Как создаются лекарства. Просто о сложном: как создаются современные лекарства и что такое драг-дизайн. Тест на статистическую достоверность в клиническом исследовании

Конечно, определённую часть накручивает аптека, другую возьмёт себе компания - дистрибьютор лекарства, немало потратит производитель на маркетинг - продвижение и рекламу препарата. Посчитайте ещё реальные затраты производителя на разработку и производство препарата.

На вопрос, что же вызывает увеличение стоимости лекарственных препаратов, отвечает
Светлана Завидова, исполнительный директор Ассоциации организаций по клиническим исследованиям .

Но есть самая весомая статья расходов, на которой экономить - пациенту во вред. Это клинические исследования препаратов, которые должны доказать: лекарство безопасное и эффективное.

У жизненного цикла лекарства долгий и трудный путь - от момента первой работы учёных по подбору нужной молекулы вещества до вывода препарата на рынок. 10 тысяч молекул-кандидатов участвуют в скрининге. И, наконец, до финишной ленточки доходит одно-единственное вещество, которое и станет препаратом.

На первом этапе производители препарата проводят доклинические исследования на лабораторных животных и специальных биологических моделях. Здесь главное - получить верную информацию о безопасности вещества и оценить его способность оказывать желаемый эффект. Если он отсутствует, препарат на клинические исследования не попадёт. Но насколько действенен препарат, можно будет доказать лишь на следующем этапе - клинических исследованиях с непосредственным участием людей. И избежать столь долгой цепочки испытаний никак нельзя, как показала печальная история, случившаяся в Европе.

Талидомидовая трагедия

Почти 60 лет тому назад немецкая фармацевтическая компания Chemie Grunenthal разработала препарат талидомид.

Сначала его хотели применять как лекарство против судорог. Но медиков впечатлило другое действие препарата - успокоительное. Врачи посчитали изобретение талидомида серьёзным прорывом в лечении бессонницы.

Были проведены опыты на грызунах. Передозировка не убивала лабораторных животных, что позволило считать препарат безопасным. Однако седативного воздействия лекарство не оказывало на мышей, поэтому представителям фармкомпании пришлось изготовить особую клетку, которая использовалась для измерения малейших движений животных. Несмотря на то, что грызуны после приёма пилюль бодрствовали, их движения замедлялись в большей степени, чем у тех животных, которым вводили другие успокоительные средства. Комиссия убедилась в эффективности и безопасности предложенных таблеток и дала лицензию на производство.

Через 2 года после этого препарат был официально выпущен в продажу в Европе и ряде других стран. В общей сложности талидомид продавался в 46 государствах под 37 разными названиями. Никаких дополнительных независимых исследований препарата ни в одной стране не проводилось.

В 1958 году производители, не проведя никаких исследований, голословно заявили, что талидомид - лучшее средство для беременных, склонных к расстройствам сна. И то было роковой ошибкой. Уже спустя 9 месяцев в Европе начали рождаться малыши с различными уродствами - отсутствием ушных раковин, верхних или нижних конечностей, дефектами глаз и мимической мускулатуры. Кроме того, талидомид влиял на формирование внутренних органов, разрушительным образом действуя на сердце, печень, почки, пищеварительную и мочеполовую системы младенца, а также мог приводить к рождению детей с эпилепсией, аутизмом.

По разным подсчётам, жертвами стали от 8000 до 12 000 детей, матери которых принимали препараты талидомида во время беременности. 7 тысяч младенцев умерли в первые минуты жизни. Пожалуй, это была одна из самых скандальных историй, связанных с побочными эффектами от какого-либо препарата. В дальнейшем оказалось, что у зародышей обезьян талидомид вызывает такие же уродства, что и у человека. Этот пример ещё раз доказывает необходимость проверки каждого нового лекарства, даже если исследования - очень длительный и дорогостоящий процесс.

Как происходят клинические исследования

При регистрации препарата специалисты должны оценить все доказательства, которые были добыты на предшествующих этапах исследования. Клинические испытания должны в первую очередь подтвердить безопасность применения препарата у человека, а затем эффективность того, как препарат влияет на конкретного больного.

Причём в первую фазу клинических исследований привлекаются 20-100 здоровых добровольцев. На них проверяются переносимость препарата, фармакокинетика (химические превращения лекарства в организме), фармакодинамика (механизм действия лекарства на организм).

Во второй фазе лекарство испытывается уже на 100-500 пациентах, что позволяет подобрать дозировку, продумать схемы приёма препаратов, оценить эффективность нового лекарства, проверить первые гипотезы.

Как правило, на этой стадии уже проводятся международные исследования, потому что задача фармкомпании как можно быстрее вывести препарат на рынок и набрать необходимый пул пациентов, для которых разрабатывается препарат. Быстрее всего это можно сделать, если привлечь разные страны. Для производителя это необходимый задел на то, чтобы потом не медля выйти на международный рынок.

До 3000 пациентов и более может быть привлечено к третьей, самой массовой фазе исследований, когда подтверждается эффективность препарата для определённого показания в определённой популяции.

После регистрации проходит четвёртая фаза исследований. Круг пациентов расширяется, фармкомпании могут собрать дополнительную информацию по безопасности препарата, проследить взаимодействие его с другими лекарствами. Уважающая себя компания, как, например, отечественная «НПО Петровакс Фарм», будет продолжать проводить пострегистрационные клинические и наблюдательные исследования, несмотря на накопленный опыт применения препаратов на рынке, чтобы оценить эффективность и безопасность в разных группах пациентов, сравнить с существующими аналогами, изучить возможность расширения показаний к применению.

20 лет на всё про всё

Если препарат, который только появился на рынке, изобретён и синтезирован впервые, он называется оригинальным. В течение 20 лет он защищён патентом - другие производители не могут выпускать и продавать лекарства с тем же действующим веществом. По истечении этого времени химическая формула лекарства может копироваться другими производителями. Они регистрируют препарат с тем же действующим веществом, но уже под другим торговым наименованием. Так появляются лекарства-дженерики.

Задача производителя оригинального препарата - как можно быстрее вый-ти на рынок, ведь у него всего 20 лет на всё про всё. Но первый этап - исследования и регистрация - занимает до 10, а иногда и более лет. В оставшееся до окончания патента время производителю оригинального препарата необходимо окупить затраты на этапе разработки (от поиска действующей молекулы до завершения клинических испытаний). А они, по данным Ассоциации американских фармпроизводителей, могут составлять астрономические суммы - 1,8-2,4 млрд долларов. Именно поэтому разработкой новых препаратов занимаются только наиболее крупные компании - мелким это просто не по карману.

Что касается дженериков, то, конечно, их проще выводить на рынок. Хотя клинические исследования проводятся, но идут они по упрощённой схеме: уже не проверяется весь процесс эффективности, задача - посмотреть, как быстро вещество попадает в системный кровоток, с той же скоростью, как у оригинального препарата, или медленнее, каким образом оно потом выводится. Механизм более простого вывода дженерика на рынок оправдан, поскольку государство заинтересовано в получении дешёвых препаратов и повышении их доступности на рынке. И при соблюдении надлежащих условий контроля за качеством дженерик становится совершенно нормальным лекарством, порою в несколько раз дешевле оригинального.

