать сигналы. В таком случае антиген - «знак» того объекта, на который должна была быть нацелена атака, - не вызывает активации иммунного ответа.

Профессор Киотского университета Таску Хондзё обнаружил и охарактеризовал несколько интерлейкинов, а также белок PD-1 . Это рецептор, расположенный на поверхности Т-клеток. Связываясь с определенными молекулами, в частности PD-L1 на поверхности клеток опухолей, он тормозит атаку Т-лимфоцитов на клетки, несущие на себе эти самые молекулы.

Благодаря открытиям Эллисона и Хондзё стала возможной терапия рака ингибиторами контрольных точек иммунного ответа. Контрольные точки иммунного ответа - это молекулы, защищающие клетки организма от атаки со стороны собственной иммунной системы, в первую очередь от Т-лимфоцитов, т. е. ограничивающие иммунную реакцию на них. За счет этих контрольных точек компоненты раковых опухолей «прячутся» от Т-клеток. Ингибиторы контрольных точек иммунного ответа снижают активность PD-1, CTLA-4 и подобных молекул и тем самым «разрешают» Т-лимфоцитам атаковать опухоли.

«Открытие мембранных белков CTLA4 и PD1 в конце 1990-х годов позволило разработать принципиально новые препараты для лечения рака. Эти белки, часто называемые иммунными чекпоинтами, позволяют раковой опухоли успешно обманывать клетки иммунной системы. С помощью препаратов, которые подавляют активность CTLA4 и PD1, уже научились бороться с весьма агрессивными видами опухолей легких, почек, а также меланомой. Лекарства ипилимумаб и ниволумаб уже зарегистрированы Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США (Food and Drug Administration, FDA) в качестве второй рекомендуемой линии терапии. Таким образом, Нобелевская премия для ученых, открывших новое направление в лечение рака, весьма ожидаема и крайне заслужена», - рассказал «Чердаку» Андрей Гаража , биоинформатик, сооснователь и директор стартапа Oncobox , занимающегося разработкой решений для таргетной терапии раковых заболеваний, эксперт акселератора AngelTurbo.

Нобелевский комитет завершил голосование в 11 часов утра по Москве. Генеральный секретарь Нобелевского комитета Томас Перлманн (Thomas Perlmann) оповестил новых лауреатов о номинациях по телефону, а в 12:30 по Москве их имена стали известны и широкой общественности.

Интересно, что агентство Thomson Reuters, каждый год составляющее на основе цитирования научных статей списки вероятных кандидатов на получение Нобелевской премии (и редко попадающее в цель), дало довольно точный прогноз в отношении Хондзё и Эллисона. Они оказались в числе претендентов на награду в 2016 году . Всего через два года прогноз сбылся.

Нобелевская премия по физиологии и медицине - высшая награда за научные достижения в области физиологии и медицины - ежегодно присуждается Шведской королевской академией наук в Стокгольме. Она была учреждена в соответствии с завещанием, написанным в 1895 году шведским химиком Альфредом Нобелем. Каждый лауреат получает медаль, диплом и денежное вознаграждение. Их традиционно вручают на ежегодной церемонии в Стокгольме 10 декабря - в годовщину смерти Нобеля.

Первую Нобелевскую премию по физиологии и медицине вручили в 1901 году Эмилю фон Берингу «за работу над сывороточной терапией, прежде всего за ее применение в лечении дифтерии, что открыло новые пути в медицинской науке и дало врачам победоносное оружие против болезни и смерти». С тех пор лауреатами премии стали 214 человек.

В прошлом, 2017 году, самую престижную научную премию Джеффри Холл (Jeffrey C. Hall), Майкл Розбаш (Michael Rosbash) и Майкл Янг (Michael W. Young) за открытие молекулярных механизмов циркадных ритмов - периодического изменения активности клеток, тканей и органов, проходящего полный цикл приблизительно за 24 часа.

