Как выглядит клетка которая синтезирует антитела иммуноглобулины. Какими клетками вырабатываются антитела. Клетки иммунной системы, которые вырабатывают антитела. Как проводится ИФА крови. D. Естественный пассивный

Проникновение в организм человека тех или иных болезнетворных микроорганизмов не у всех людей вызывает заболевание. Отдельные лица обладают невосприимчивостью ко многим болезням. Например: скарлатиной заболевают лишь 40-50% детей, контактировавших с больными. Это говорит о том, что у человека имеются факторы и механизмы , препятствующие развитию инфекции.

Факторы защиты подразделяются на:

1. Неспецифические – кожа, слизистые оболочки, которые представляют задерживающий барьер. К ним относятся фагоциты – клетки-пожиратели (лейкоциты), которые находятся в крови, лимфоузлах, селезенке, красном костном мозге.

2. Специфические факторы – это решающие факторы в борьбе с инфекциями, они вырабатываются в организме. Они обусловливают специфическую невосприимчивость организма к той инфекции, против которой они выработаны. Эту форму защиты называют иммунитетом.

Специфичность иммунитета выражается в том, что он обусловливает защиту лишь против одной инфекции и совершенно не влияет на восприимчивость к другим инфекциям. Так вещества, выработанные против возбудителя коклюша, бессильны против возбудителя коклюша, бессильны против возбудителя скарлатины.

Иммунный процесс – это ответ организма на определенного рода раздражение, на вторжение чужеродного агента – антигена. Под антигеном обычно понимают несвойственные данному организму соединения, чаще всего белки, проникшие в его внутреннюю среду, минуя желудочно-кишечный тракт. Антигенными свойствами обладают все белки, некоторые полисахариды и вещества смешанной природы. Антигенами могут быть живые тела (бактерии, микробы, вирусы), химические вещества. Антигенов насчитывают сотни тысяч.

Защищая организм от антигенов, кровь вырабатывает особые белковые тела – антитела (противотела) , которые обезвреживают антигены.

В настоящее время хорошо известна химическая природа антител. Все они являются специфическими белками – гамма-глобулинами . Антитела образуются клетками лимфоузлов, селезенки, красного костного мозга. Отсюда они проникают в кровь и циркулируют по организму. Наиболее активно вырабатывают антитела лимфоциты и моноциты.

Защитные тела (антитела) по разному действуют на проникшие в организм микробы и чужеродные вещества. Одни антитела склеивают микроорганизмы, другие – осаждают склеенные частицы, а третьи разрушают и растворяют их. Такие антитела называют преципитинами .

Антитела, растворяющие бактерии, называют бактериолизинами .

Антитела, нейтрализующие токсины (яды) бактерий, змей, растений, называют антитоксинами .

Предыдущая17181920212223242526272829303132Следующая

ПОСМОТРЕТЬ ЕЩЕ:

В основе иммунитета лежит способность клеток крови

Покажет ли он на сроке 6-ть месяцев, наличие или отсутствие вируса в крови.

Поскольку носовые ходы у малышей более узкие, чем у в основе иммунитета лежит способность клеток крови постарше, носик забивается быстро.

Учитывая, что риск развития смертельных побочных список препаратов для повышения иммунитета для взрослых действий от употребления анальгина преобладает его терапевтический эффект, препарат был запрещен для лечения детей до 18 лет почти во всех странах мира.

Возненавидите, может быть меня, и в ненависти вашей будете справедливы. Можете купить лимфодренаж — специальный комплекс трав.

Упражнения следует начинать с нижней части грудного отдела позвоночника.

Вследствие этого повышается проницаемость плазматических мембран, что приводит к возрастанию активности аспартатаминотрансферазы, аланинаминотрансферазы и креатинкиназы в плазме в основе иммунитета продукты для восстановления иммунитета лежит способность клеток крови.

Даже если устраивают праздник, малыши еще не слишком понимают, что происходит.

Схожие записи:

Антитела

Антитела это крупные Y-образные белки, которые вырабатываются клетками плазмы и применяются иммунной системой в целях уничтожения чужеродных микроорганизмов (вирусов и бактерий).

Антитело по другому называется иммуноглобулин. Антитела это гликопротеины из суперсемейства иммуноглобулинов. Представляют большую часть гамма-глобулиновой фракции белков крови.

При попадании в организм патогена (антигена), его молекула распознается антителами через вариабельную область Fab.

На кончике каждого антитела содержится паратоп, который является специфичным для каждого конкретного эпитопа на антигене, что позволяет связываться этим структурам вместе с абсолютной точностью. Данный процесс связывания позволяет антителам помечать патогенные молекулы или клетки для последующей атаки клетками иммунной системы для их нейтрализации.

Такой процесс препятствует развитию заболевания, а также может активировать макрофаги для уничтожения вредных микроорганизмов. Производство антител возложено на гуморальную иммунную систему, это является основной ее функцией.

Взаимодействие антител с другими компонентами иммунной системы происходит через Fc-область.

Секреция антител происходит B-клетками адаптивной иммунной системы, чаще всего дифференцированными B-клетками (плазматическими клетками).

Антитела присутствуют в двух формах, а именно в растворимой, свободно распространяющиеся в плазме крови, а также в форме, связанной с мембраной, прикрепляющейся к поверхности B-клетки, называемыми B-клеточными рецепторами. B-клеточные рецепторы присутствуют только на поверхности B-клеток, что облегчает активацию этих клеток и их дифференциацию на различные области производства антител (плазматические клетки или клетки памяти) B-клеток, которые выживают в организме, запоминая определенный (тот же) антиген, что позволяет реагировать B-клеткам быстрее при следующем попадании этого антигена в организм.

Работа растворимых антител продолжается после их высвобождения в кровь и в другие жидкости организма, где они продолжают обследование чужеродных микроорганизмов.

Строение антител

Антитела это тяжелые примерно 150 кДа белки, содержащие сахарные цепи (гликаны), т.е. антитела это гликопротеины. Основной функциональной единицей каждого антитела является мономер иммуноглобулина.

В общем все антитела имеют примерно схожую структуру, но небольшая область на кончике белка очень изменчива, что позволяет существовать миллионам антител с различиями именно на этом кончике.

Данное место называется гипервариабельной областью. Каждый вариант кончика способен связываться с определенным антигеном. Такой огромный вариант антител-паратопов дает возможность иммунной системе связывать множество чужеродных микроорганизмов, вторгающихся в организм человека.

Большое разнообразие паратопов антител достигается за счет рекомбинации — процесса их случайной мутации в области гена антитела.

Паратоп антителя является полигенным и состоит из трех генов V, D, J. Паратопный локус полиморфен, поэтому при продуцировании антитела выбирается по одному аллелю из генов V, D, J, после чего сегменты генов соединяются вместе случайно генетической рекомбинацией для создания паратопа. Области, в которых гены случайным образом рекомбинируются вместе называются гиперпеременной областью, которая используется для распознавания антигенов. В ходе процесса под названием коммутация классов, происходит реорганизация генов антител, в результате чего один тип фрагмента Fc тяжелой цепи меняется на другой, создавая другой изотип антитела.

Такой процесс дает возможность использовать одно антитело различными типами Fc-рецепторов.

В состав антитела входят несколько основных структурных единиц с двумя большими тяжелыми и двумя небольшими легкими цепями. Тяжелые цепи антител имеют несколько различных типов, определяемых пятью типами кристаллизующихся фрагментов Fc, способные присоединяться к антигенсвязывающимся фрагментам. Пять различных типов областей Fc дают возможность антителам группироваться в пять изотипов. При этом каждая область Fc конкретного изотипа антитела имеет возможность связываться со своим специфическим Fc-рецептором, кроме lgD, являющимся по существу B-клеточным рецептором.

Это позволяет структуре антиген-антитело опосредовать разные роли, которые будут зависеть от Fc-рецептора с которым он связывается. При этом структуры гликанов, присутствующие в области Fc модулируют способность антител связываться с его соответствующим Fc-рецептором. Такая способность антител способствует направлению необходимого иммунного ответа на каждый отдельный тип патогенного объекта. Так например, lgE несет ответственность за аллергическую реакцию, которая представляет собой дегрануляцию тучных клеток и высвобождение гистамина.

В данном случае Fab-паратоп lgE связывается с аллергеном (антигеном), чем может быть частицы клещей, пыли и т.д., его Fc-область связывается с Fc-рецептором ε. Такая связь активирует аллергическую трансдукцию сигнала, индуцируя например астму.