Миф о «подопытных кроликах»

У нас распространено заблуждение, что Россия используется как полигон для испытания новых препаратов. Если посмотреть на цифры, это совсем не так. Доля участия нашей страны в международных клинических исследованиях составляет всего 1%. Здесь лидируют другие страны - Бельгия, Швейцария, Израиль, Швеция, США. Чаще всего Россия принимает участие в исследовании препаратов для лечения онкологических, неврологических, ревматологических, инфекционных и пульмонологических заболеваний.

Как уже объяснялось, участие нашей страны в клинических исследованиях - шанс для неё получить необходимые инновационные препараты одной из первых. Потенциал возможностей провести клинические испытания на территории нашей страны огромный. Но зарубежные компании сталкиваются с бюрократическими препонами при получении разрешающих документов. И если фармкомпании необходимо набрать 1000 пациентов для второй фазы исследований, то частенько к моменту, когда наконец в России выдаётся долгожданное разрешение, оказывается, уже набрано необходимое число больных в других странах.

Как решить проблему дороговизны лекарств

Но всё же как сделать, чтобы человеку были доступны хорошие инновационные препараты? Здесь заботу о своих гражданах должно проявить государство. Оно обязано участвовать в ценообразовании на лекарства, поскольку их доступность для населения является составной частью социальной политики и здравоохранения.

Государство, пытаясь стабилизировать и регулировать цены на определённые препараты, создало так называемый Перечень жизненно необходимых и важнейших лекарственных препаратов (ЖНВЛП). Но порой этот перечень в России существует только на бумаге, на практике оказываясь бесполезным, потому что бюджета на его реализацию не заложено. Лекарства, внесённые в этот перечень, составляют едва ли не треть всех обращающихся на рынке средств. Однако среди них есть неэффективные и бесполезные, которые никак нельзя назвать жизненно важными.

В идеальном варианте государство должно составить список лекарств, стоимость которых оно готово возмещать покупателям в рамках компенсации стоимости лечения. А пока поход в аптеку становится разорением для карманов большинства россиян.

Можно ли доверять дженерикам или оригинальные препараты всегда лучше? Разберемся, как устроено производ­ство лекарств у нас в стране и во всем мире. Наш эксперт - председатель координационного совета Национальной ассоциации производителей фармацевтической продукции и медицинских изделий, заслуженный работник здравоохранения РФ Надежда Дараган .

Новый или следующий?

Чтобы понять, как создаются новые лекарства, для начала стоит разобраться с терминами. Под инновационным препаратом понимается некая субстанция, которой ранее не существовало. Ее разработка начинается с подробного изучения болезни и выявления неизвестных до сих пор путей ее развития. Затем на основании полученных данных ученые определяют, каким образом можно повлиять на эти самые пути, чтобы остановить болезнь или обратить ее вспять. И уже после этого можно приступать к созданию молекул или биологических структур, которые и лягут в основу нового лекарства.

Совсем другое дело - это лекарства следующего поколения. В основе таких препаратов тоже лежат новые молекулы или биологические структуры, но действуют они на хорошо изученные звенья развития болезни и известные клетки-мишени. Разумеется, этапы создания инновационных лекарств и препаратов следующего поколения отличаются и по времени, и по стоимости.

От пробирки до таблетки

Итак, предварительные исследования проведены, мишени, на которые может подействовать инновационный препарат, обнаружены, теперь самое время приступать, собственно, к созданию лекарства. На первом этапе устанавливается формула препарата, на втором полученные вещества испытываются в различных условиях на клетках, тканях и животных. Если препарат показал себя безопасным, эффективным и нетоксичным, начинается самый сложный и долгий этап - клинические испытания, когда действие препарата проверяют на людях. И только после этого инновационный препарат выходит на рынок.

Весь этот процесс занимает не один год, и очень многое зависит от того, к­акое лекарство планируется выпустить на рынок. Если средство предназначено для лечения боли в суставах или , разработка может занимать от года до пяти лет, а если речь идет о препарате против рака, генетических или орфанных заболеваний, на его выпуск уходят десятилетия. Что касается стоимости, то разработка может оцениваться от нескольких десятков до сотен миллионов рублей.

Håkan Dahlström Follow/Flickr.com/CC BY 2.0

И вот тут-то и кроется ответ на вопрос: почему в России так мало новых лекарств? Вложить в разработку нового средства сотни миллионов рублей без гарантии, что этот препарат когда-либо появится на рынке (что-то может пойти не так на любом этапе создания лекарства) или что продажа нового средства принесет прибыль, могут позволить себе только очень крупные и богатые фармацевтические компании. Ведь основные финансовые затраты на разработку новых лекарств несут фармкомпании, не государство.

Возможно, ситуация изменится, если государство начнет активно стимулировать фармкомпании к выпуску и разработке новых лекарств и лекарств следующего поколения. Именно на это направлена федеральная целевая программа «Фарма-2020» и разрабатываемая в настоящее время Стратегия развития фармацевтической промышленности в Российской Федерации на период до 2030 года.

Мировой тренд

Впрочем, нельзя сказать, что в вопросе создания новых лекарств мы уж очень сильно отличаемся от других стран. На Западе количество выпускаемых инновационных препаратов и препаратов следующего поколения тоже медленно снижается с каждым годом. И дело не только в деньгах, хотя затраты на разработку - один из ключевых моментов, который тормозит выпуск новых лекарств. Дело еще и в изменившемся подходе к оценке эффективно­сти и безопасности новых лекарственных средств. За последние 20−30 лет контроль стал гораздо строже, и многие разработки так и остаются на стадии разработки.


mararie/Flickr.com/CCBY-SA 2.0

Поэтому и у нас, и во всем мире перед фармкомпаниями часто ставится совсем другая задача. Нужно не создать новое лекарство, а сделать существующие препараты доступнее. Именно поэтому большинство фармацевтических компаний во всем мире нацелено на выпуск дженериков - более дешевых аналогов оригинальных препаратов. Среди экспертов есть мнение, что американские, европейские и транснациональные фармацевтические компании давно закупают более 80% используемых фармацевтических субстанций в Индии и Китае.

Дешевле - значит хуже?

А у нас в стране дженерики часто называют «лекарствами второго сорта» и считается, что если есть возможность выбора, то всегда лучше предпочесть оригинальный препарат. Но такой подход хоть и выгоден аптечным учреждениям, которые получают больше прибыли от дорогих препаратов, верен далеко не всегда. Ведь дженерики дешевле оригиналов не потому, что на их производстве экономят (выпускают их на плохом оборудовании, не контролируют качество), а лишь потому, что на разработку дженерика тратится меньше денег и времени.

В основе дженерика лежит та же фармацевтическая субстанция, что и в основе оригинального препарата. Поэтому главная задача разработчиков дженериков - показать, что действующее вещество доходит до нужного места в организме и действует аналогично оригинальному препарату. Поэтому сказать, что дженерик всегда хуже оригинала, нельзя.

А раз так, при выборе препарата нельзя ориентироваться лишь на его цену. Если перед вами два средства с одним и тем же действующим вещест­вом, далеко не во всех случаях дешёвое окажется хуже дорогого. Поэтому единственный ориентир при выборе препарата - рекомендации врача.