Нобелевскую премию по физиологии или медицине в 2018 году вручили Джеймсу Эллисону и Тасуку Хондзё «за открытие терапии рака при помощи подавления негативной иммунной регуляции». Мы попросили прокомментировать это событие заведующего кафедрой иммунологии Биологического факультета МГУ, академика Сергея Недоспасова и молекулярного биолога Аполлинарию Боголюбову.

Аполлинария Боголюбова , младший научный сотрудник лаборатории передачи внутриклеточных сигналов Института молекулярной биологии РАН

Контрольные точки, или чекпойнты, - это специальные молекулы на поверхности иммунных клеток, которые заставляют их блокировать иммунный ответ, чтобы в ходе него не повредились здоровые органы и ткани. Соответственно, блокировка этих молекул приводит к активации иммунного ответа, и собственная иммунная система может противостоять опухоли в организме, так как она начинает сама убивать опухолевые клетки. Открытие иммунных контрольных точек стало поворотной вехой в иммунотерапии опухолей, так как побочные эффекты применения антител, блокирующих эти молекулы, намного меньше, чем от традиционной терапии. Сейчас уже используется несколько противоопухолевых препаратов на основе антител, блокирующих иммунологические чекпойнты, и, действительно, результаты потрясающие: те пациенты, которые раньше умирали в течение очень короткого времени, теперь остаются жить. Считается, что это один из самых больших прорывов в терапии опухолей за последние двадцать лет.

Джеймс П. Эллисон описал возможность блокировки антителами самого первого иммунологического чекпойнта CTLA-4. Как потом оказалось, таких молекул существует достаточно много. Например, Тасуку Хондзё, второй нобелевский лауреат, открыл новый иммунологический чекпойнт PD-1 и активно разрабатывал терапевтические антитела для его блокировки. Обе эти молекулы находятся на поверхности Т-лимфоцитов, клеток адаптивного иммунитета, и служат для того, чтобы погасить иммунную реакцию в организме, когда это необходимо, чтобы не повредить здоровые ткани.Нобелевская премия по физиологии и медицине - 2015
Иммунотерапия опухолей антителами против чекпойнтов применима тогда, когда иммунная система организма способна распознать опухоль и, соответственно, задействовать Т-лимфоциты для ее уничтожения. В то же время эти Т-лимфоциты остаются бездействовать, поскольку опухоль умеет подавлять их активность. Антитела против чекпойнтов призваны снять этот блок и позволить иммунной системе бороться с опухолью. В данный момент иммунотерапия хорошо работает для пациентов с меланомой, раком легкого, простаты и многими другими опухолями, клетки которых хорошо узнаются иммунной системой. Как правило, при помощи методов современной диагностики каждый пациент проверяется на наличие молекул иммунологических чекпойнтов и, если они есть, направляется на лечение препаратами. Ведь если таких молекул нет, то терапия не сработает.

Статистика о том, насколько хорошо работают препараты для блокировки иммунологических чекпойнтов, постоянно обновляется. Однако уже давно стало ясно, что эти лекарства действительно очень хороши. Кроме того, их можно использовать в комбинации друг с другом. Так, в пионерской статье 2015 года ученые показали, что применение комбинации препаратов против CTLA-4 и PD-1 позволяет увеличить выживаемость пациентов более чем в два раза по сравнению с использованием препарата только против CTLA-4.

Сергей Недоспасов , доктор биологических наук, заведующий кафедрой иммунологии биологического факультета МГУ, профессор, академик РАН

Раковые опухоли, а также опухолевое микроокружение способны создавать ингибирующие сигналы, которые блокируют работу Т-лимфоцитов и, соответственно, не дают иммунной системе с собой бороться. Ингибирующий путь устроен так. Опухолевая клетка выставляет на свою поверхность молекулу - лиганд, контактирующий со специфическим ингибирующим рецептором на Т-лимфоците. Т-лимфоцит получает ингибирующий сигнал, который не позволяет ему активироваться и атаковать опухоль. Но эволюционно эти молекулы появились не для защиты опухоли, а для того, чтобы контролировать аутоиммунные заболевания. Раковые клетки просто пользуются уже существующим механизмом.

