Лазерная безопасность наглядно, или почему не стоит смотреть в лазерный луч. Основы лазерной безопасности Лучом полностью безопасным для

Лазер очень опасная штука. Ткани и органы, которые обычно подвержены лазерному облучению это глаза и кожа. Существуют три основных типа повреждения тканей, вызванных лазерным облучением. Это тепловые эффекты, фотохимическое воздействие, а также акустические переходные эффекты (подвержены только глаза).

  • Тепловые эффекты могут возникать при любой длине волны и являются следствием излучения или светового воздействия на охлаждающий потенциал кровотока тканей.
  • В воздухе, фотохимический эффекты происходят между 200 и 400 нм и ультрафиолете, а также между 400 до 470 нм фиолетовых длинах волн. Фотохимические эффекты связанны с продолжительностью и также частотой повторения излучения.
  • Акустические переходные эффекты, связанные с длительностью импульса, могут произойти в короткий срок импульсов (до 1 мс) в зависимости от конкретной длины волны лазера. Акустическое воздействие переходных эффектов плохо изучено, но оно может вызвать повреждение сетчатки, которая отлична от термической травмы сетчатки.

Потенциальный вред глазу

Потенциальные места повреждения глаза (см. рис 1) напрямую связаны с длиной волны лазерного излучения. Воздействие лазерного излучения на глаз:

  • Длины волн короче 300 нм или более 1400 нм, воздействуют на роговицу
  • Длины волн между 300 и 400 нм, воздействуют на водянистую влагу, радужную оболочку глаза, хрусталик и стекловидное тело.
  • Длины волн от 400 нм и 1400 нм, направлены на сетчатку.

ПРИМЕЧАНИЕ: Вред лазера для сетчатки может быть очень большим из-за фокусного усиления (оптического усиления) от глаз, что составляет примерно 105. Это означает, что излучение от 1 мВт/см2 через глаз будет эффективно увеличено до 100 мВт/см2, когда оно достигает сетчатки.

При термических ожогах глаза нарушается охлаждающая функция сосудов сетчатки глаза. В результате повреждающего воздействия термического фактора могут происходить кровоизлияния в стекловидное тело в следствии повреждения кровеносных сосудов.

Хотя сетчатка может восстановиться от незначительных повреждений, основные ранения жёлтого пятна сетчатки может привести к временной или постоянной потере остроты зрения или к полной слепоте. Фотохимические ранения роговицы путем ультрафиолетового облучения может привести к photokeratoconjunctivitis (часто называют болезнью сварщиков или снежной слепотой). Это болезненные состояния могут длиться несколько дней с очень изнуряющими болями. Долгосрочный ультрафиолетовое облучение может привести к формированию катаракты.

Продолжительность воздействия также влияет на травматизацию глаза. Например, если лазер видимых длин волн (400 до 700 нм), мощность луча которого составляет менее 1,0 МВт, а время экспозиции составляет менее 0,25 секунд (время за которое человек закроет глаз), никаких повреждений на сетчатке глаза не будет. Класс 1, 2А и 2-лазеров подпадают под эту категорию и, как правило, не могут навредить сетчатке. К сожалению, при прямом или отраженном попадании лазера класса 3A, 3B, или 4, и диффузных отражений лазеров выше 4 класса могут вызывать повреждения, прежде чем человек сможет рефлекторно закрыть глаза.

Для импульсных лазеров, длительности импульса также влияет на потенциальный вред для глаз. Импульсы менее чем на 1 мс при попадании на сетчатку может вызвать акустические переходные эффекты, что приводит к существенному ущербу и кровотечениям в дополнение к ожидаемым тепловым повреждениям. Многие импульсные лазеров в настоящее время имеют время импульса менее 1 пикосекунды.

Стандарт ANSI определяет максимально допустимую мощность(МДМ) воздействия лазера на глаз без каких либо последствий (под воздействием конкретных условий). Если МДМ превышена, то вероятность повреждения глаз резко возрастает.

Первое правило лазерной безопасности: НИКОГДА НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ НЕ СМОТРИТЕ ГЛАЗАМИ НА ЛАЗЕРНЫЙ ЛУЧ!

Если вы сможете предотвратить попадание лазерного луча и его отражений в глаз, вы сможете избежать болезненные и, возможно, ослепляющее травмы.
Потенциальный вред коже.