Как действуют антитела

В ходе работы антител, паратоп антитела взаимодействует с эпитопом антигена, которых содержится несколько прерывисто расположенных вариантов вдоль его поверхности. При этом доминирующие эпитопы на поверхности антигена называют детерминантами.

Взаимодействие антитела и антигена строится по принципу замок-ключ в пространственной комплементарности. Следует отметить, что молекулярные силы, которые участвуют во взаимодействии Fab-эпитопов слабые и неспецифические.

К таким силам относятся электростатические силы, водородные связи, гидрофобные взаимодействия и силы Ван-дер-Ваальса. Это говорит о том, что связь антитела с антигеном не является абсолютной и может быть обратимым.

Это также позволяет антителу перекрестно реагировать с разными антигенами.

Бывает и так, что при связывании антитела с антигеном они становятся сами по себе иммунным комплексом, функционирующим как единый объект и действующим как антиген, на борьбу с которым будут направлены другие антитела. Пример таких молекул это гаптены, которые сами по себе не активируют иммунную систему, а делают это только после связывания с белками.

Основные функции антител следующие:

  • Агглютация .

    В данном процессе антитела склеивают посторонние клетки в комки, комки в свою очередь атакуются фагоцитами.

  • Активация комплемента или фиксация . При этом процессе происходит фиксация антител на враждебной клетке, что способствует ее атаке комплексом мембранной атаки, вызывая лизис враждебной клетки или процесс воспаления, притягивая клетки воспалители.
  • Нейтрализация . В ходе нейтрализации они блокируют части поверхности чужеродного антигена, делая его атаку неэффективной.
  • Осаждение .

    Осаждение начинается склеиванием сывороточно растворимых антигенов, которые затем выпадают в осадок в виде комков, которые также атакуются фагоцитами.

Происходит дифференцирование активированных B-клеток в продуцирующие антитела клетки или в клетки памяти, выживающие в организме следующие годы, что позволяет иммунной системе помнить антиген и осуществлять быструю реакцию на вторжение такого же объекта в будущем.

Антитела, связывающиеся с поверхностными антигенами, такими как бактерии, привлекают первый компонент каскада комплемента с их Fc областью, инициируя активацию классической системы комплемента.

Происходит уничтожение бактерии путем опсонизации — ее маркирования молекулой антитела для уничтожения фагоцитами или путем бактериолиза — комплекса мембранной атаки, позволяя уничтожать бактерию антителами напрямую.

При агглютинирование антитела связываются с патогенами, соединяя их вместе. Этому способствует наличие у антитела более одного паратопа. После того, как антитела покрыли патоген активируются эффекторные функции против патогена в клетках, распознающих свою Fc область.

Выработка антител в организме

Иммунная система, ответственная за биосинтез антител, состоит из ряда органов, основными из которых являются тимус, селезенка и периферические лимфоидные структуры в которых формируются три основных типа клеток: Т- и В-лимфоциты и макрофаги.

Антитела вырабатываются В-лимфоцитами, на поверхности которых уже имеются рецепторы, специфически связывающие антиген. В этот же комплекс включаются Т-лимфоциты и макрофаги.

В результате межклеточной кооперации происходит активация В-лимфоцитов и их трансформация в плазматические клетки. Большая часть образовавшихся плазматических клеток синтезирует антитела, аналогичные по специфичности рецепторам на поверхности В-лимфоцитов, и секретирует их в кровь.

Другая часть превращается в клетки «иммунологической памяти», способные выделять антитела при повторном введении антигена.

Каждый В-лимфоцит содержит на поверхности около 100 тыс. рецепторов одинаковой специфичности. Антиген, встречаясь в кровотоке с комплементарным рецептором, проводит отбор соответствующего В-лимфоцита, который затем, трансформируясь в плазматическую клетку и многократно делясь, образует клон клеток. Эта теория биосинтеза антител, впервые сформулированная П.

Эрлихом, а затем модифицированная в соответствии с уровнем развития науки Ф. Бернетом, получила название клонально-селекционной. Важно отметить, что каждый клон плазматических клеток секретирует гомогенные по своей структуре антитела.

Однако так как антиген активирует в крови сразу несколько типов В-лрмфоцитов, которые содержат рецепторы различной степени специфичности по отношению к исходному антигену, такой иммунный ответ называется поликлональным, а антитела - поликлональными.

Сыворотку животного, содержащую специфические к данному антигену антитела, называют антисывороткой. При этом обычно указывают, против какого антигена она выработана.

Например, когда говорят об антисыворотке кролика против эритроцитов человека, подразумевают, что в ответ на введение в кровь кролика эритроцитов человека образуются специфические к ним антитела. Принципиально важным является то, что поликлональные антитела даже против одной-единственной антигенной детерминанты гетерогенны как по структуре активного центра, так и по физико-химическим свойствам.

В том случае, если антиген поливалентен, например белок, то в сыворотке крови образуются антитела, направленные против каждой индивидуальной детерминанты, что еще более усложняет состав антител. Состав антител зависит от вида животного, а также стадии иммунного процесса.

Все перечисленные выше факторы влияют на гетерогенность антител и обусловливают определенные трудности как в изучении их структуры, так и в получении воспроизводимых стандартных препаратов антисывороток.

Работы Келера и Мильштейна по гибридизации животных клеток открыли принципиально новый путь получения антител. Сущность метода заключается в том, что из организма иммунизированного животного выделяются лимфоциты, которые специальным образом «сливаются» с миеломными клетками. Образующиеся клетки получили название гибридом.

Особенностью таких клеток является их способность размножаться и продуцировать антитела в искусственных условиях вне организма.

С помощью специальных методов клонирования можно выделить одну гибридную клетку, которая, размножаясь, будет секретировать в неограниченных количествах антитела только одного вида - моноклональные антитела.

Подчеркнем, что моноклональные антитела гомогенны как по специфичности, так и по физико-химическим свойствам.

В иммунной реакции организма наряду с фагоцитами участвуют лимфоциты. По функции и месту созревания лимфоциты разделяются на Т-лимфоциты (тимусзависимые) и В-лимфоциты (бурсазависимые). Известно, что макрофаги обнаруживают антигены и в процессе фагоцитоза выводят на клеточную поверхность неразрушенную часть антигена, где он распознается Т- и В-лимфоцитами.

Различают несколько разновидностей Т-лимфоцитов.

Т-киллеры (убийцы) способны убивать чужеродные клетки, например, опухолевые, клетки-мутанты, клетки чужеродных тканей трансплантантов. Т-супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцитов, благодаря чему поддерживают гармоничное развитие иммунитета.

Т-хелперы (помощники) стимулируют реакции иммунитета путём взаимодействия с В-лимфоцитами, превращая их в плазматические клетки, которые синтезируют антитела (иммуноглобулины) и выделяют их в кровь, лимфу, тканевую жидкость. Иммуноглобулины способны нейтрализовать (обезвредить) чужеродные вещества (антигены). Антитела по-разному действуют на антигены: либо склеивают их, либо разрушают, либо растворяют, то есть выводят из строя.

Основная функция В-лимфоцитов – создание гуморального иммунитета путём выработки антител.

Согласно теории гуморального иммунитета, все иммунные процессы происходят в жидких средах организма (от лат.humor – жидкость).

Процесс выработки антител схематически представляется в следующем виде. Существует необозримо большое количество клонов мезенхимальных клеток, отличающихся своей способностью реагировать на антиген.

Антиген отбирает из предсуществующих клонов клеток только те, с которыми он может реагировать, стимулируя их размножение. Следствием этого является увеличение количества клеток, обладающих сродством к данному антигену, образуется «клон» этих клеток, вырабатывающих специфические к данному клону антитела.

Если антигенная стимуляция чрезмерна в силу избытка антигена или повышенной возбудимости клеток (во время их усиленного размножения в эмбриональном периоде), то клетка отвечает торможением своей активности.

Явление иммунологической толерантности и распознавание «своего» объясняется подавлением в эмбриональном периоде клонов клеток, преадаптированных к своим и вводимым извне антигенам.

Клонально-селекционная теория хорошо соответствует большинству известных в настоящее время в иммунологии фактов. Однако и против нее выставлен целый ряд вполне обоснованных доводов.

Наиболее часто подвергается сомнению возможность существования в организме клонов клеток, иммунологически компетентных по отношению ко всем антигенам, в том числе и вновь синтезированным и даже еще не синтезированным.