Компанию Biocad основал бывший банкир Дмитрий Морозов в 2001 году. Год назад контрольный пакет в ней приобрёл фонд Millhouse Романа Абрамовича, ещё 20 % за 100 миллионов долларов купил «Фармстандарт». К тому моменту компания входила в тройку крупнейших производителей лекарств в России. Её выручка в прошлом году выросла втрое, до 8,6 миллиарда рублей. Сейчас она занимается разработкой лекарств для лечения онкологических и аутоиммунных заболеваний на основе моноклональных антител. Процесс разработки лекарственного препарата длится около пяти лет, большая часть уходит на клинические испытания. От идеи до реализации лекарства проходит 15 лет.

Всего у компании две производственные площадки, в Подмосковье и особой экономической зоне «Санкт-Петербург». The Village побывал на петербургском заводе и узнал, как там делают лекарства будущего.

Biocad

производство лекарств

Месторасположение:
ОЭЗ «Санкт-Петербург»

Число сотрудников в Санкт-Петербурге: более 400

Площадь производственной площадки: 2 000 м 2

Над созданием лекарства работают несколько сотен человек: учёные-биологи, медики, генетики. Разработка биоаналогов занимает пять лет. Биоаналог - это биологический препарат, схожий по параметрам безопасности, качества и эффективности с оригинальным биологическим лекарственным средством в эквивалентной лекарственной форме.

Идея

Разработка лекарств начинается с возникновения идеи, которая обсуждается на научно-техническом совете. В формировании и обсуждении идеи участвуют все научные кадры Biocad - это более 300 учёных. Совместными усилиями они выбирают мишень и способ воздействия на неё для лечения или предотвращения заболевания, формируют образ целевой терапевтической молекулы.

Когда прообраз (целевой профиль) лекарства сформирован, начинается процесс разработки реальной молекулы в соответствии с поставленными целями.

В лаборатории молекулярной генетики создают генетические конструкции для получения белков-мишеней человека, которые будут использованы в дальнейших работах. В специально разработанных программах они собирают нуклеотидные последовательности. Затем передают клеточным технологам, которые выставляют получившиеся генетические векторы в клетки млекопитающих для выработки необходимых белков. Получившиеся белки используются для создания библиотек антител.

Библиотека антител представляет собой небольшую пробирку, в которой находятся миллиарды генов различных антител, каждое из которых индивидуально и способно связываться с определённой мишенью.








Для того чтобы библиотека была направленной и доля антител к выбранной мишени в ней была повышена, животным, в основным лабораторным крысам, перед созданием библиотеки вводят препарат целевого белка (иммунизируют) и ждут защитного ответа - так получают иммунные библиотеки.

В отборе библиотек антител участвуют высокопроизводительные роботы. Они помогают разработчикам отобрать из миллиардов молекул тысячи, сотни, десятки и, наконец, найти несколько самых лучших, полностью повторяющих целевой профиль терапевтической молекулы.













После отбора фракции бактериофагов, способных связаться с выбранной мишенью, для дальнейшего отбора используются бактерии, превращённые в мини-биофабрики по производству антител. В клетки бактериальной культуры внедряются гены антител из библиотеки, при этом каждый бактериальный клон начинает вырабатывать индивидуальное антитело.

Исследователи изучают наработанные в отдельных клонах антитела, а после отбора нескольких антител-лидеров начинается усовершенствование полученных молекул. В этом процессе участие принимает математическое моделирование: биоинформатики создают 3D-модели и делают «предсказания» по их дальнейшему усовершенствованию. Предсказания биоинформатиков проверяются с помощью платформы синтеза генов, где создаются новые синтетические библиотеки антител, из которых снова отбираются лучшие кандидаты. Таким образом учёные получают молекулы, обладающие всеми заданными в целевом профиле свойствами.






Далее клеточные технологи учатся нарабатывать выбранные антитела в клетках млекопитающих, создают оптимальные схемы культивирования и подпитки клеток-продуцентов, постепенно масштабируя наработки от небольших лунок в планшетах до 1000-литровых реакторов. Наработанные в больших количествах антитела-лидеры проходят исследования на животных - мелких грызунах, кроликах, морских свинках, нечеловекообразных обезьянах.





Производство

Перед входом на производство, где в больших приборах - биореакторах выращиваются составляющие будущего лекарства, каждый сотрудник должен пройти через воздушный душ, в котором остаются частички пыли.

Набор датчиков и систем отслеживает и регулирует температуру, скорость перемешивания, уровень pH и растворённого кислорода, обеспечивая необходимые условия для роста клеток. Численность и жизнеспособность клеток отслеживают с помощью микроскопа или автоматического счётчика.

После окончания культивирования жидкость очищают до получения целевого продукта - этот процесс занимает 28–29 дней. После очистки субстанцию моноклональных антител отправляют на контроль и розлив во флаконы, которые поступят в больницы и аптеки.

Фотографии: Дима Цыренщиков

Кто такие драг-хантеры и зачем героин применяли для лечения от кашля, в рамках «Дня биологии» Института биоорганической химии (ИБХ) РАН рассказал кандидат химических наук, инженер лаборатории моделирования биомолекулярных систем ИБХ РАН Валентин Табакмахер.

Драг-дизайн - это направленная разработка новых лекарственных препаратов с заранее заданными свойствами. В такой формулировке привлекает внимание слово «направленная», не так ли? Тут же возникает вопрос: а что, бывает «ненаправленная» разработка лекарственных препаратов? И как задают эти самые свойства? Чтобы ответить на эти вопросы, имеет смысл разобраться в общей концепции создания , какой она представляется в настоящее время. Но сначала немного истории.

В 70-х годах XIX века Пауль Эрлих, будучи еще студентом-медиком, выдвинул идею о существовании тканевых образований в организме, которые он назвал «хеморецепторами». Он предположил, что они могут специфически взаимодействовать c химическими соединениями (такие специально созданные Эрлих называл «magische Kugel» - «волшебная пуля» - прим. Indicator.Ru). Эту идею позже развил Джон Ленгли. Он постулировал, что в каждой клетке организма есть белки, которые могут связываться с химическими соединениями, менять свое состояние и таким образом управлять работой клетки и организма в целом. Что это означало для создания лекарств? С точки зрения лекарственной терапии (фармакотерапии), это означало, что в организме лекарства взаимодействуют ни с чем попало, а с конкретными молекулами.

Отсюда и специфическая терминология: эти «конкретные молекулы» организма принято называть «мишенями». Мишень - это макромолекула, связанная с определенной функцией, нарушение которой вызывает патологию. Обычно мишенями являются ферменты или клеточные рецепторы.

С другой стороны у нас лекарство - химическое соединение, специфически взаимодействующее с мишенью, таким образом влияющее на мишень и опосредованно на процессы внутри клетки. Обычно лекарствами являются низкомолекулярные соединения. Всем известна ацетилсалициловая кислота (аспирин), применяемая как жаропонижающее и противовоспалительное средство. Ее мишенью является циклооксигеназа (макромолекула) - фермент, участвующий в воспалительном процессе. Аспирин необратимо связывается с циклооксигеназой и таким образом препятствует развитию воспалительного процесса.