Травмы кожы от лазеров в первую очередь, делятся на две категории: тепловые травмы (ожоги) от острого воздействия мощных лазерных лучей и фотохимического индуцированного повреждения от хронического воздействия рассеянного ультрафиолетового лазерного излучения.

  • Тепловой травмы могут возникнуть в результате прямого контакта с лучом или его зеркальным отражением. Эти травмы хоть и болезненны но, как правило, не являются серьезными и, обычно, легко предотвращаются при надлежащем контроле над лазерным лучом.
  • Фотохимические повреждения могут произойти с течением времени от ультрафиолетового облучения прямого света, зеркальных отражений, или даже диффузного отражения.

Эффект может быть незначительными но могут быть и серьезные ожоги, а длительное воздействие может способствовать формированию рака кожи. Хорошие защитные очки и одежда могут быть необходимы для защиты кожи и глаз.

Безопасность при работе с лазером

При работе с лазерами необходимо иметь очки, защищающие от лазерного излучения. Неужели эти специальные очки на самом деле так нужны? Многие начинающие лазеростроители и покупатели лазерных указок задаются таким вопросом. Да, защитные очки нужны даже для лазера 15мВт, так как без них глаза сильно устают. Очки стоят около 1600 рублей за штуку, но я думаю вы понимаете, что ваши глаза стоят намного дороже, чем вы заплатите за очки. Для защиты глаз нельзя использовать солнцезащитные очки!

То же самое будет с вашими глазами…
Степень защиты очков от лазерного излучение измеряется в OD. Что обозначает OD? OD значит Optical Density – оптическая плотность. Оптическая плотность показывает, во сколько раз очки ослабляют свет. Единица означает «в 10 раз». Соответственно, «оптическая плотность 3» означает ослабление в 1000 раз, а 6 - в миллион. Правильная оптическая плотность для видимого лазера такова, чтобы после очков от прямого попадания лазера осталась мощность, соответствующая классу II (максимум где-то 1 мВт). Для невидимого - чем больше, тем лучше.
От красного и некоторых инфракрасных лазеров защищают отечественные очки марки ЗН-22 С3-С22. Они похожи на очки сварщика, но имеют стекла голубого цвета. Купить их иногда можно в магазинах «Медтехника», стоят около 700 рублей. Недостаток — они резиновые, тяжелые и некрасивые. Если повезет, можно купить и другие отечественные очки от лазеров. Но в продаже они бывают редко.
На нашем сайте в разделе ссылки вы можете найти много адресов магазинов торгующих лазерными принадлежностями включая защитные очки.

Ещё в древние века жители планеты знали о благотворной силе тепла, или, если говорить научным языком, об инфракрасном излучение. Инфракрасное излучение представляет собой часть спектра излучения солнца. Человек ощущает это излучение, чувствуя тепло, но не видит его. Такие лучи полностью безопасны для человека, поэтому стоит их отличать от опасных рентгеновских, СВЧ или ультрафиолетовых. Пример естественного источника инфракрасных лучей – это Солнце, искусственных – русская печь. Поэтому каждый житель планеты, регулярно ощущает на себе их благотворное действие, особенно летом.

Ряд научных лабораторий США провели исследования воздействия дальнего инфракрасного излучения на организм человека. И вот что они выяснили: при воздействии инфракрасного излучения на организм, в нём:

Подавляется рост раковых клеток;

Уничтожаются некоторые виды вируса гепатита;

Нейтрализуется пагубное воздействие электромагнитных полей;

Излечивается дистрофия;

У больных диабетом повышается количество вырабатываемого инсулина;

Нейтрализуются последствия радиоактивного излучения;

Значительное улучшение, или, даже, излечение псориаза;

Обращение цирроза печени.

Тело человека нуждается в регулярной подпитке длинноволновым теплом. Организм начинает болеть, если такая подпитка отсутствует. Наверное, все замечали, как появляется прилив сил после пребывания на солнышке или после посиделок у костра. Только, ведь таких возможностей у человека может и не быть, особенно если он проживает в крупном мегаполисе. Вот тогда и выручат этого человека инфракрасные излучатели , которые он сам же и создал. В мире, на сегодняшний день, существует более десяти различных приборов, под общим характеризующим названием инфракрасные излучатели . Это и инфракрасные лампы, и инфракрасная одежда, и инфракрасные матрасы, и инфракрасные сауны, и др.