в организме существуют клоны клеток, в большей или меньшей степени преадаптированные к определенным антигенам.

Под влиянием антигенного стимула начинается усиленная пролиферация этого клона. В ходе случайных мутаций клеток в силу продолжающегося антигенного раздражения усиленно размножаются клетки, обладающие все возрастающим родством к антигену вплоть до формулы «как ключ к замку».

Гуморальный иммунитет

Гуморальный иммунитет открыл немецкий фармаколог Пауль Эрлих, который был современником И.И.Мечникова, открывшего клеточный иммунитет.

Пауль Эрлих знал о том факте, что в сыворотке крови животных, зараженных бактериями, появляются белковые вещества, способные убивать патогенные микроорганизмы. Эти вещества впоследствии были названы «антителами», а болезнетворные микробы и их токсины были названы «антигенами».

Самое характерное свойство антител – это их ярко выраженная специфичность. Как отмечал Пауль Эрлих, «отношения между токсином (антигеном) и антитоксином (антигеном) носят строго специфичный характер – например, столбнячный антитоксин нейтрализует исключительно яд столбняка…

противозмеиная сыворотка – только яд змеи и т.д.».

Характерными особенностями гуморального иммунитета являются:

1) иммунологическая специфичность (один антиген – одно антитело);
2) при инфекциях усиленная продукция соответствующих антител;
3) способность сохранять память о первой встрече с антигеном.
Именно последнее свойство специфического иммунитета лежит в основе вакцинации.

II. Клетки иммунной системы

А. Лимфоциты обладают уникальным свойством - способностью распознавать антиген. Они делятся на B-, T-лимфоциты и нулевые клетки.

Под световым микроскопом все лимфоциты выглядят одинаково, но их можно отличить друг от друга по антигенам клеточной поверхности и функциям. T-лимфоциты составляют 70-80%, а B-лимфоциты - 10-15% лимфоцитов крови.

Оставшиеся лимфоциты называются нулевыми клетками. Антигены клеточной поверхности лимфоцитов можно выявить с помощью моноклональных антител, меченных флюоресцентными красителями. Источниками моноклональных антител служат гибридомы, получаемые при слиянии миеломных клеток с плазматическими. Гибридомы способны к неограниченному делению и выработке антител, специфичных к определенному антигену.

Поскольку набор антигенов клеточной поверхности лимфоцитов зависит не только от типа и стадии дифференцировки клеток, но и от их функционального состояния, с помощью моноклональных антител можно не только различить разные лимфоциты, но и отличить покоящиеся клетки от активированных. Антигены клеточной поверхности, выявляемые с помощью моноклональных антител,принято называть кластерами дифференцировки и обозначать CD.

CD нумеруются по мере их выявления. Подробнее об этих молекулах рассказано в гл. 20, п. II.

Популяции и субпопуляции лимфоцитов. B-лимфоциты способны вырабатывать антитела к разным антигенам и являются основными эффекторами гуморального иммунитета. От других клеток их можно отличить по наличию иммуноглобулинов на клеточной мембране. T-лимфоциты участвуют в реакциях клеточного иммунитета: аллергических реакциях замедленного типа, реакции отторжения трансплантата и других, обеспечивают противоопухолевый иммунитет.

Популяция T-лимфоцитов делится на две субпопуляции: лимфоциты CD4 - T-хелперы и лимфоциты CD8 - цитотоксические T-лимфоциты и T-супрессоры. Помимо этого существуют 2 типа T-хелперов: Th1 и Th2. Основные биологические эффекты некоторых цитокинов приведены в табл. 1.3. Нулевые клетки имеют ряд морфологических особенностей: они несколько крупнее B- и T-лимфоцитов, имеют бобовидное ядро, в их цитоплазме много азурофильных гранул.

Другое название нулевых клеток - большие гранулярные лимфоциты. По функциональным характеристикам нулевые клетки отличаются от B- и T-лимфоцитов тем, что распознают антиген без ограничения по HLA и не образуют клетки памяти (см. гл. 1, п. IV.А). Одна из разновидностей нулевых клеток - NK-лимфоциты. На их поверхности есть рецепторы к Fc-фрагменту IgG, благодаря чему они могут присоединяться к покрытым антителами клеткам-мишеням и разрушать их. Это явление получило название антителозависимой клеточной цитотоксичности.

NK-лимфоциты могут разрушать клетки-мишени, например опухолевые или инфицированные вирусами, и без участия антител.

Б. Фагоциты - макрофаги, моноциты, гранулоциты - мигрируют в очаг воспаления, проникая в ткани сквозь стенки капилляров, поглощают и переваривают антиген.

1. Макрофаги и моноциты. Клетки - предшественницы макрофагов - моноциты, выйдя из костного мозга, в течение нескольких суток циркулируют в крови, а затем мигрируют в ткани. Роль макрофагов в иммунитете исключительно важна - они обеспечивают фагоцитоз, переработку и представление антигена T-лимфоцитам.

Макрофаги вырабатывают ферменты, некоторые белки сыворотки, кислородные радикалы, простагландины и лейкотриены, цитокины (интерлейкины-1, -6, фактор некроза опухолей и другие). Предшественниками клеток Лангерганса, клеток микроглии и других клеток, способных к переработке и представлению антигена, также являются моноциты.

В отличие от B- и T-лимфоцитов, макрофаги и моноциты не способны к специфическому распознаванию антигена.

2. Нейтрофилы. Основная функция этих клеток - фагоцитоз. Действие нейтрофилов, как и макрофагов, неспецифично.

3. Эозинофилы играют важную роль в защите от гельминтов и простейших. По свойствам эозинофилы сходны с нейтрофилами, но обладают меньшей фагоцитарной активностью.

Считается, что в норме эозинофилы угнетают воспаление. Однако при бронхиальной астме эти клетки начинают вырабатывать медиаторы воспаления - главный основный белок, нейротоксин эозинофилов, катионный белок эозинофилов, лизофосфолипазу, - вызывающие повреждение эпителия дыхательных путей.

В. Базофилы и тучные клетки секретируют медиаторы - гистамин, лейкотриены, простагландины, фактор активации тромбоцитов, - которые повышают проницаемость сосудов и участвуют в воспалении (см.

гл. 2, п. I.Г). Базофилы циркулируют в крови, время их жизни составляет всего несколько суток. Тучные клетки, которых значительно больше, чем базофилов, находятся в тканях. Базофилы и тучные клетки несут на своей поверхности рецепторы IgE и играют важнейшую роль в аллергических реакциях немедленного типа.

Предыдущая12345678910111213141516Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Фибробласты.

Макрофаги.

Плазматические клетки.

Эозинофильные гранулоциты.

Т- хелперы.

79.Клетка крови, мигрирующая из кровеносного русла в соединительную ткань и дифференцирующаяся в макрофаг, называется:

Лимфоцитом

Моноцитом

Нейтрофилом

Эозинофилом

Базофилом

Макрофаг выполняет функции:

Синтез и образование коллагеновых волокон.

Фагоцитоз.

Трофическая

Эндокринная

Продукция антител.

81.Клетка крови, для которой характерны крупные размеры (до 20 мкм), ядро бобовидной формы, слабо базофильная цитоплазма:

нейтрофил

эозинофил

эритроцит

82.Форменный элемент крови у которого имеется половой хроматин:

нейтрофил

эозинофил

эритроцит

83.Гиаломер и грануломер являются составными компонентами:

моноцита

базофила

нейтрофила

эритроцита

тромбоцита

84.Анизоцитоз это:

Клетки разных размеров

Клетки необычной формы

Клетки с отростками

Клетки многоядерные

85.В свертывании крови принимают участие:

тромбоцит

эозинофил

эритроцит

86.В развитии основного вещества соединительной ткани участвуют клетки:

адипоциты

фибробласты

меланоциты

макрофаги

плазмоциты

87.Основная роль в аллергических реакциях принадлежит:

фиброцитам

тканевым базофилам

адипоцитам

макрофагам

меланоцитам

88.Соединительная ткань, выполняющая роль депо воды:

пигментная

белая жировая

бурая жировая

слизистая

ретикулярная

89.Соединительная ткань, обеспечивающая теплопродукцию новорожденных:

пигментная

белая жировая

бурая жировая

слизистая

ретикулярная

90.Соединительная ткань, эмбрионального периода:

пигментная

белая жировая

бурая жировая

слизистая

ретикулярная

91.Соединительная ткань, имеющая сетевидное строение:

пигментная

белая жировая

бурая жировая

слизистая

ретикулярная

92.Строма кроветворных органов образована:

Рыхлой волокнистой соединительной тканью

Ретикулярной тканью

Жировой тканью

Плотной неоформленной соединительной тканью

Плотной оформленной соединительной тканью

93.Слизистая соединительная ткань встречается в:

Органах кроветворения

Пупочном канатике

Трубчатых костях

Слизистых оболочках

94.Ретикулярная ткань относится к:

Скелетным соединительным тканям

95.Жировая ткань относится к:

Собственно соединительным тканям

Соединительным тканям со специальными свойствами

Костным тканям

Плотной оформленной соединительной ткани

Рыхлой волокнистой соединительной ткани

96.Белая жировая ткань распространена:

У новорожденных детей

В организме взрослого человека

Не встречается в организме взрослого человека

Сухожилие образует ткань:

эпителиальная

ретикулярная соединительная

рыхлая волокнистая неоформленная соединительная

плотная неоформленная соединительная

плотная оформленная соединительная

98.Клетка белой жировой ткани содержит:

Одну большую липидную каплю

Много маленьких липидных капель

Не содержит липидных капель

Какая ткань расположена между мышечными волокнами скелетной мышечной ткани?