Если научиться отменять ингибирующие сигналы, Т-лимфоциты, пришедшие в опухоль, смогут создавать противоопухолевые эффекты, то есть бороться с раком. Нобелевские лауреаты этого года, Эллисон и Хондзё, изучая фундаментальные механизмы регуляции иммунной системы, открыли независимо друг от друга два важных ингибирующих каскада и соответствующие пары рецепторов-лигандов. Такого рода каскадов или пар рецепторов-лигандов в иммунной системе довольно много, поэтому отнюдь не каждое такое фундаментальное открытие приводит к революционным событиям в медицине, но в случае Эллисона и Хондзё именно это произошло. Выяснилось, что если на эти молекулы сделать терапевтические антитела, которые блокируют эти ингибирующие каскады, то у Т-клетки снимаются тормоза, и тогда они начинают атаковать опухоль. Сначала это было проверено на животных, затем на человеке: выключение этих каскадов дает терапевтический эффект.

Ингибирующих путей несколько, но ключевую роль играют именно те, за которые дали Нобелевскую премию, - рецепторы CTLA-4 и PD-1 и соответствующие лиганды PD-L1 и B7. Именно на них были сделаны новые лекарства в виде терапевтических антител.
Лиганд выключается следующим образом. Если у вас есть очищенный белок , можно в организме животного или человека получить для него антитело - тоже белок, который будет с очень высокой специфичностью связываться с этой молекулой. Технологическая проблема получить для любого белка антитела, которые будут связываться и блокировать его активность, давно решена. Прицепив антитело к лиганду, вы лишите его способности действовать на рецептор. А заблокировав антителом ту часть рецептора, на которую должен сесть лиганд, вы сделаете рецептор невосприимчивым и тоже заблокируете ингибирующий каскад. Пациент получает антитела системно, в виде инъекций через капельницу, в большом избытке. Они начинают циркулировать по организму - у них есть определенное время жизни, несколько дней, - и, придя в район опухоли по кровотоку, они заблокируют отрицательный сигнал. После того как ингибирующий путь выключается, Т-лимфоцит может уничтожать опухоль своим естественным путем. Но говорить о полном излечении пациентов благодаря этой процедуре и тем более о решении проблемы рака нельзя. Это важный наукоемкий терапевтический метод в дополнение к существующему инструментарию.
У такой терапии есть немало побочных эффектов. Они связаны с тем, что вне опухоли, в нормальной ситуации, ингибирующие каскады защищают нас от аутоиммунных заболеваний. Поэтому такое лечение может приводить к целому букету аутоиммунных заболеваний, эффекты которых строго индивидуальны: у одного на коже, у другого, например, в кишечнике.

Еще одно естественное ограничение этого метода: для того чтобы Т-лимфоцит распознал опухоль, она должна быть распознаваема иммунной системой, то есть иммуногенна. Иммуногенность опухоли зависит от того, есть ли у нее на поверхности молекулы, позволяющие Т-клеткам понять, изменены ли эти клетки или нет. Лимфоцит может распознать только то, что есть на поверхности другой клетки, поэтому клетка может стать опухолевой, но снаружи это никак не будет отражаться. Однако в опухолевых клетках накапливается очень много мутаций, поэтому и часть белков будет нести мутации. Когда пептиды мутантных белков высунутся на поверхность клетки, Т-лимфоцит подумает, что клетка заражена вирусом, и будет ее атаковать. Есть такие опухоли, как меланома, которая накапливает очень много мутаций и поэтому очень иммуногенна - первые испытания метода проводились как раз на меланомах. Но многие опухоли малоиммуногенны или неиммуногенны. Тем самым пока речь идет об очень небольшом числе форм рака, поддающихся такому лечению. Но поскольку эта терапия применяется в комбинации с другими методами, надежды на ее улучшение есть.

Открытия Эллисона и Хондзё просто идеальная тема для Нобелевской премии - фундаментальные открытия, которым повезло быстро транслироваться в лекарства. Но надо понимать, что их открытия позволят помочь не всем пациентам: у одних это будет работать, у других будет работать очень плохо или не работать совсем. И в любом случае - с побочными эффектами.