Инфракрасные излучатели и их благотворное лечебное воздействие на организм человека

Огромным достоинством дальнего инфракрасного излучения является то, что при его воздействии, устраняется не только симптомы болезни, но и её причины.

Многие наши современные болезни вытекают из неблагоприятной окружающей среды. Накопление всевозможных ядов в организме приводит к тому, что многие люди живут с постоянной болью, чувством истощения, усталости и подавленности. Практически у каждого человека можно обнаружить в организме наличие пестицидов, тяжёлых металлов, продуктов сгорания топлива и других вредных соединений.

Недавние исследования доказали, что, при воздействии на организм человека инфракрасных лучей, происходит стимулирование клеток на вывод из организма через мочу и пот ядовитых веществ, в том числе, ртути и свинца. А ведь очищение от токсинов – это несомненное условие предотвращения многих болезней. Если совместить лечение инфракрасным излучением со здоровым питанием, диетами и голоданием, то такая система лечения представит собой широкий спектр проверенных возможностей, выходящих за рамки обычной традиционной медицины.

Регулярный приём инфракрасных процедур поможет при следующих заболеваниях:

Нарушение сердечнососудистой деятельности, за счёт уменьшения уровня холестерина в крови, и снижения высокого давления;

Варикозное расширение вен;

Нарушение циркуляции крови. При воздействии инфракрасного излучения происходит расширение сосудов, стимулируется улучшение циркуляции крови;

Происходит устранение артрических болей, судорог, менструальных болей, ревматизма, радикулита;

Инфракрасные лучи сдерживают процесс размножения вирусов, что, при регулярных сеансах, позволит избежать простудные заболевания, или значительно ускорить процесс выздоровления;

Помогает бороться с проблемами избыточного веса и целлюлитом;

Помогает уменьшить боль при ожогах, одновременно ускоряя процесс создания новой кожи;

Успокаивается нервная система;

Стабилизируется работа иммунной системы;

Происходит устранение ряда нарушений пищеварительной системы.


Здоровья Вам и вашим близким!

Наверняка многие знают, что ультрафиолет способен устроить для вашей кожи двоякую ситуацию. Он может ровно нанести на тело то, что мы называем загаром (иными словами, оказать воздействие на меланин под нашей кожей), а может и нанести серьёзный ожог.

Ультрафиолетовый свет – мощнейшее излучение от главной и единственной нашей системы – Солнечной, сейчас это знает каждый школьник. То, что мы видим как солнечные лучи на самом деле просто свет от звезды, долетающий до нас сквозь невероятное расстояние.

Ультрафиолетовые невидимые для нас волны просто остаются за пределами спектра, который доступен человеческому глазу.

Это всего лишь остатки энергии, которая долетает к нам от Солнца сквозь расстояние до Земли (а это 149 600 000 км) и преодолевает главную защиту планеты – озоновый слой.

То, что мы можем чувствовать на своей коже – крохотные частицы того невероятного количества тепла, которое звезда выделяет ежесекундно. Про озоновый слой вы могли слышать из экологических телепрограмм и прочего подобного материала и не зря.

Если бы озонового слоя не существовало, всё живое на Земле практически моментально умерло бы от мощнейшего потока радиации. Да, ультрафиолет радиоактивен и в больших дозах может нанести вред вплоть до летального исхода.

Ультрафиолетовый диапазон излучения находится между видимыми нам лучами (именно фиолетовой границей нашего светового зрения) и рентгеновским излучением.

Именно поэтому этот тип электромагнитных лучей получил своё название – ultraviolet, от лат. ultra (сверх чего-то, за пределами чего-то) и violet (фиолетовый с англ.).

Ультрафиолетовый свет обладает также и разной длиной волны – от 400 до 100 нм. Длина волны важна – она влияет на живые организмы с силой, прямо пропорциональной дальности.

Длина волны усф в 280-200 нм оказывает самое сильное влияние на живые организмы, например, ткани органов. На микроорганизмы действует как бактерицидное излучение, полностью уничтожая.

Кто открыл ультрафиолет?