Ретикулярная ткань.

Плотная неоформленная соединительная ткань.

Плотная оформленная соединительная ткань.

Рыхлая волокнистая соединительная ткань.

100.Связки, фасции, сухожилия и апоневрозы образованы:

Рыхлой волокнистой соединительной ткани

Плотной неоформленной соединительной ткани

Плотной оформленной соединительной ткани

Тканям со специальными свойствами

101.Хрящевая ткань не содержит:

Коллагеновых волокон

Межклеточного гидрофильного вещества

Кровеносных сосудов

Эластических волокон

102.Суставные поверхности кости образованы:

Эластическим хрящем

Гиалиновым хрящем

Волокнистым хрящем

Грубоволокнистой костнойтканью

Пластинчатой костнойтканью

103.Изогенные группы состоят из:

Хондробластов

Хондроцитов

Хондрокластов

Макрофагов

Остеоцитов

104.Изогенные группы располагаются:

В поверхностном слое хряща

В глубоком слое хряща

В надхрящнице

Данный вид хряща никогда не обызвествляется:

Гиалиновый.

Эластический.

Волокнистый.

106.В наружном слое надкостницы преобладают:

Остеобласты

Коллагеновые волокна

Жировая ткань

Ретикулярные волокна

Остеоциты

107.Во внутреннем слое надкостницы преобладают:

Остеобласты

Коллагеновые волокна

Жировая ткань

Ретикулярные волокна

Остеоциты

108.Волокнистый хрящ у человека встречается:

В трахее и бронхах

В ушной раковине

В надгортаннике

В межпозвоночных дисках

3090 0

Функции Т-клеток

Одной из ключевых эффекторных функций активированной СD4+-Т-клетки является синтез антиген неспецифичных растворимых факторов - цитокинов. Выделяемые СD4+-Т-клетками цитокины влияют на функции множества типов клеток, в том числе СD8+-Т-клеток, В-клеток, миелоидных клеток (таких как макрофаги и эозинофилы), а также на дифференцировку костномозговых клеток-предшественников. По этой причине потеря CD4+-T-клеток при СПИДе является такой разрушительной.

Свойства цитокинов, которые продуцируют Т-лимфоциты и другие клетки. Многие важные функции Т-клеток будут обсуждаться в следующих главах, посвященных клеточно-опосредованному иммунитету и трансплантациям. Сконцентрируемся на гетерогенности цитокинов, которые образуют СD4+-Т-клетки, а затем опишем важные аспекты взаимодействия CD4-Т-лимфоцитов и В-клеток и, наконец, обсудим функции CD8+-T- клеток.

Субпопуляции СD4+-Т-клеток, отличающиеся по выделяемым цитокинам

Наивная СD4+-Т-клетка после стимуляции пептидом, связанным с молекулой МНС, начинает синтезировать IL-2. Активированная СD4+-Т-клетка может дифференцироваться дальше, чтобы синтезировать более широкий набор цитокинов. Однако после антигенной стимуляции не все СD4+-Т-клетки синтезируют одинаковые цитокины. Исследования функционирования Т-клеток у мыши и человека показали, что активированные антигеном СD4+-Т-клетки могут быть разделены по меньшей мере на три субпопуляции на основании продукции различных цитокинов: ТH0, Тн1 и Тн2. Как показано на рис. 10.5, Тн1 и Тн2 образуются в результате вызываемой антигеном дифференцировки клеток Тн0, которые синтезируют IL-2, IFNγ и IL-4.

Тн1-клетки, которые синтезируют IL-2, IFNγ и TNFβ, и Тн2-клетки, синтезирующие IL-4, IL-5, IL-10 и IL-13, играют разные важные роли в иммунном ответе. Поскольку разные цитокины взаимодействуют с различными клетками-мишенями, главным следствием продукции уникальных наборов цитокинов Тн1- и Тн2-клетками является то, что каждая субпопуляция обладает разной эффекторной функцией. Так, цитокины, синтезируемые Тн1-клетками, активируют клетки, вовлеченные в клеточно-опосредованный иммунитет: СD8+-Т-клетки, NK-клетки и макрофаги.

Кроме того, цитокины, выделяемые Тн1-клетками, индуцируют В-клетки к синтезу таких изотипов Ig, как IgG2, которые усиливают фагоцитоз возбудителей фагоцитирующими клетками. Напротив, цитокины, синтезируемые Тн2-клетками, переключают В-клетки на продукцию антител класса IgE и активацию эозинофилов; такая модель характерна для ответа на аллергены и гельминты.

Пока результаты попыток охарактеризовать поверхностные молекулы, по которым можно было бы отличать субпопуляции Тн1- и Тн2-клеток, не дали однозначных результатов, а сами эти исследования интенсивно продолжаются. Результаты некоторых недавних исследований показали, что, возможно, Тн1- и Тн2-клетки экспрессируют различные молекулы, используемые при межклеточном взаимодействии в процессе хоминга, в том числе различные хемокиновые рецепторы; однако для подтверждения или изменения этих выводов необходимы дальнейшие исследования.

Рис. 10. 5. Цитокиновый контроль образования Тн1- и Тн2-субпопуляций CD4+-T-клеток. Волнистые линии означают угнетение

Тн1-клетки развиваются, если в момент антигенной стимуляции присутствует IL-12. Как показано в начале этой главы, IL-12 и другие провоспалительные цитокины образуются дендритными клетками и другими АПК в самом начале ответа на такие возбудители, как бактерии и вирусы. Эти цитокины также синтезируются другими клетками врожденного иммунитета, в том числе NK-клетками. Напротив, присутствие IL-4 в начале иммунного ответа приводит к дифференцировке в сторону Тн2-клеток. Источник этого IL-4 до сих пор не ясен; он может образовываться или активированными СD4+-Т-клетками, или тучными клетками. Предполагается, что и другие факторы, такие как концентрация и путь введения антигена, степень аффинности взаимодействия между комплексом пептид-МНС и TCR и природа АПК, участвовавшей в ответе, могут влиять на то, какая субпопуляция СD4+-Т-клеток разовьется.

На рис. 10.5 также показано, что цитокины, выделяемые Тн1, могут угнетать функции Тн2, и наоборот. Например, IFNγ, образуемый Тн1-клетками, угнетает размножение Тн2-клеток, a IL-4 и 1L-10, образуемые Тн2-клетками, угнетают размножение Тн1-клеток. В табл. 10.1 представлены две важные характеристики субпопуляций Тн1 и Тн2 СD4+-T-клеток. Во-первых, субпопуляции синтезируют несколько общих цитокинов, в том числе IL-3 и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ КСФ) . Во-вторых, субпопуляции Тн1 и Тн2 CD4+-T-клеток больше различаются у мышей, чем у человека.