Как же создают лекарство? Прежде всего, нужно определиться с мишенью. Это очень сложно сделать, поскольку в развитии патологического процесса обычно участвует не один белок, а несколько. Сегодня с этой задачей успешно справляются методы сравнительной и функциональной геномики.

Если мы уже определились с тем, что является мишенью, нам нужно решить, что мы будем тестировать в отношении этой мишени, что мы будем рассматривать как потенциальное лекарство. Мы не можем протестировать все химические соединения, которые известны человечеству, их десятки миллионов. Поэтому нужно наложить какие-нибудь ограничения (обычно они называются drug-likeness, то есть «подобие лекарствам»). Во-первых, растворимость. Во-вторых, небольшой молекулярный вес. В-третьих, наличие или отсутствие определенных заряженных групп и так далее. Таким образом мы сужаем «химическое пространство» с десятков миллионов до миллиона молекул, которые будем тестировать в отношении мишени. Обычно фармкомпании используют библиотеки соединений, созданные специально для этих целей.

Следующий этап называется «скрининг» или поиск лигандов. Лиганды - это молекулы, которые стопроцентно взаимодействуют с нашей мишенью. Как проводится скрининг. Представьте себе прямоугольный кусок стекла, в котором тысяча микролитровых углублений-луночек, а в каждой из них находится наш белок-мишень. В луночку добавляется соединение, которое нужно протестировать, а потом регистрируется, есть взаимодействие или нет. Естественно это делается не людьми, а автоматически, на приборах, которые могут работать круглосуточно и даже круглогодично. Таким образом, в результате скрининга вместо миллиона потенциальных соединений мы получаем всего несколько тысяч.

На следующем этапе отобранные соединения проходят процедуру оптимизации, то есть химической модификации. От молекул «отрезают» химические группы или, наоборот, пришивают другие группы, и эти молекулы снова проходят процедуру скрининга, чтобы проверить, как изменилась активность, до сих пор ли соединение связывается с мишенью, стало оно связываться лучше или хуже. Пример распространенной модификации - ацетилирование, присоединение остатка уксусной кислоты. Аминокислота цистеин используется в терапии, например, для лечения катаракты. Ацетил-производное цистеина - ацетилцистеин (более известный как АЦЦ) - используется, например, при бронхите для разжижения мокроты. Интересно, что такая модификация очень часто используется в сфере разработки лекарств. Например, ацетилсалициловая кислота - это ацетил-производное салициловой кислоты, а парацетамол - это ацетил-производное анилина, тоже полученное ацетилированием.

В результате оптимизации отбирается несколько десятков лигандов, которые можно тестировать дальше. Следующий этап называется «тестирование». На этом этапе проверяется безопасность и эффективность исследуемого вещества. Это самый дорогой, самый трудный, самый долгий этап. Он состоит из многих шагов. Сначала вещество тестируют в лабораториях, потом на лабораторных животных, далее идут клинические исследования на людях, состоящие из множества фаз.

После истории с печально известным препаратом талидомид клиническое тестирование приобрело именно такой вид, какой оно имеет сейчас. В конце 1950-х годов в Германии этот препарат впервые был выпущен на рынок, а уже в начале 1960-х он был запрещен. Препарат был разработан для беременных женщин для снятия стресса и улучшения сна. Выяснилось, что талидомид обладает тератогенным эффектом, то есть влияет на развитие плода. В результате употребления этого препарата рождались дети с дефектами конечностей или вообще без них. Позднее, в 1980-х годах он был разрешен в США для лечения лепры (проказы). В химиотерапии при лечении рака та же самая ситуация: химиотерапия негативно влияет на все в организме, но в первую очередь она убивает рак. Талидомид, видимо, показал эффективность в отношении лепры, и еще, насколько известно, в 2006 году его использовали в США для лечения рака кожи.

Или, например, другое соединение, которое компания Bayer выпустила без должных клинических исследований в конце XIX века как лекарство от кашля на замену морфину. Сначала это вещество даже добавляли в препараты для детей, но потом выяснилось, что оно вызывает зависимость и в печени распадается на морфин. Называлось соединение героин.

Еще один пример, связанный с паллиативным влиянием правильных клинических исследований вещества. Силденафил был синтезирован для увеличения коронарного (сердечного) кровотока и лечения ишемической болезни сердца. На стадии клинического тестирования выяснилось, что оно практически не влияет на коронарный кровоток, зато улучшает кровообращение в области органов малого таза и повышает потенцию. Теперь это вещество известно как виагра.

Иногда идеи отдельных людей вносят в развитии драг-дизайна гораздо больше, чем все проверенные методы. Таких людей принято называть драг-хантерами, то есть «охотниками на лекарства». Один из них, Джеймс Блейк, исследовал способ понижения артериального давления. Известно, что адреналин регулирует артериальное давление. Блейк высказал идею, что можно создать молекулу, похожую на адреналин, связывающуюся с адреналиновым рецептором, но не обладающую активностью адреналина. В результате был получен пропранолол, более известный как анаприлин. Это вещество помогает миллионам людей каждый день.

Подобная ситуация с этим же человеком произошла, когда он исследовал гистаминовые рецепторы. В итоге был синтезирован циметидин (более известный как тагамет) - лекарство от язвенной болезни желудка и язвы двенадцатиперстной кишки. Исследования таких ученых показали, насколько важно уделять внимание структуре потенциальных соединений, а также структуре мишеней на этом фоне. Огромное развитие получили методы компьютерного моделирования молекул. Конечно, можно сократить и стоимость разработки лекарства, и уменьшить время разработки, но на сегодня невозможно создать препарат, чтобы вообще не замарать руки мокрым экспериментом в лаборатории.

Наиболее используемые методы молекулярного моделирования в драг-дизайне - это непосредственно моделирование 3D-структуры молекул, дизайн лекарств de nova (то есть «с нуля»), моделирование связывания лиганд с мишенью, а также виртуальный скрининг.

Допустим, мы знаем мишень и хорошо знакомы со структурами лигандов, например структурами адреналина, и можем синтезировать молекулу, похожую на известный лиганд, но не обладающую ненужными нам свойствами. Адреналин, связываясь с адреналиновыми рецепторами, активируется. Нужно создать пропранолол, который не будет активировать их. Почему? Потому что мы знаем секрет: структура химического соединения определяет его свойства. Существует несколько групп методов, которые направлены на моделирование лигандов, основываясь на структуре известных лигандов: например, методы определения похожести молекулы и методы количественной связи между структурой и активностью.

Если мы знаем структуру какой-то мишени, то есть взаимное расположение атомов в молекуле, мы можем смоделировать связывания какого-нибудь потенциального лиганда с этой мишенью. Такой эксперимент называется «молекулярный докинг», то есть «молекулярная стыковка». Если мы смоделируем много вариантов взаимодействия одной и той же мишени со многим лигандами, так мы проведем виртуальный скрининг. Даже если структура мишени неизвестна, можно ее смоделировать при условии, что есть структура белка, который похож на мишень.