Подозрения о том, что невидимые спектры света существуют, бродили среди величайших умов человечества очень давно. Учёные того времени не могли объяснить явление, но строили очень многообещающие догадки, которые и подвели современных учёных к открытию в чистом виде.

Открытие произошло вскоре после обнаружения человечеством инфракрасного излучения. Примерно в это время немецкий физик Иоганн Вильгельм Риттер начал проводить исследования в области противоположной части спектра, с лучами за пределом фиолетового.

Девятнадцатый век только-только начался, люди ещё очень многое не знали про свет и то, что он из себя представляет, не говоря уже о том, что такое ультрафиолетовое излучение.

Всё познавалось путём эксперимента, редкими контактами с коллегами из других стран и долгим путём проб и ошибок. Таким же путём пошёл и Риттер.

Он задумал интересный эксперимент, который осуществил в своих исследованиях с помощью хлорида серебра. Облучая его разными частями спектра, он заметил, что окисление вещества происходит с разной скоростью.

Каждый участок спектра оказывал разное влияние, но один показатель очень явно выделялся среди прочих – быстрее всего серебро темнело за пределами фиолетовой части, а точнее перед ней.

Несмотря на то, что даже знания про диапазон длин волн тогда были довольно размыты, учёные почерпнули из этого вывод, изменивший физику навсегда.

В результате долгих дискуссий и обсуждений, вывод был дан общественности довольно чётко.

Учёные сошлись на том, что свет можно поделить на три условные, строго отдельные части:

  1. видимый свет (виден человеческому глазу);
  2. инфракрасное излучение (невидимые лучи, дающие эффект тепла и отвечающие за окисление);
  3. ультрафиолетовые лучи (восстанавливающие).

Разумеется, тогда никто не мог знать влияние ультрафиолетовой волны на человеческую кожу, а также все сферы, в которых человек будет использовать это излучение в будущем.

Тем не менее, исследования продолжались и продолжаются в наши дни, а ультрафиолет постоянно удивляет учёных какими-то новыми свойствами и возможностями его применения.

Польза ультрафиолета для человека

С каждым годом человечество обнаруживало всё новые и новые способы использовать это удивительное излучение.

Одним из самых известных и знакомых каждому, кто имел несчастье длительное время лежать в больнице, является кварцевание – облучение больничного помещения ультрафиолетом с целью полной стерилизации комнаты от микроорганизмов.

Хоть метод и давний, но до сих пор применяется — многие больничные палаты до сих пор оборудованы специальными лампами, излучающими ультрафиолетовые лучи.

Все люди, включая персонал, покидают помещение на время кварцевания, так как лучи ультрафиолета достаточной мощности для бактерицидного эффекта обязательно навредят человеку.

Оказавшийся даже ненадолго под эффектом такой лампы человек почувствует гул в ушах, повышенное давление, его будут преследовать специфический запах и головная боль.

Ультрафиолетовое (уфс) излучение используется также и в обеззараживании воды. Наряду с хлором, который используется больше в промышленных целях, а не для воды, которая потом должна попасть в дома людей, ультрафиолет не только помогает очистить воду, а и устраняет последствия хлорирования и озонирования воды – чрезмерную жёсткость, химический осадок.

Наиболее популярен при очистке воды для промышленных нужд, для заводов и бассейнов – спектр ультрафиолетового излучения таков, что вреда человеку такая очистка не нанесёт.

Тот же хлор гораздо опаснее – если, например, в бассейне не рассчитать пропорции вещества к воде, хлорка легко может нанести вам слабые, но ощутимые мелкие ожоги кожного покрова.

«Отличился» ультрафиолет и в сфере анализа окружающей среды. Его, как и любое излучение, можно использовать для исследования веществ. Особенно эффект виден на минералах – при облучении горные породы и камни начинают светиться, причём каждый по-разному.

Последствий такого облучения нет, а особенная реакция каждого минерала на ультрафиолетовые лучи очень пригодилась геологам. Сейчас, просвечивая насквозь целые пласты горных пород, можно с почти абсолютной уверенностью «узнать» тот или иной камень.

Рентгеновские и также используются геологами для таких анализов, но с удивительной эффективностью ультрафиолета соперничать непросто.

Ну и, пожалуй, самая известная сейчас сфера применения таких лучей. Это, как ни странно, сфера косметологии.