Таблица 10.1. Синтез цитокинов субпопуляциями Тн1 и Тн2 СD4+-Т-клеток

Цитокин


Рис. 10.6. В-клетки захватывают антиген путем взаимодействия с молекулами lg, процессируют его и презентируют CD4+-T-клеткам антиген, связанный с молекулами МНС II класса

Т-В-кооперация

Почти все белки являются тимусзависимыми антигенами. Их называют так потому, что для синтеза антител им необходима «помощь» или кооперация СD4+-Т-клеток с В-клетками. По этой причине группу СD4+-Т-клеток, которые участвуют в иммунном ответе, помогая продуцировать антитела на тимусзависимые антигены, называют Т-клетками-хелперами (Тн). Т-клетка-хелпер и В-клетка, которые взаимодействуют в ответе на конкретный тимусзависимый антиген, должны быть специфичны к нему. Тн-клетка и В-клетка обычно отвечают на разные эпитопы антигена, но для эффективной кооперации Т-хелпера и В-клетки эти эпитопы должны быть частью одной белковой последовательности. По этой причине кооперацию Т- и В-лимфоцитов при ответе на тимусзависимый антиген также называют связанным распознаванием.

Ключевые стадии Т-В-клеточной кооперации, приводящие к синтезу антител, представлены на рис. 10.6 и 10.7. На рис. 10.6 показано, как В-клетка выступает в качестве АПК для СD4+-Т-клетки. Вначале В-клетка, экспрессирующая иммуноглобулин, специфичный к конкретному белковому антигену, захватывает антиген путем связывания его с Ig на мембране клетки. После этого комплекс антигена с Ig перемещается внутрь клетки и антиген подвергается процессингу в вакуолях с кислым содержимым. Некоторые пептиды, образованные при разрушении антигена, избирательно связываются с молекулами МНС II класса, также присутствующими в этих вакуолях с кислым содержимым. Комплексы пептид -МНС II класса транспортируются к поверхности В-клетки, где взаимодействуют с СD4+-Т-клеткой, обладающей подходящим TCR (вверху на рис. 10.7).

В дополнение к комплексу пептид-МНС, презентируемому В-клеткой для TCR подходящей Т-клетки, на поверхностях Т- и В-лимфоцитов взаимодействуют еще несколько пар молекул (см. рис. 10.7). Эти взаимодействия необходимы для взаимной активации Т- и В-клеток; в результате Т-клетка синтезирует цитокины, а В-клетка - антитела. Пары адгезионных молекул CD11a/CD18- CD54 (LFA-1/ICAM-1) и CD2-CD58, которые описаны ранее в этой главе на примере взаимодействия АПК и Т-клетки, поддерживают контакт между Т- и В-клетками. Костимуляторные пары В7-CD28 и CD40-CD154 также играют ключевую роль во взаимодействии В- и Т-лимфоцитов.


Рис. 10.7. Ключевые участники Т-В-кооперации. Штриховкой обозначены элементы, экспрессия которых усиливается при активации. Также показаны цитокины, образуемые T-клеткой, и их влияние на изотип Ig, секретируемый В-клеткой

Презентация В-клеткой комплекса пептид-МНС II класса для TCR увеличивает экспрессию CD154 (лиганд CD40 или CD40L) на Т-клетке-хелпере. Взаимодействие CD40-CD154 в свою очередь усиливает экспрессию костимуляторной молекулы В7 на В-клетке, и В7 взаимодействует с CD28, экспрессированном на Т-клетке. Как указано ранее в подразделе, посвященном взаимодействию АПК с СD4+-T-клетками, взаимодействия CD40-CD154 и В7-CD28 стимулируют в активированной Т-клетке синтез цитокинов, которые индуцируют пролиферацию. Продукция цитокинов Т-хелперной клеткой ведет к пролиферации как самого Т-хелпера, так и В-клетки и синтезу Ig, что обеспечивается за счет увеличения количества цитокиновых рецепторов на активированной В-клетке.

Взаимодействие CD40-CD154 также необходимо для переключения В-клетки на синтез других изотипов Ig, отличающихся от IgM. например IgG (переключение изотипов). Если такого взаимодействия не происходит, возможен синтез только IgM. Эта ситуация описана у людей с нефункциональным CD154 при клиническом состоянии, названном гипep-IgM-синдром, и у так называемых «нокаутных» мышей, не имеющих гена CD154. В обеих ситуациях продуцируются только антитела класса IgM, а антитела других изотипов отсутствуют.

Для переключения изотипов В-клетками также необходимы цитокины, синтезируемые активированными Т-клетками. На рис. 10.7 показано, что изотип антител, которые синтезирует В-клетка, зависит от цитокинов, продуцируемых Т-клеткой. Так, если Т-клетка секретирует IL-4, то В-клетка переключается на продукцию преимущественно IgE и IgG4, а если Т-клетка выделяет IFNγ, то В-клетка переключается на продукцию таких подтипов IgG, которые активируют комплемент.

В-клетки являются особенно эффективными АПК для CD4+-T-клеток при ответах на антигены, с которыми обе клетки уже встречались ранее. Это взаимодействие обычно происходит в специализированных участках лимфатических узлов - фолликулах - с последующей активацией В-клеток, соматическими мутациями и индукцией В-клеток памяти, происходящей в зародышевом центре лимфатического узла. Однако, как уже ранее описывалось в данной главе, наивные СD4+-Т-клетки наиболее эффективно активируются антигенами, которые прошли процессинг и презентируются дендритными клетками. Т-клетки, активированные дендритными клетками при первичном ответе, затем, вероятно, взаимодействуют и активируют В-клетки, которые захватывают антиген с использованием описанных ранее механизмов.

Значение вовлечения Т-клеток в синтез антител В-клетками может быть адекватно оценено с учетом данных об антигенах, для ответа на которые не требуется помощь Т-клеток, - так называемых Т-независимых антигенах, которые обсуждаются далее в этой главе. Эти антигены не приводят к образованию В-клеток памяти, а В-клетки при ответе на них не переключают изотипы синтезируемых Ig, секретируя только IgM.

Функции СD8+-Т-клеток

Рассмотрим другую важную субпопуляцию Т-клеток - СD8+-Т-клетки. Их основной функцией является уничтожение (киллинг) клеток, которые заражены бактериями или вирусами. СD8+-Т-клетки также ответственны за гибель пересаженных чужеродных клеток при отторжении трансплантата и за уничтожение опухолевых клеток. По этой причине СD8+-Т-клетки часто называют Т-киллерами или цитотоксическими Т-лимфоцитами (ЦТЛ) .

Клетка, уничтожаемая ЦТЛ, называется мишенью. В этой роли может выступать специализированная АПК, такая как дендритная клетка, или любая другая клетка организма. В отличие от рецепторов СD4+-Т-клеток TCR СD8+-Т-клеток распознают комбинацию пептидов, связанных с молекулами МНС I класса на поверхности клеток. Это взаимодействие в присутствии соответствующих вторых сигналов (обсуждаются далее) приводит к гибели клетки, представившей пептид.

СD8+-Т-клетки также синтезируют цитокины, в основном те, которые ассоциируются с фенотипом Тн1 СD4+-Т-клеток. В частности, это IFNγ, который необходим при некоторых вирусных и бактериальных инфекциях, а также TNFβ, участвующий в уничтожении клетки-мишени. Однако некоторые СD8+-Т-клетки синтезируют такие цитокины, как IL-4, которые ассоциированы с профилем Тн2 СD4+-Т-клеток.

Активация СD8+-Т-клеток

Выходящие из тимуса СD8+-Т-клетки не могут уничтожать клетки; вначале они должны активироваться, чтобы затем пролиферировать и дифференцироваться. Для активации необходимо присутствие как первого сигнала - взаимодействия комплекса пептид-МНС с TCR, так и вторых, или костимуляторных. Развитие цитолитической функции также требует синтеза цитокинов, в том числе IL-2, IFNγ и IL-12.

На рис. 10.8 показаны два наиболее важных способа активации ЦТЛ в ответ на вирусную инфекцию. В его верхней части показан первый способ, в котором принимают участие СD4+-Т-клетки, специфичные к вирусу и продуцирующие IL-2. При наличии клетки-мишени, инфицированной вирусом, и IL-2, выделяемого СD4+-T-клеткой, индуцируются пролиферация и дифференцировка СD8+-Т-клеток. При таком ответе вирусспецифичные СD4+-Т-клетки активируются при презентации вирусного антигена молекулами МНС II класса на АПК, такой как дендритная клетка или макрофаг. При этом пути активации вирусный эпитоп, который активирует CD4+-T-клетку, вероятнее всего будет отличаться от эпитопа, активирующего СD8+-Т-клетку.


Рис. 10.8. Активация и уничтожение клеток-мишеней CD8+-ЦТЛ

В средней части рис. 10.8 показано, как CD8+-Т-клетки могут активироваться без участия CD4+-Т-клеток. Такой механизм описан при ответе на некоторые вирусы. В этой ситуации используется перекрестное примирование. При таком пути активации вирусные антигены переносятся от мертвой или умирающей инфицированной клетки в профессиональные АПК, такие как дендритные клетки. Затем дендритные клетки процессируют вирусный антиген, размещают его в молекулы МНС I класса и представляют пептиды вирусспецифичным CD8+-T-клеткам.