Драг-дизайн не единственный подход к разработке лекарств или, если быть точнее, не единственный успешный подход. Иногда лекарство открывают как звезды, планеты или острова. Такой подход называется «драг-дискавери» («открытие лекарства»). В рамках этого подхода тоже тестируют соединение на определенную активность в отношении определенных мишеней. Обычно речь идет о тестировании соединений из биологических объектов. Пример взаимодействия драг-дизайна и драг-дискавери - соединение мидостаурин. Изначально оно было выделено из бактерий, а потом химически модифицировано. Сегодня оно проходит клинические испытания, предполагается, что мидостаурин поможет в лечении лейкоза и мастоцитоза.

Еще 50 лет назад многие болезни казались неизлечимыми. Но именно с использованием драг-дизайна были разработаны лекарства, которые сегодня помогают бороться с этими заболеваниями. Вероятно, развитие драг-дизайна поможет впоследствии победить такие болезни, как рак, СПИД или болезнь Альцгеймера.

Расшифровку подготовила Дарья Сапрыкина

Статья дает базовое представление о том, как в современном мире создаются лекарства. Рассмотрены история драг-дизайна, основные понятия, термины и технологии, применяющиеся в этой сфере. Особое внимание уделено роли вычислительной техники в этом наукоемком процессе. Описаны методы поиска и валидации биологических мишеней для лекарственных препаратов, высокопроизводительный скрининг, процессы клинических и доклинических испытаний лекарств а также применение компьютерных алгоритмов.

Драг-дизайн: история

Индустрия направленного конструирования новых лекарственных препаратов, или, как этот процесс называют, калькируя с английского за неимением такого же короткого и удобного русского термина, драг-дизайн (drug - лекарственный препарат, design - проектирование, конструирование) - сравнительно молодая дисциплина, но все же не настолько молодая, как это принято считать .

Рисунок 1. Пауль Эрлих, впервые выдвинувший гипотезу о существовании хеморецепторов и их возможного использования в медицине.

Национальная библиотека медицины США

К концу девятнадцатого века химия достигла значительной степени зрелости. Была открыта таблица Менделеева, разработана теория химической валентности, теория кислот и оснований, теория ароматических соединений. Этот несомненный прогресс дал толчок и медицине. Новые химические продукты - синтетические краски, производные смол, начали использоваться в медицине для дифференциального окрашивания биологических тканей. В 1872–1874 годах в Страсбурге, в лаборатории известного анатома Вильгельма Валдеера, студент-медик Пауль Эрлих (рис. 1), изучавший селективную окраску тканей, впервые выдвинул гипотезу о существовании хеморецепторов - специальных тканевых структур, специфически взаимодействующих с химическими веществами, и постулировал возможность использования этого феномена в терапии различных заболеваний. Позже, в 1905 году, эта концепция была расширена Дж. Лэнгли, предложившим модель рецептора как генератора внутриклеточных биологических импульсов, который активируется агонистами и инактивируется антагонистами.

Этот момент можно считать рождением хемотерапии и новым витком в фармакологии, и в 20-м веке это привело к беспрецедентному успеху в клинической медицине. Одним из самых громких достижений фармакологической промышленности 20-го века можно по праву назвать пенициллин, антибиотик, открытый в 1929 году Александром Флемингом и исследованный впоследствии Чейном и Флори. Пенициллин, обладающий антибактериальным действием, сослужил человечеству незаменимую службу в годы Второй мировой войны, сохранив жизни миллионам раненых.

Пораженные успехом пенициллина, многие фармацевтические компании открыли собственные микробиологические подразделения, возлагая на них надежды по открытию новых антибиотиков и других лекарств. Последовавшие успехи биохимии привели к тому, что стало возможным теоретически предсказывать удачные мишени для терапевтического воздействия, а также модификации химических структур лекарств, дающих новые соединения с новыми свойствами. Так, антибиотик сульфаниламид в результате ряда исследований дал начало целым семействам гипогликемических, диуретических и антигипертензивных препаратов. Драг-дизайн поднялся на качественно новый уровень, когда разработка новых лекарственных соединений стала не просто плодом работы воображения химиков, а результатом научного диалога между биологами и химиками.

Новый прорыв был связан с развитием молекулярной биологии, позволившей привлечь к разработкам информацию о геноме, клонировать гены, кодирующие терапевтически важные биологические мишени и экспрессировать их белковые продукты.

Завершение ознаменовавшего начало нового тысячелетия проекта «геном человека», в результате которого была прочитана полная информация, содержащаяся в ДНК человека, явилось настоящим триумфом раздела биологической науки, получившей название «геномика». Геномика дает совершенно новый подход к поиску новых терапевтически важных мишеней, позволяя искать их непосредственно в нуклеотидном тексте генома.

Геном человека содержит 12000–14000 генов, кодирующих секретируемые белки. На данный момент в фармацевтической промышленности используется не более 500 мишеней. Существуют исследования, говорящие, что многие заболевания являются «мультифакторными», то есть обуславливаются дисфункцией не одного белка или гена, а 5–10 связанных между собой белков и кодирующих их генов. Исходя из этих соображений можно заключить, что количество исследуемых мишеней должно увеличиться минимум в 5 раз.

Биохимическая классификация исследуемых в настоящее время биологических мишеней и их численное соотношение представлены на рисунке 2. Особо следует отметить, что бóльшую (>60%) долю рецепторов составляют мембранные G-белок сопряженные рецепторы (GPCR , G-protein coupled receptors ), а суммарный объем продаж лекарств, направленных на взаимодействие с ними, равняется 65 млрд. долл. ежегодно, и продолжает расти.

Основные понятия

Рисунок 3. Три типа влияния лигандов на клеточный ответ: увеличение ответа (положительный агонгист ), постоянство ответа, но конкурирование за связывании с другими лигандами (нейтральный агонист ) и уменьшение ответа (антагонист ).

Основные понятия, используемые в драг-дизайне - это мишень и лекарство . Мишень - это макромолекулярная биологическая структура, предположительно связанная с определенной функцией, нарушение которой приводит к заболеванию и на которую необходимо совершить определенное воздействие. Наиболее часто встречающиеся мишени - это рецепторы и ферменты. Лекарство - это химическое соединение (как правило, низкомолекулярное), специфически взаимодействующее с мишенью и тем или иным образом модифицирующее клеточный ответ, создаваемый мишенью.

Если в качестве мишени выступает рецептор, то лекарство будет, скорее всего, его лигандом, то есть соединением, специфическим образом взаимодействующим с активным сайтом рецептора. В отсутствие лиганда рецептор характеризуется собственным уровнем клеточного ответа - так называемой базальной активностью.

По типу модификации клеточного ответа лиганды делят на три группы (рис. 3):

  1. Агонисты увеличивают клеточный ответ.
  2. Нейтральные агонисты связываются с рецептором, но не изменяют клеточный ответ по сравнению с базальным уровнем.
  3. Обратные агонисты, или антагонисты понижают клеточный ответ.

Степень взаимодействия лиганда с мишенью измеряют аффинностью, или сродством. Аффинность равна концентрации лиганда, при которой половина мишеней связана с лигандом. Биологической же характеристикой лиганда является его активность, то есть та концентрация лиганда, при которой клеточный ответ равен половине максимального.

Определение и валидация мишени

Один из самых ранних и самых важных этапов драг-дизайна - выбрать правильную мишень, воздействуя на которую можно специфическим образом регулировать одни биохимические процессы, по возможности не затрагивая при этом другие. Однако, как уже было сказано, такое не всегда возможно: далеко не все заболевания являются следствием дисфункции только одного белка или гена.