Человечество давно задумалось – если ультрафиолет в солнечных лучах (а именно Солнце – основной источник космического ультрафиолета для нас) вызывает загар на человеческой коже.

То почему бы не создать искусственный источник и получать такой эффект круглый год, а не только в пляжные сезоны, когда принятие солнечных ванн возможно?

Действие уфс на кожу крайне простое и механическое – лучи действуют на наш человеческий пигмент (меланин), который просто защищается, темнея в процессе – это объясняет заодно и причину исчезновения загара со временем.

Сделать искусственный источник у нас получилось – сейчас это сверхсовременные солярии с щадящими лампами. Практически полностью безопасные для людей с любым типом кожи, а ультрафиолет в них используется легко и без всяких опасений.

Никто не застрахован от того, чтобы нанести слишком сильный загар или испортить ровный тон, но получить ожоги в салоне солярия не выйдет – техника безопасности не позволит.

Опасность ультрафиолета для кожи

Кстати, о безопасности. В малых количествах ультрафиолет под открытым небом не может причинить вреда серьёзнее, чем обгоревшая кожа, даже если вы будете находиться в воде.

Но мы говорим о стандартной для человека дозе облучения, а есть люди, вольно или невольно получающие избыток ультрафиолетовых лучей гораздо чаще, чем несколько раз в год.

Это грозит, к сожалению, не только перманентным загаром. Лучи действуют на кожу не лучшим образом, иногда образуя или усиливая уже имеющуюся меланому – проще говоря, рак кожи.

Меланомы бывают нескольких видов, но все они относятся к злокачественным опухолям. Причём неважно, где вы загораете – как космический солнечный, так и искусственный ультрафиолет, который применяется в соляриях, подействует одинаково.

Риск получить меланому невелик, но при наличии других раковых заболеваний ранее, ультрафиолетовое излучение увеличивает шанс на рецидив, что доказано.

Меланома – худший из вариантов и шансы на неё малы. Но злоупотребляя солнечными ваннами, вы получите ещё несколько неприятных сюрпризов.

Это всем нам известные с детства ожоги кожи, после которых верхний слой эпидермиса сползает клочьями. Большую вероятность преждевременного старения кожи из-за того же меланина, который попросту не выдержит такой нагрузки.

И если от ожогов вы избавитесь, так как везде уже используют специальные крема для лечения и профилактики солнечных ожогов, то обратить старение вспять вряд ли выйдет.

Ещё одно гениальное человеческое изобретение – солнечные очки, были придуманы также в попытках борьбы с излишками ультрафиолета, ведь для человеческого глаза эти лучи тоже очень вредны.

Вредоносное действие будет того же типа – ожог, но только главного барьера глаза, сетчатки. Это тяжёлая травма, целостность сетчатки очень трудно и дорого восстанавливать.

Что примечательно, при замене сетчатки некоторые пациенты начинали буквально видеть ультрафиолетовое излучение в виде слабого лилового свечения, и в новых моделях стремительно развивающихся имплантатов такой ошибки уже нет.

Защитить глаз от лучей можно только прямой «заслонкой», роль которой и выполняет стекло очков – его главная функция состоит именно в этом, а не в улучшении вашей видимости в солнечный день.

Удивительно, но из своего врага мы медленно, но верно превратили ультрафиолет в условного друга. Мы используем для решения бытовых проблем излучение, которое при любой более-менее серьёзной бреши в озоновом слое может с лёгкостью стать причиной апокалипсиса.

Мы научились обращаться с ним с осторожностью и знаем его основные тайны, но это совершенно не значит, что он для нас более не опасен.

Прежде всего, всё зависит от самих людей – пока технологии не развиты настолько, чтобы полностью избавлять нас от последствий космических излучений, следует быть крайне осторожными и остерегаться ожогов, особенно с такими последствиями.

Оружие для игры оснащено инфракрасным излучателем. (На картинке он выполнен в виде глушителя).

Стреляет это ружье лазерными лучами в безопасном инфракрасном диапазоне. Луч примерно такой же как от пульта к телевизору, только более узкий. И к сожалению такой же невидимый. Для усиления эффекта реалистичности оружие издает звуки и мигает в районе излучателя. Как известно с расстоянием луч имеет свойство расширяться и световое пятно уже накрывает противника почти полностью, однако меткость не вырастет - фигура противника с расстоянием тоже уменьшается и целиться точно в нее сложнее.