Так как дендритные клетки также экспрессируют костимуляторные молекулы, такие как В7, они могут активировать вирусспецифичные наивные СD8+-Т-клетки. При этом пути активации СD8+-Т-клетка, вероятно, самостоятельно продуцирует цитокины, необходимые для пролиферации и дифференцировки. Предполагают, что перекрестное примирование может играть важную роль при активации ответов СD8+-Т-клеток на клетки инфицированной ткани, у которых отсутствуют костимуляторные молекулы, а также при ответах на клетки некоторых опухолей.

Какие бы межклеточные взаимодействия ни участвовали в активации СD8+-Т-клеток, весьма вероятно, что первые события этой активации похожи на описанные ранее стадии активации СD4+-Т-клеток. Как и CD4, CD8 связан с тирозиновой киназой Lck, а также взаимодействуют те же пары костимуляторных и адгезионных молекул, что и при активации СD4+-Т-клеток: CD28-В7, CD110/CD18-CD54 (LFA-1-ICAM-1) и CD2-CD58.

Уничтожение СD8+-Т-клетками клеток-мишеней

После активации теперь уже зрелые СD8+-Т-клетки начинают уничтожение клетки-мишени с того, что прикрепляются к ней. В нижней части рис. 10.8 показано, что пары адгезионных молекул, экспрессируемые и на Т-клетке, и на клетке-мишени, помогают поддерживать контакт между клетками в течение нескольких часов. На рисунке также показано, что активированная СD8+-Т-клетка обладает гранулами, в которых содержатся цитотоксические белки, и экспрессирует на поверхности клетки молекулу CD178 (Fas-лиганд). Далее описано, почему эти молекулы являются ключевыми для уничтожения клеток-мишеней.

Предполагают, что СD8+-Т-клетки могут уничтожать мишени двумя способами. Первым и, вероятно, преимущественным путем уничтожения большинства мишеней является выделение цитотоксических веществ, содержащихся в гранулах внутри Т-клеток. После прикрепления к клетке-мишени СD8+-Т-клетка перемещает гранулы к поверхности мембраны, обращенной к мишени, и с помощью процесса, называемого экзоцитозом, выделяет их содержимое на поверхность уничтожаемой клетки. Эти цитотоксические вещества образуют поры в мембране клетки-мишени.

Основными компонентами гранул, участвующих в уничтожении клеток-мишеней, являются перфорин и гранзимы. Перфорин - это молекула, которая полимеризуется с образованием кольцевидных трансмембранных каналов (или пор) в мембране клеток-мишеней. Это приводит к повышению проницаемости клеточной мембраны и, неизбежно, к смерти клетки. Действие перфорина на мембрану клетки похоже на действие мембраноатакующего комплекса комплемента. При уничтожении клеток этим способом ЦТЛ дополнительно используют гранзимы, набор сериновых протеаз.

Гранзимы попадают в уничтожаемую клетку через поры, образуемые при полимеризации молекул перфорина, и взаимодействуют с внутриклеточными компонентами клетки-мишени, стимулируя апоптоз. Поскольку клеточная смерть путем апоптоза не приводит к высвобождению клеточного содержимого, уничтожение инфицированной клетки по этому механизму может предотвращать распространение инфекционного агента (вируса) в другие клетки.

Вторым способом уничтожения клеток-мишеней является взаимодействие CD178 (Fas-лиганда) на поверхности Т-клетки с CD95 (Fas) Fas-рецептором, поверхностной молекулой, экспрессируемой на многих клетках организма. Это взаимодействие активирует апоптоз клетки-мишени путем последовательной активации протеолитических ферментов каспазы внутри клетки. Это приводит к тому, что клетка умирает в течение нескольких часов. После того как СD8+-Т-клетка запустит один или оба описанных механизма уничтожения, она отрывается от клетки-мишени, чтобы атаковать и уничтожить следующие клетки-мишени.

Как будет показано в следующих подразделах, активация СD8+-Т-клеток и уничтожение клетки-мишени являются не связанными событиями. Это можно продемонстрировать на препарате СD8+-Т-клеток человека, инфицированного вирусом. Эти вирусспецифичные цитотоксические клетки способны уничтожать клетки, инфицированные вирусом, и за пределами организма. При уничтожении инфицированных клеток-мишеней не нужно добавлять никакие дополнительные факторы.

Еще раз повторим концепцию МНС-рестрикции Т-клеточного ответа, о которой уже упоминалось в предыдущих главах. Вирусспецифичный СD8+-ЦТЛ распознает, а впоследствии уничтожает клетку-мишень, экспрессируюшую специфическую комбинацию вирусного пептида и определенной молекулы МНС I класса. Это означает, что СD8+-ЦТЛ, специфичный к вирусу гриппа и HLA-A2, например, уничтожает только клетки, которые экспрессируют HLA-A2, нагруженный пептидом, полученным из вируса гриппа. Этот ЦТЛ не уничтожит нормальную неинфицированную клетку организма, экспрессирующую HLA-A2, в отсутствие пептида гриппа.

Кроме того, эта вирусспецифичная СD8+-Т-клетка не уничтожит клетки-мишени, экспрессирующие другие комбинации пептидов с молекулами МНС, такие как пептид из вируса кори с HLA-A2 или даже тот же пептид вируса гриппа, связанный с HLA-B3. Эти открытия Р. Цинкернагеля (R.Zinkernagel) и П.Догерти (P.Doherty) (оба получили Нобелевскую премию в 1996 г.) позволили разработать концепцию МНС-рестрикции Т-клеточного ответа, согласно которой Т-клетка распознает комбинацию антигена с молекулой МНС, а не собственно молекулу антигена.

Экспрессия комплексов пептидов возбудителя с МНС I класса на поверхности клетки приводит к распознаванию инфицированной клетки СD8+-Т-клетками и ее последующему уничтожению. Таким образом, уничтожение СD8+-Т-клетками обеспечивает механизм элиминации любой клетки организма, инфицированной патогенным агентом. Очевидно, что элиминация патогена приводит к разрушению клеток организма-хозяина, но это приемлемая цена, которую организм может заплатить за удаление источника инфекции.

СD8+-Т-клетки практически всегда выступают в качестве цитотоксических клеток как у человека, так и у мыши. Однако существенная часть СD4+-Т-клеток у человека и некоторые - у мыши также обладают цитотоксическими функциями. Как можно предположить из продолжающегося обсуждения МНС-рестрикции, эти цитотоксические СD4+-Т-клетки активируются к уничтожению при распознавании комплекса пептид - МНС II класса на АПК или клетке-мишени. Поскольку активированные СD4+-Т-клетки экспрессируют CD178, но не содержат гранул с цитотоксической активностью, вероятно, они используют взаимодействие CD95-CD178 как основной метод уничтожения клеток-мишеней.

Окончание иммунного ответа: индукция клеток памяти

Антигенная стимуляция увеличивает количество лимфоцитов, специфичных к стимулирующему антигену, а также число лимфоцитов и других эффекторных клеток, которые рекрутируются цитокинами, синтезированными в ходе ответа. Однако, когда антиген уже уничтожен, необходимо уменьшить объем этого пула активированных клеток; в противном случае организм вскоре переполнится размножающимися клеточными популяциями. На рис. 10.9 показан основной механизм уничтожения активированных Т-клеток - клеточная смерть, вызванная активацией.


Рис. 10.9. Клеточная смерть, вызванная активацией. После стимуляции антигеном Т-клетка может уничтожить: 1) саму себя путем выделения растворимой формы CD178 (FasL), который взаимодействует с CD95 (Fas) на той же клетке; 2) другую Т-клетку с CD95, который будет взаимодействовать либо с растворимой, либо мембранной формой CD178

Исследования показывают, что Т-клетки чувствительны к апоптозу после того, как они были активированы, и особенно после повторной стимуляции антигеном. Апоптоз развивается в результате взаимодействия CD95-CD178, которое описано в этой главе ранее. Активированные Т-клетки экспрессируют одновременно и CD95, и CD178 (экспрессия последнего индуцируется активацией). После удаления антигена, например после того, как активированные ЦТЛ уничтожили свои инфицированные мишени, эти ЦТЛ взаимодействуют друг с другом и индуцируют апоптоз.