С наступлением постгеномной эры, определение мишеней происходит с использованием методов сравнительной и функциональной геномики. На основании филогенетического анализа в геноме человека выявляются гены, родственные генам, функции чьих белковых продуктов уже известны, и эти гены могут быть клонированы для дальнейшего исследования.

Однако мишени, чьи функции определены лишь гипотетически, не могут служить отправной точкой для дальнейших исследований. Необходима многоступенчатая экспериментальная валидация, в результате которой может быть понята конкретная биологическая функция мишени применительно к фенотипическим проявлениям исследуемой болезни.

Существует несколько методов экспериментальной валидации мишеней:

  • геномные методы заключаются в подавлении синтеза мишени в тестовой системе путем получения мутантов с генным нокаутом (в которых ген мишени попросту отсутствует) или использования РНК-антисмысловых последовательностей, «выключающих» тот или иной ген;
  • мишени можно инактивировать с помощью моноклональных антител или облучая мишень, модифицированную хромофором, лазерным излучением;
  • мишени можно инактивировать с помощью низкомолекулярных лигандов-ингибиторов;
  • также можно непосредственно производить валидацию мишени, устанавливая ее взаимодействие с тем или иным соединением методом плазмонного резонанса.

Уровень валидации мишени повышается с числом модельных животных (специальных генетических линий лабораторных животных), в которых модификация мишени приводит к желаемому фенотипическому проявлению. Высшим уровнем валидации является, несомненно, демонстрация того, что модификация мишени (например, блокирование или нокаут рецептора или ингибирование фермента) приводит к клинически идентифицируемым и воспроизводимым симптомам у человека, однако, понятно, такое можно наблюдать достаточно редко.

Кроме того, при выборе мишени не следует забывать о таком явлении, как полиморфизм - то есть о том, что ген может существовать в разных изоформах у разных популяций или рас людей, что приведет к разному эффекту лекарства на разных больных.

Когда мишень уже найдена и проверена на валидность, начинаются непосредственные исследования, результатом которых являются многочисленные структуры химических соединений, лишь немногим из которых суждено стать лекарствами.

Исследование всех возможных с химической точки зрения лигандов («химическое пространство») невозможно: простая прикидка показывает, что возможно не менее 10 40 различных лигандов, в то время как с момента возникновения вселенной прошло лишь ~10 17 секунд. Поэтому на возможную структуру лигандов накладывается ряд ограничений, который существенно сужает химическое пространство (оставляя его, тем не менее, совершенно необъятным). В частности, для сужения химического пространства накладываются условия подобия лекарству (drug-likeness ), которые в простом случае можно выразить правилом пяти Липинского, согласно которому соединение, чтобы «быть похожим» на лекарство, должно:

  • иметь менее пяти атомов-доноров водородной связи;
  • обладать молекулярным весом менее 500;
  • иметь липофильность (log P - коэффициент распределения вещества на границе раздела вода-октанол) менее 5;
  • иметь суммарно не более 10 атомов азота и кислорода (грубая оценка количества акцепторов водородной связи).

В качестве стартового набора лигандов, исследуемых на способность связываться с мишенью, обычно используют так называемые библиотеки соединений, либо поставляемые на коммерческой основе специализирующимися на этом компаниями, либо содержащиеся в арсенале фармацевтической компании, проводящей разработку нового лекарства или заказавшей его у сторонней фирмы. Такие библиотеки содержат тысячи и миллионы соединений. Этого, конечно, совершенно недостаточно для тестирования всех возможных вариантов, но этого, как правило, и не требуется. Задачей на этом этапе исследования является выявление соединений, способных после дальнейшей модификации, оптимизации и тестирования дать «кандидат» - соединение, предназначенное для тестирования на животных (доклинические исследования) и на людях (клинические исследования).

Этот этап осуществляется с помощью высокопроизводительного скрининга (in vitro ) или его компьютерного (in silico ) анализа - высокопроизводительного докинга.

Комбинаторная химия и высокопроизводительный скрининг

Скринингом называется оптимизированная конвейеризованная процедура, в результате которой большое количество химических соединений (>10 000) проверяется на аффинность или активность по отношению к специальной тестовой (имитирующей биологическую) системе. По производительности различают разные виды скрининга:

  • низкопроизводительный (10000–50000 образцов);
  • среднепроизводительный (50000–100000 образцов);
  • высокопроизводительный (100000–5000000+ образцов).

Для скрининга как для «промышленной» процедуры очень критична эффективность, стоимость и время, потраченное на операцию. Как правило, скрининг производится на роботизированных установках, способных работать в круглосуточном и круглогодичном режиме (рис. 4).

Рисунок 4. Аппаратура, используемая для высокопроизводительного скрининга. А - Роботизированная пипетка, в автоматическом высокопроизводительном режиме наносящая образцы тестируемых соединений в плашку с системой для скрининга. Типичное количество углублений на плашке - тысячи. Объем системы в одной лунке - микролитры. Объем вносимого образца - нанолитры. Б - Установка для высокопроизводительного скрининга и считывания флуоресцентного сигнала Mark II Scarina. Работает с плашками, содержащими 2048 углублений (NanoCarrier). Полностью автоматическая (работает в круглосуточном режиме). Производительность - более 100 000 лунок (образцов) в день.

Принцип скрининга достаточно прост: в плашки, содержащие тестовую систему (например, иммобилизованная мишень или специальным образом модифицированные целые клетки), робот раскапывает из пипетки исследуемые вещества (или смесь веществ), следуя заданной программе. Причем на одной плашке могут находиться тысячи «лунок» с тестовой системой, и объем такой лунки может быть очень мал, так же как и объем вносимой пробы (микро- или даже нанолитры).

Потом происходит считывание данных с плашки, говорящее о том, в какой лунке обнаружена биологическая активность, а в какой - нет. В зависимости от используемой технологии детектор может считывать радиоактивный сигнал, флюоресценцию (если система построена с использованием флуоресцентных белков), биолюминесценцию (если используется люциферин-люциферазная система или ее аналоги), поляризацию излучения и многие другие параметры.

Обычно в результате скрининга количество тестируемых соединений сокращается на 3–4 порядка. Соединения, для которых в процессе скрининга выявлена активность выше заданного значения, называются прототипами. Однако следует понимать, что такие «удачи» еще очень и очень далеки от конечного лекарства. Лишь те из них, которые сохраняют свою активность в модельных системах и удовлетворяют целому ряду критериев, дают предшественников лекарств, которые используются для дальнейших исследований.

Как уже было сказано, даже библиотеки, содержащие более миллиона соединений, не в состоянии представить все возможное химическое пространство лигандов. Поэтому при проведении скрининга можно выбрать две различные стратегии: диверсификационный скрининг и сфокусированный скрининг . Различие между ними заключается в составе используемых библиотек соединений: в диверсификационном варианте используют как можно более непохожие друг на друга лиганды с целью охватить как можно большую область химического пространства, при сфокусированном же, наоборот, используют библиотеки родственных соединений, полученных методами комбинаторной химии, что позволяет, зная приблизительную структуру лиганда, выбрать более оптимальный его вариант. Здравый смысл подсказывает, что в масштабном проекте по созданию нового лекарственного препарата следует использовать оба этих подхода последовательно - сначала диверсификационный, с целью определения максимально различных классов удачных соединений, а потом - сфокусированный, с целью оптимизации структуры этих соединений и получения рабочих прототипов.