Это все было про лазер, скажу пару слов и о приемнике. Нет-нет это не ошейник).

В неАренном лазертаге ик-приемники крепят на голову. Да-да на всех коротких расстояниях (до 50 метров) чтобы попасть в противника, целиться нужно только в голову.

Вообще Лазертаг идеально подходит для игры в естественной местности, инфракрасный сигнал не страдает от помех ламп, электродвигателей, щеток стартера и прочих електрических девайсов, дождь и снег на проходимость сигнала влияют очень слабо (несколько снижают дальность).

Похуже обстоит дело с ветками и листьями, но как правило сигнал все равно проходит. Здесь будет действовать простое правило: если вы оптически (своими глазами) видите приемник противника, то и луч выстрела добежит до него. В большинстве своем помехи проявляются на максимальной дистанции срабатывания оружия (ближе к 200 метрам), поэтому гарантированной дальностью называют что-то около 120 метров.

Как правило, бой ведется на еще меньшей дистанции, потому что это более азартно и интересно.

LaserTag начинал свою карьеру не как игра, а как средство тренировки бойцов регулярных армий в условиях максимально приближенных к боевым. И используется в этом качестве по сей день многими армиями. Большая часть оружия исполняется в максимально идентичном реальному виде (в том числе и по весу). Количество выстрелов без перезарядки совпадает с количеством в реальном магазине, а сама перезарядка выносится либо на кнопку в районе магазине оружия, либо на затвор. Облегченные (по весу) образцы оружия тоже выпускаются производителями, чтобы сделать игру более комфортной для девушек и детей.

Безопасно ли это?

Лазертэг разработан довольно давно и безопасен для человека. Но я хочу рассказать, что потенциальная опасность ИК-излучения все же существует. Вредное действие инфракрасных лучей может проявится на органы зрения в виде теплового эффекта. Если нам приходиться долго смотреть на солнце или яркие предметы, то мы рефлекторно сужаем зрачок и отводим взгляд, но в данном случае напоминаю, что ИК излучение невидимо, и наши рефлексы не сработают.

Для безопасности человека нужно рассчитать такое воздействие тепла на сетчатку глаза, которое даже при перманентном воздействии не способно нанести вред здоровью человека. Поэтому была ограничена частота выстрелов в очереди (3 выстрела/сек) и максимально укорочена длительность инфракрасного сигнала, до минимальной которую может воспринять приёмное оборудование (16мс). Кстати это положительно повлияло на расход пальчиковых аккумуляторых батарей.

Всем приятной игры.

P.S. и капельку юмора.

Основы лазерной безопасности.

Лазер – оптический квантовый генератор, а само слово является аббревиатурой слов английской фразы Light Amplification by Stimulated Emission of Radiation – усиление света в результате вынужденного усиления. Нам кажется, что свет (например, от лампы) непрерывен, но на самом деле он состоит из множества фотонов со случайной длиной волны и случайной фазой. Это приводит к тому, что излучение, образуемое этими фотонами, распространятся в разные стороны, в результате чего оно имеет незначительную интенсивность, убывающую в пространстве, и свет является “белым”, т.е. в нем присутствуют самые различные волны. К особенностям же лазерного излучения можно отнести его интенсивность, направленность, когерентность и узкий диапазон длин волн.

1. Интенсивность. Свет от обычной лампы рассеивается в большой области пространства, и его интенсивность убывает, по мере удаления от источника излучения. Лазерный же луч так сильно сфокусирован, что значительное количество фотонов одновременно попадает в незначительную по размерам точку. И поскольку сечение лазерного луча очень мало, в этой области концентрируется огромная энергия. Таким образом, даже незначительный по мощности источник света создает высочайшую плотность энергии в малом объеме пространства, а, значит, луч лазера обладает высокой интенсивностью.