На рис. 10.9 также показано, что активированные клетки выделяют CD178, и эти секретированные молекулы также могут взаимодействовать с экспрессируемыми на поверхности клеток CD95 и вызывать апоптоз. Предполагают, что взаимодействие CD95- CD178 играет ключевую роль в уничтожении большинства активированных CD4+- и СD8+-Т-клеток по окончании антигенной стимуляции .

Однако не все клетки, активированные антигеном, умирают; выживает небольшая популяция долгоживущих антигенспецифичных клеток. Они образуют популяцию Т-клеток памяти для антигена и CD4+- или СD8+-Т-клетки памяти. Вторичные (с участием клеток памяти) Т-клеточные ответы более эффективны, чем первичные. Одна из причин этого в том, что стартовый объем клонирования популяции памяти, специфичной для определенного антигена, больше, чем размер непримированной популяции, даже после того, как посредством клеточной смерти, вызванной активацией, удалится большинство размножившихся клеток. Также предполагают, что для индукции полной активации Т-клетки памяти не нуждаются в костимуляторных взаимодействиях В7-CD28.

Никаких поверхностных молекул, уникальных для Т-клеток памяти, не обнаружено. Скорее, выявлены небольшие различия в уровне экспрессии тех же молекул (для одних больше, для других меньше) между непримированными Т-клетками и клетками памяти. Также описываются изменения изоформ мембранной фосфатазы CD45; предполагается, что при активации CD45 переходит из формы CD45RA в форму CD45RO, что вызвано альтернативным сплайсингом РНК, транскрибированной с ее гена. Не ясно, необходимо ли наличие антигена, хотя бы и в самой незначительной концентрации, при персистировании клеток памяти; результаты некоторых исследований показывают, что при отсутствии примирующего антигена клетки памяти умирают.

Р.Койко, Д.Саншайн, Э.Бенджамини

Конечным результатом активизации и созревания В-лимфоцитов является образование антител, которые реагируют специфически с эпитопами, идентифицированными первоначально его рецепторами. Плазматические клетки синтезируют и секретируют антитела. Они распространены во всех лимфоидных органах и тканях, а также в основании ворсинок слизистой оболочки кишечника, вокруг кровеносных капилляров, в сальнике и соединительной ткани.

Индуцированные вирусами антитела играют важную роль в профилактике вирусных болезней . В некоторых случаях совершенно очевидно, что болезнь предупреждают нейтрализующие антитела (например, при полиомиелите, ящуре, ньюкаслской болезни, кори, гриппе и др.). Не исключено, что антитела играют важную роль в ограничении распространения вируса из ворот инфекции, но они не всегда могут подавить уже развившуюся системную инфекцию или предотвратить реактивацию латентной инфекции (герпетический везикулярный дерматит, ветряная оспа, герпесвирусные болезни животных).

В синтезе и секреции антител или иммуноглобулинов участвует множество лимфоцитов и плазматических клеток. Считается, что первой клеткой, вовлекаемой в иммунный ответ, является клетка, чувствительная к антигену, распознающая его, или рецепторная, разрушающая антиген и каким-то образом передающая закодированную в нем специфическую информацию эффекторной, то есть другому лимфоциту или плазматической клетке, которые в конечном итоге синтезируют и секретируют антитела. На пути к синтезу антител особенно важны макрофаги, распространенные во всем организме и способные захватывать и перерабатывать антиген. К таким клеткам, прежде всего, относятся моноциты и нейтрофилы. В первые дни после инфицирования, когда антитела еще отсутствуют, борьба организма с вирусной инфекцией ведется с использованием механизмов резистентности. Катаболическая элиминация антигена предшествует иммунной, являющейся результатом соединения антигена с антителами. Индуктивная фаза иммунного ответа - это такой период, когда в сыворотке крови антител не обнаруживается. Однако в это время в лимфоидных тканях можно легко найти одиночные клетки, способные к секреции антител.

Длительность латентного периода значительно зависит от многих факторов: типа вирусной инфекции, антигенности, дозы и пути введения вакцины, от возраста, вида и общего физиологического состояния реципиента. После завершения латентного периода в организме появляются антитела. Часто первые антитела появляются в крови еще до полного устранения антигена из кровотока. Если это происходит, и антиген соединяется с антителом, то комплексы антиген-антитело быстро выводятся из организма еще до появления несколькими днями позже легко определяемых свободных антител. Если антиген попадает в организм впервые, то возникает так называемый первичный иммунный ответ. Антитела в этом случае накапливаются в низкой концентрации и, если антиген не будет введен вновь, появляются ненадолго. В случае, когда антиген вводят повторно, вскоре начинается более быстрое и сильное, чем при первичном ответе, повышение титра антител. Вторичный, или анамнестический, ответ отличается также длительностью сохранения высокого уровня антител. Возникновение гуморального и клеточного иммунитета сопровождается формированием так называемой иммунологической памяти, проявляющейся тем, что повторный контакт со специфическим антигеном вызывает ускоренный и усиленный иммунный ответ. Считают, что такой ответ зависит от наличия «клеток памяти» - особой субпопуляции лимфоцитов, ранее активизированных тем же антигеном. Количество клеток, продуцирующих антитела в селезенке инфицированных или вакцинированных кур, при парамиксовирусной инфекции достигало максимального уровня (0,1 % к количеству спленоцитов) на третий день после заражения или вакцинации.

Приблизительно через два дня после первичного введения антигена появляются IgM-продуцирующие клетки, количество которых достигает максимума к 4-6-му дню. Затем их численность снижается, и появляются IgG-продуцируюшие клетки. Синтез IgG происходит в течение более продолжительного периода, чем IgM. Если антиген вводят второй раз, то через 1-3 дня начинается мощный подъем уровня антител, через некоторое время достигающий максимума. Содержание антител при этом намного (в 10-50 раз) превышает значения, характерные для первичного ответа. Пробудить иммунологическую память можно даже спустя несколько лет после первичной иммунизации, когда показатели иммунологических реакций снижаются до нуля. Однако по мере угасания интенсивности первичного ответа уменьшается и интенсивность вторичного иммунного ответа. Существует физиологический предел, ограничивающий количество возможных повторных анамнестических ответов; организм обычно исчерпывает свой лимит после 3-5 реиммунизаций, если они проведены со сравнительно небольшими интервалами.

Инактивированная полиовирусная вакцина подобно естественному инфицированию вызывала развитие иммунологической памяти без значительной продукции гуморальных антител. Этот эффект находился в прямой зависимости от концентрации вирусного антигена в вакцине. Иммунологическая память дает человеку и животным большие преимущества в борьбе с вирусными инфекциями и лежит в основе иммунитета и вакцинопрофилактики.

Специфичность и память , присущие как гуморальному, так и клеточному иммунному ответу, могут зависеть от вирусного антигена. Так, гликопротеин D-вируса простого герпеса более активно индуцировал вирусспецифическую память, чем гликопротеин-В. В случае Т-зависимых антигенов пролиферация В-клеток и образование антител являются результатом взаимодействия с макрофагами и Т-клетками. При введении Т-независимых антигенов образование антител происходит без участия Т-хелперов. После встречи с антигеном В-клетки дифференцируются либо в зрелые плазматические клетки, которые секретируют иммуноглобулины только одного класса, либо в В-клетки памяти.

Первичный иммунный ответ предполагает обязательное участие макрофагов. При вторичном ответе стадия взаимодействия антигена с макрофагами исключается. Иммунологическая память, по-видимому, связана с долгоживущей, самовоспроизводимой популяцией лимфоцитов.

Говоря о специфичности иммунного ответа , необходимо отметить, что при вторичном иммунном ответе отчетливо проявляются антитела, реагирующие на близкородственные антигены. Чем выше уровень вторичного иммунного ответа и чем теснее родство антигенов, тем выраженнее ответ на родственные антигены. Это явление имеет важное практическое значение в деле вакцинопрофилактики ряда вирусных болезней, характеризующихся антигенной вариабельностью возбудителя.

Согласно существующим представлениям, организм животного способен синтезировать и секретировать >10 7 разнообразных антител . А так как популяция лимфоидных клеток клонирована, и каждый В-лимфоцит синтезирует антитело только одного типа, взаимодействующее с одной антигенной детерминантой, то в организме допускается существование не менее 108 различных клонов В-лимфоцитов.