Если для мишени известно так называемое биологическое пространство, то есть какие-либо характеристики лигандов (размер, гидрофобность и т.д.), которые могут с ней связываться, то при составлении библиотеки тестируемых соединений выбирают лиганды, попадающие в «пересечение» биологического и химического пространств, так как это заведомо повышает эффективность процедуры.

Структуры прототипов, полученные в результате скрининга, далее подвергаются разнообразным оптимизациям, проводимым в современных исследованиях, как правило, в тесном сотрудничестве между различными группами исследователей: молекулярными биологами, фармакологами, моделистами и медицинскими химиками (рис. 5).

Рисунок 5. Фармакологический цикл. Группа молекулярной биологии отвечает за получение мутантных мишеней, группа фармакологии - за измерение данных по активности и аффинности синтезированных лигандов на мишенях дикого типа и мутантных, группа моделирования - за построение моделей мишеней, предсказание их мутаций и предсказание структур лигандов, группа медицинской химии - за синтез лигандов.

С каждым оборотом такого «фармакологического цикла» прототип приближается к предшественнику и затем к кандидату, который уже тестируется непосредственно на животных (доклинические испытания) и на людях - в процессе клинических испытаний.

Таким образом, роль скрининга заключается в существенном сокращении (на несколько порядков) выборки прототипов (рис. 6).

Рисунок 6. Роль высокопроизводительного скрининга в разработке нового лекарственного препарата. Скрининг, будь то его лабораторный (in vitro ) или компьютерный (in silico ) вариант, - главная и наиболее ресурсоемкая процедура по выбору стартовых структур лекарств (прототипов) из библиотек доступных соединений. Выходные данные скрининга часто являются отправной точкой для дальнейшего процесса разработки лекарства.

Клинические исследования

Медицина - это область, в которой ни в коем случае не следует спешить. В особенности, если речь идет о разработке новых лекарственных препаратов. Достаточно вспомнить историю с препаратом Талидамидом, разработанным в конце 50-х в Германии, применение которого беременными женщинами приводило к рождению детей с врожденными пороками конечностей, вплоть до их полного отсутствия. Этот побочный эффект не был вовремя выявлен во время клинических исследований в силу недостаточно тщательного и аккуратного тестирования.

Поэтому в настоящее время процедура тестирования лекарств достаточно сложна, дорога и требует значительного времени (2–7 лет тестирования в клинике и от 100 миллионов долларов на одно соединение-кандидат, см. рис. 7).

Рисунок 7. Процесс разработки нового лекарства занимает от 5 до 16 лет. Затраты на клиническое тестирование одного соединения-кандидата составляют более 100 миллионов долларов США. Суммарная стоимость разработки, с учетом препаратов, не достигших рынка, часто превышает 1 миллиард долларов.

Прежде всего, еще до поступления в клинику, препараты исследуются на токсичность и канцерогенность, причем исследования должны проводиться, кроме систем in vitro , как минимум на двух видах лабораторных животных. Токсичные препараты, само собой, в клинику не попадают, за исключением тех случаев, когда они предназначены для терапии особо тяжелых заболеваний и не имеют пока менее токсичных аналогов.

Кроме того, препараты подвергаются фармакокинетическим исследованиям, то есть тестируются на такие физиологические и биохимические характеристики, как поглощение, распределение, метаболизм и выведение (по-английски обозначается аббревиатурой ADME - Absorption, Distribution, Metabolism and Extraction ). Биодоступность, например, является подхарактеристикой введения препарата в организм, характеризующая степень потери им биологических свойств при введении в организм. Так, инсулин, принимаемый перорально (через рот), имеет низкую биодоступность, так как, будучи белком, расщепляется желудочными ферментами. Поэтому инсулин вводят либо подкожно, либо внутримышечно. По этой же причине часто разрабатывают препараты, действующие аналогично своим природным прототипам, но имеющие небелковую природу.

Юридически процесс клинических исследований новых препаратов имеет очень много нюансов, так как они требуют огромного количества сопроводительной документации (в сумме несколько тысяч страниц), разрешений, сертификаций и т.д. Кроме того, многие формальные процедуры сильно разнятся в разных странах в силу различного законодательства. Поэтому, для решения этих многочисленных вопросов, существуют специальные компании, принимающие от крупных фармацевтических компаний заказ на проведение клинических испытаний и перенаправляющие их в конкретные клиники, сопровождая весь процесс полной документацией и следя, чтобы никакие формальности не были нарушены.

Роль вычислительной техники в драг-дизайне

В настоящее время в драг-дизайне, как и в большинстве других наукоемких областей, продолжает увеличиваться роль вычислительной техники. Следует сразу оговорить, что современный уровень развития компьютерных методик не позволяет разработать новый лекарственный препарат, используя только компьютеры. Основные преимущества, которые дают вычислительные методы в данном случае - это сокращение времени выпуска нового лекарства на рынок и снижение стоимости разработки.

Основные компьютерные методы, используемые в драг-дизайне, это:

  • молекулярное моделирование (ММ);
  • виртуальный скрининг;
  • дизайн новых лекарственных препаратов de novo ;
  • оценка свойств «подобия лекарству»;
  • моделирование связывания лиганд-мишень.

Методы ММ, основывающиеся на структуре лиганда

В случае, если ничего не известно про трехмерную структуру мишени (что случается достаточно часто), прибегают к методикам создания новых соединений исходя из информации о структуре уже известных лигандов и данных по их активности.

Подход основывается на общепринятой в химии и биологии парадигме, гласящей, что структура определяет свойства. Основываясь на анализе корреляций между структурой известных соединений и их свойствами, можно предсказать структуру нового соединения, обладающего желаемыми свойствами (или же, наоборот, для известной структуры предсказать свойства). Причем, этот подход используется как при модификации известных структур с целью улучшения их свойств, так и при поиске новых соединений используя скрининг библиотек соединений.

Методы определения похожести молекул (или методы отпечатков пальцев) состоят в дискретном учете определенных свойств молекулы, называемых дескрипторами (например, число доноров водородной связи, число бензольных колец, наличие определенного заместителя в определенном положении и т.д.) и сравнивании получившегося «отпечатка» с отпечатком молекулы с известными свойствами (используемой в качестве образца). Степень похожести выражается коэффициентом Танимото, изменяющимся в диапазоне 0–1. Высокая похожесть предполагает близость свойств сравниваемых молекул, и наоборот.

Методы, основывающиеся на известных координатах атомов лиганда, называются методами количественной связи между структурой и активностью (QSAR , Quantitative Structure-Activity Relationship ). Один из наиболее используемых методов этой группы - метод сравнительного анализа молекулярных полей (CoMFA , Comparative Molecular Field Analysis ). Этот метод заключается в приближении трехмерной структуры лиганда набором молекулярных полей, отдельно характеризующих его стерические, электростатические, донорно-акцепторные и другие свойства. CoMFA модель строится на основании множественного регрессионного анализа лигандов с известной активностью и описывает лиганд, который должен хорошо связываться с исследуемой мишенью, в терминах молекулярных полей. Полученный набор полей говорит, в каком месте у лиганда должен быть объемный заместитель, а в каком - маленький, в каком полярный, а в каком - нет, в каком донор водородной связи, а в каком - акцептор, и т.д.