2. Направленность. Направленность лазерного луча создается оптической системой, точнее сказать двумя зеркалам, образующими оптический канал. Чаще всего в лазерах имеется два зеркала: полностью отражающее и полупрозрачное, между которыми находится источник света и возбужденная среда. Лазерный луч проходит через возбужденную среду лазера, его амплитуда увеличивается при сохранении синфазности излучения, попадает на полностью отражающее зеркало и меняет свое направление на обратное. Отраженный луч снова проходит через возбужденную среду, еще больше усиливаясь. Далее попадает на полупрозрачное зеркало, и так как интенсивность луча пока еще незначительная, отражается от полупрозрачного зеркала, снова проходит через возбужденную среду и т.д. Когда луч будет достаточно усилен, и его мощность станет высокой, полупрозрачное зеркало пропускает луч наружу, после чего он может проходить значительные расстояния без особой потери энергии, так как лучи являются практически параллельными.

Особенности лазерного излучения приводят к тому, что луч лазера поособому воздействует на сетчатку человеческого глаза. Вся энергия лазерного луча фокусируется в одну точку , в то время как свет от обычного некогерентного источника воздействует на относительно большую площадь сетчатки. Поэтому источник лазерного излучения с мощностью в десяток милливатт может привести к разрушению сетчатки и полной потере зрения, в то время как свет от лампы мощность в сотню Ватт (в тысячу раз мощнее лазерного источника) спокойно переносится человеком.

В современной электронной технике применяются в основном полупроводниковые лазеры. Их световой поток может быстро переключаться с высокой частотой без прекращения вынужденного излучения, что делает их пригодными и особенно удобными для применения в средствах связи, в средствах считывания информации и в печатающих устройствах. Все эти области применения лазеров характеризуются высокими частотами повторения световых импульсов.

В принципе, лазеры применяются в самых различных отраслях человеческой деятельности: медицине, электронике, металлургии, телекоммуникациях, в военной области. Каждая область применения лазера накладывает свои отпечатки на требуемые характеристики и параметры лазерных излучателей. Ввиду того, что физические особенности лазерного излучения приводят к возникновению опасности получения человеком травм различной тяжести, разнообразные правительственные агентства, службы сертификации и санитарного контроля разрабатывают системы классификации и нормативы безопасности при работе с лазерами.

Наиболее известной и чаще используемой является классификация, состоящая из четырех классов безопасности лазерных систем.

Класс безопасности I (лазеры сверхмалой мощности). Лазеры этого класса считаются полностью безопасными для человека. К этому классу относятся лазеры и лазерные системы, которые ни при каких условиях облучения, присущих данному лазерному прибору, не могут излучать световой поток c уровнем, превышающим предельные величины облучения для глаз, т.е. лазерные системы класса I не могут причинить вреда человеку. К этому классу относятся лазеры мощностью менее 0.39 мВт. Но стоит обратить внимание на то, что приборам класса безопасности I могут соответствовать изделия, в которых используются лазеры с большей мощностью. В этом случае более опасный лазер размещают в защитном корпусе, который проектируется таким образом, что опасное излучение ни при каких условиях не должно выйти за пределы этого корпуса. Так, например, если просмотреть руководство пользователя или технические характеристики лазерных принтеров, можно найти ссылку, что данное изделие (лазерный принтер) относится к устройствам класса I. В то же самое время при описании характеристик блока лазера указывается, что данное изделии соответствует классу IIIB. Вот такое противоречие, которое объясняется довольно легко. Сам лазер относится в группе IIIB, а весь блок лазера к группе I. Это возможно, так как лазер находится внутри модуля и закрыт различными блокировочными крышками. Однако во время проведения ремонтных работ крышки блока лазера могут быть удалены, что приводит к возможности облучения сервисного инженера лазером класса IIIB, что может привести к определенным травмам. Подавляющее большинство разработчиков устройств на основе лазеров проектируют свои изделия таким образом, чтобы они относились к классу I. Но при ремонте, когда специалисты, производящие работы получают доступ непосредственно к лазеру, вся безопасность системы нарушается, и устройство смело можно относить уже к другой, более опасной, группе.

Класс безопасности II (лазеры малой мощности). Лазеры и лазерные системы этого класса должны генерировать видимый лазерный луч, слишком яркий для того, чтобы можно было смотреть на него (пусть даже короткий период времени). Не считается опасным мгновенный взгляд на луч. Если луч лазера этого класса попадает в глаз, то, быстро закрыв глаз, можно избежать любого, даже малейшего повреждения зрения. Мощность лазеров этого класса составляет менее 1 мВт. Как правило, при попадании лазерного луча в глаз человек инстинктивно стремится закрыть глаза, что в случае лазеров класса II защитит от травм. Однако если намеренно продолжать смотреть на лазер, то луч класса безопасности II может вызвать повреждение зрения (обычно временное).