Иммуноглобулины синтезируются плазматическими клетками, которые образуются из трансформированных, стимулированных антигеном B-лимфоцитов (B-иммунобластов). Все молекулы иммуноглобулинов, синтезированных отдельной плазматической клеткой, идентичны и имеют специфическую реактивность против единственной антигенной детерминанты. Аналогично, все плазматические клетки, полученные путем трансформации и пролиферации одного B-лимфоцита-предшественника, идентичны; то есть, они составляют клон. Молекулы иммуноглобулинов, синтезированные клетками различных клонов плазматических клеток, имеют различные последовательности аминокислот, что обусловливает различную третичную структуру молекул и придает иную специфичность антителу, то есть, они реагируют с разными антигенами. Эти различия в последовательности аминокислот происходят в так называемом V (вариабельном, переменном) участке молекулы иммуноглобулина.

Регулирование производства антител: производство антител начинается после активации B-клеток антигеном. Максимальная концентрация антител в сыворотке наблюдается с 1 по 2 неделю и затем начинает снижаться. Непрерывное присутствие свободного антигена поддерживает ответ до тех пор, пока увеличение уровня антител не приведет к усиленному удалению антигена и, таким образом, прекращению стимуляции B-клеток. Существуют также более тонкие механизмы регуляции синтеза иммуноглобулинов. T-хелперы (CD4-позитивные) играют важную роль в регуляции ответа В-клеток на большое количество антигенов и их постоянное присутствие увеличивает производство антител. Этот эффект возникает благодаря высвобождению лимфокинов. T-супрессоры (CD8-позитивные) оказывают противоположное влияние, вызывая снижение иммунного ответа; сильное подавление ответа может быть одним из механизмов, лежащих в основе толерантности. Одним из дополнительных регулирующих механизмов является выработка анти-идиотипов (т.е. антител против собственных антител (аутоантител)). Предполагается, что при иммунном ответе производство специфического антитела обязательно сопровождается производством второго антитела (анти-идиотипного) со специфичностью против вариабельных (V) последовательностей (идиотипов или антиген-связывающих участков) первого антитела. Анти-идиотипное антитело способно к распознаванию идиотипов на антигенном рецепторе B-клеток (который построен из иммуноглобулина, идентичного по строению идиотипу первого антитела), таким образом, оно конкурирует с антигеном и служит для ингибирования активации B-клетки.

Следует отметить, что иммуноглобулины синтезируются не только при инфекционных заболеваниях. Они продуцируются непрерывно у каждого здорового человека. В результате в организме людей имеется определенный уровень различных видов антител, практически против всех микробных антигенов, в том числе и против тех возбудителей, с которыми они никогда не встречались. Это объясняется тем, что способность организма к синтезу антител выработалась у людей в процессе эволюционного развития и является генетически обусловленной. Эти антитела (иммуноглобулины) носят название нормальных. Нормальные антитела играют большую роль в защите организма от инфекции в момент внедрения возбудителей в организм, а также в начальный период болезни (т. е. тогда, когда иммунные реакции на инфекцию еще не успели сформироваться). Обычно первые проявления инфекционного иммунитета появляются не раньше 4-го дня с момента заболевания и достигают максимальной выраженности на 14 сутки и позже.

Заслуживает отдельного внимания тот факт, что продуцируемые подэпителиально расположенными лимфоцитами антитела секретируются не в кровь, а на поверхность слизистых оболочек. В то же время циркулирующие в крови антитела в норме не проникают на поверхность слизистых оболочек. Следовательно, лимфоидные клетки слизистых оболочек в значительной мере функционируют автономно. Секретируемые ими антитела образуют первую линию защиты организма от возбудителей инфекционных заболеваний.

А. Моноциты

В. Плазмоциты

С. Микрофаги

D. Лимфоциты

Е. Макрофаги

347. Студент, отвечая на вопрос преподавателя об иммуногенезе, назвал одну из теорий образования антител наиболее обоснованной и своевременной. Какую теорию имел в виду студент?

А. Клонально-селекционная теория Бернета

В. Прямой матрицы Гауровитца-Полинга

С. Естественной селекции Эрне

D. Сетевых структур Гайдельберга

Е. Непрямой матрицы Бернета-Феннера

В одном из центральных органов иммунной системы формируются клетки, которые являются предшественниками иммунокомпетентных клеток. Часть из них затем трансформируется в Т- или В-лимфоциты. В каком органе это происходит?

А. Костный мозг

В. Вилочковая железа

С. Селезенка

D. Лимфатические узлы

Е. Небные миндалины

При некоторых инфекциях в организме одновременно существуют антитела и возбудитель заболевания, т.е. имеет место такой своеобразный вид иммунитета. Как он называется?

А. Нестерильный

В. Стерильный

С. Наследственный

D. Пассивный

Е. Искусственный

Известно, что дети не болеют корью и др. инфекционными заболеваниями до 6 мес. так как получают антитела от матери трансплацентарным путем. Как называется такой вид иммунитета?

А. Искусственный пассивный

В. Искусственный активный

С. Естественный активный

D. Естественный пассивный

Е. Врожденный видовой

351. Для проведения микроскопии в иммерсионной системе на поверхность препарата-мазка бактериолог предварительно наносит вещество. Что оно собой представляет?

С. Щелочь

D. Масло

Е. Кислота

Какой из перечисленных методов лабораторной диагностики позволяет выделить и идентифицировать возбудителя заболевания?

А. Аллергический

В. Биологический

С. Бактериологический

Серологический

Е.Микроскопический

Для специфической профилактики вирусного гепатита В сегодня широко используется вакцинация. Каким методом изготовляют препарат для вакцинации?

A. Из убитого формалином вируса гепатита

B. Из печени овец, зараженных вирусом гепатита

C. Из HBs-антигена, выделенного из крови носителей

D. Генно-инженерным методом

Е. Из вируса гепатита, выращенного в культуре клеток

Врачу- стоматологу проведена вакцинация против гепатита В. Против каких разновидностей вирусных гепатитов создан активный иммунитет?

A. Гепатитов В и D

B. Гепатитов В,С D

C. Гепатита В

D. Гепатита В и А

Е. Гепатита В и С

На губах больного появились везикулы, наполненные желтоватой жидкостью. Врач заподозрил Herpes labialis . Какие вирусы могут вызвать это заболевание?



A. Herpesvirus 6

B. Herpes simplex virus

C. Herpes zoster virus

D. Cytomegalovirus

E. Epstein-Barr virus

Во время эпидемии гриппом больному с повышенной температурой и слабостью врач поставил диагноз «Грипп». Какой препарат врач назначил больному?

A. Пенициллин

B. Стрептоцид

C. Стрептомицин

D. Ремантадин

Е. Новарсенол

Длительное время больной лечился по поводу хронической пневмонии. При микроскопическом исследовании мокроты в мазке-препарате выявлены тонкие прямые и слегка изогнутые палочки красного цвета, расположенные поодиночно. Мазок окрашен сложным методом Циля-Нильсена. Что не позволяет их выявить простым методом окрашивания?

А. Высокое содержание миколовой кислоты и липидов

С. Наличие спор

D. Выработка ферментов агрессии

Е. Образование капсулы

Для оценки пригодности питьевой воды проведено бактериологическое исследование. Какой показатель характеризует количество бактерий группы кишечных палочек, содержащихся в 1 л?

А. Коли-индекс

В. Коли-титр.

С. Титр коли-фага.

D. Перфрингенс-титр.

Е. Микробное число

359. На практическом занятии по микробиологии студентам предложено окрасить смесь бактерий по методу Грама и объяснить механизм окраски. Какие морфологические структуры бактерий определяют грамотрицательную и грамположительную окраску бактерий?

A. Клеточная стенка

C. Капсула

D. Жгутики

E. Цитоплазма

Как называется метод микробиологической диагностики, который заключается в определении титра специфических антител в сыворотке больного?

А. Аллергический

В. Биологический

С. Микробиологический

D. Серологический

Е. Микроскопический

В 2003 году появилась новая болезнь, которую обозначают как «атипичная пневмония» или SARS (тяжелый острый респираторный синдром). К какой группе микробов отнесли ее возбудитель?



A. Вирусы

B. Бактерии

C. Простейшие

К врачу обратился больной с жалобами на длительную субфебрильную температуру, увеличение региональных лимфатических узлов, снижение массы тела. Врач заподозрил у больного «СПИД». Назовите возбудитель этого заболевания?

A. Human poliovirus

В. Human T-Lymphotropic virus-2

C. Human T-Lymphotropic virus-1