Модель может использоваться в задачах виртуального скрининга библиотек соединений, выступая в данном случае аналогом фармакофора. Самым главным недостатком этого метода является то, что он обладает высокой предсказательной силой лишь на близких классах соединений; при попытке же предсказать активность соединения другой химической природы, чем лиганды, использовавшиеся для построения модели, результат может оказаться недостаточно достоверным.

Схема возможного процесса создания нового лекарства, основывающегося на структуре лиганда, приведена на рисунке 8.

Рисунок 8. Пример молекулярного моделирования, основывающегося на структуре лиганда. Для циклического пептида уротензина II (внизу слева ) определена трехмерная структура методом ЯМР спектроскопии водного раствора (вверху слева ). Пространственное взаиморасположение аминокислотных остатков мотива ТРП-ЛИЗ-ТИР, являющегося важным для биологической функции, было использовано для построения модели фармакофора (вверху справа ). В результате виртуального скрининга найдено новое соединение, демонстрирующее биологическую активность (внизу справа ).

Очевидно, что достоверность моделирования, как и эффективность всего процесса конструирования нового лекарства, можно существенно повысить, если учитывать данные не только о структуре лигандов, но и о структуре белка-мишени. Методы, учитывающие эти данные, носят общее название «драг-дизайн, основывающийся на структурной информации» (SBDD , Structure-Based Drug Design ).

Методы ММ, основывающиеся на структуре белка

В связи с растущим потенциалом структурной биологии, все чаще можно установить экспериментальную трехмерную структуру мишени, или построить ее молекулярную модель, основываясь на гомологии с белком, чья трехмерная структура уже определена.

Наиболее часто используемые методы определения трехмерной структуры биомакромолекул с высоким разрешением (Часто, когда экспериментальная структура мишени все же недоступна, прибегают к моделированию на основании гомологии - методу, для которого показано, что построенная им модель обладает достаточно высоким качеством, если гомология между структурным шаблоном и моделируемым белком не ниже 40%.

Особенно часто к моделированию по гомологии прибегают при разработке лекарств, направленных на G-белок сопряженные рецепторы, так как они, будучи мембранными белками, очень плохо поддаются кристаллизации, а методу ЯМР пока недоступны такие большие белки. Для этого семейства рецепторов известна структура только одного белка - бычьего родопсина, полученная в 2000 г. в Стэнфорде, которая и используется в качестве структурного шаблона в подавляющем числе исследований .

Обычно при исследовании, базирующемся на структурных данных, учитывают также данные по мутагенезу мишени, чтобы установить, какие аминокислотные остатки наиболее важны для функционирования белка и связывания лигандов. Эти сведения особенно ценны при оптимизации построенной модели, которая, будучи лишь производной от структуры белка-шаблона, не может учитывать всей биологической специфики моделируемого объекта.

Трехмерная структура мишени, кроме того, что может объяснить молекулярный механизм взаимодействия лиганда с белком, используется в задачах молекулярного докинга, или компьютерном моделировании взаимодействия лиганда с белком. Докинг использует в качестве стартовой информации трехмерную структуру белка (на данном этапе развития технологии, как правило, конформационно неподвижную), и структуру лиганда, конформационная подвижность и взаиморасположение с рецептором которого моделируется в процессе докинга. Результатом докинга является конформация лиганда, наилучшим образом взаимодействующая с белковым сайтом связывания, с точки зрения оценочной функции докинга, приближающей свободную энергию связывания лиганда. Реально, в силу множества приближений, оценочная функция далеко не всегда коррелирует с соответствующей экспериментальной энергией связывания.

Докинг позволяет сократить затраты средств и времени за счет проведения процедуры, аналогичной высокопроизводительному скринингу, на компьютерных комплексах. Эта процедура называется виртуальным скринингом, и основным ее преимуществом является то, что для реальных фармакологических испытаний нужно приобретать не целую библиотеку, состоящую из миллиона соединений, а только «виртуальные прототипы». Обычно же, с целью избежания ошибок, скрининг и докинг используются одновременно, взаимно дополняя друг друга (рис. 9).

Рисунок 9. Два варианта совместного использования высокопроизводительного скрининга и молекулярного моделирования. Сверху: последовательный итеративный скрининг. На каждом шаге процедуры используется сравнительно небольшой набор лигандов; по результатам скрининга строится модель, объясняющая связь между структурой и активностью. Модель используется для выбора следующего набора лигандов для тестирования. Снизу: «разовый» скрининг. На каждом шаге модель строится по обучающей выборке и используется для предсказаний на тестовой выборке.

С увеличением компьютерных мощностей и появлением более корректных и физичных алгоритмов, докинг будет лучше оценивать энергию связывания белка с лигандом, начнет учитывать подвижность белковых цепей и влияние растворителя. Однако, неизвестно, сможет ли виртуальный скрининг когда-нибудь полностью заменить реальный биохимический эксперимент; если да - то для этого необходим, очевидно, качественно новый уровень алгоритмов, неспособных на сегодняшний день абсолютно корректно описать взаимодействие лиганда с белком.

Одно из явлений, иллюстрирующих несовершенство алгоритмов докинга, - парадокс похожести. Этот парадокс заключается в том, что соединения, структурно совсем немного различающиеся, могут иметь драматически различную активность, и в то же время с точки зрения алгоритмов докинга быть практически неразличимыми.

Прототипы лекарства можно получать не только выбирая из уже подготовленной базы данных соединений. Если есть структура мишени (или хотя бы трехмерная модель фармакофора), возможно построение лигандов de novo, используя общие принципы межмолекулярного взаимодействия. При этом подходе в сайт связывания лиганда помещается один или несколько базовых молекулярных фрагментов, и лиганд последовательно «наращивается» в сайте связывания, подвергаясь оптимизации на каждом шаге алгоритма. Полученные структуры, так же, как и при докинге, оцениваются с помощью эмпирических оценочных функций.

Ограничения применения компьютерных методов

Несмотря на всю свою перспективность, компьютерные методы имеют ряд ограничений, которые необходимо иметь ввиду, чтобы правильно представлять себе возможности этих методов.

Прежде всего, хотя идеология in silico подразумевает проведение полноценных компьютерных экспериментов, то есть экспериментов, результаты которых ценны и достоверны сами по себе, необходима обязательная экспериментальная проверка полученных результатов. То есть, подразумевается тесное сотрудничество научных групп, проводящих компьютерный эксперимент, с другими экспериментальными группами (рис. 5).

Кроме того, компьютерные методы пока не в силах учесть всего разнообразия влияния лекарственного препарата на организм человека, поэтому эти методы не в силах ни упразднить, ни даже существенно сократить клиническое тестирование, занимающее основную долю времени в разработке нового препарата.

Таким образом, на сегодняшний день роль компьютерных методов в драг-дизайне сводится к ускорению и удешевлению исследований, предшествующих клиническим испытаниям.

Перспектива драг-дизайна