Хочется сказать, что большинство лазерных указок, свободно продаваемых на прилавках детских игрушек относится именно к лазерам этого класса. Так что стоит присматривать за детьми, играющими с такими далеко не безопасными игрушками.

Класс безопасности III (лазеры средней мощности). Лазеры и лазерные системы этого класса могут излучать любые длины волн, но не могут создавать опасное рассеянное отражение (отражение во многих направлениях), если только они не сфокусированы или их действие не наблюдается в течение продолжительного времени в ограниченной области. Эти лазеры и лазерные системы не считаются пожароопасными и не опасны для кожного покрова человека. Мощность лазеров класса III составляет менее 0.5 Вт. Смотреть прямо на луч опасно

Класс безопасности III разделяется на два подкласса: IIIA IIIB. К подклассу IIIA относятся лазеры и лазерные системы, которые при обычных условиях не представляют опасности, если смотреть на них без защиты только мгновенно. Они могут представлять опасность, если смотреть не них через оптические фокусирующие системы. К подклассу IIIB относятся лазеры и лазерные системы, которые могут вызвать травмирование зрения при прямом взгляде на луч. Травму может вызвать и направленное отражение луча, например от зеркала. Как уже говорилось выше, подавляющее большинство лазеров для лазерных принтеров относится именно к этому классу безопасности.

Класс безопасности IV (лазеры большой мощности). Лазеры этого класса создают прямую опасность здоровью человека как при направленном, так и при рассеянном отражении луча. Кроме того, лазеры этого класса могут быть пожароопасными и могут вызывать ожоги кожного покрова человека. Мощность лазеров каждого класса представлена в итоговой таблице 1.

Таблица 1

Меры безопасности включают наличие предупреждающих знаков, меры защиты и обучение технике безопасности при работе с лазерами. Такие правила требуют наличия предупреждающих знаков и надписей на самом оборудовании, представляющем определенную опасность. Предупреждающие знаки должны быть продублированы и в технической документации, описывающей процедуры ремонта и настройки лазерных систем.

В иностранных руководствах по работе с лазерными устройствами сервисным инженерам рекомендуется придерживаться следующих правил и положений.

1. Проводить техническое обслуживание оборудования, содержащего лазерную систему должны только специалисты, прошедшие обучение по курсу техники безопасности при работе с лазерами.

2. Ремонт и регулировка лазерной системы должны производиться строго в соответствии с процедурами, приведенными в документации и в руководстве по обслуживанию.

3. При работе сервисный инженер не должен отключать различные блокировки и защиты, предусмотренные конструкцией аппарата.

4. Сервисный инженер при работе не должен пользоваться зеркалами, оптическими приборами и инструментами с отражающей поверхностью.

5. Желательно все работы по ремонту (или их большую часть) осуществлять при выключенном питании аппарата.

6. Никто не должен смотреть прямо в лазерный луч или на предмет, его отражающий.

7. Сервисный инженер не должен допускать выхода луча лазера из ремонтируемого устройства.

8. Сервисный инженер должен быть уверен, что никто не смотрит прямо в лазерный луч.

9. Если представитель обслуживающей организации узнает, что кто-либо мог получить облучение лазером (прямым лучом или отраженным), то он должен незамедлительно проинформировать об этом руководство обслуживающей организации. При этом руководитель организации должен будет составить протокол происшествия, в котором будут отражены все детали подобного ЧП.

Рис. 1.

Предупреждающий знак «DANGER» (Опасно) (рис.1а) красного цвета указывает на то, что лазерный луч может повредить зрение при попадании его в глаз непосредственно, через оптические приборы или при отражении. Предупреждающий знак «CAUTION» (Предостережение) (рис.1б) желтого цвета указывает, что при попадании лазерного луча в глаза немедленное закрывание глаз защитит от повреждения зрения. Большинство лазерных систем имеет возможность регулировки выходной мощности лазера. При этом регулировочные элементы (обычно переменные резисторы) размещают таким образом, чтобы регулировки можно было проводить без снятия крышек блока лазера. Этим также пытаются достигнуть большей защиты сервисного инженера при проведении работ по техническому обслуживанию.