Как называются промежуточные нейроны. Нейроны и нервная ткань. Особенности развития мозговой ткани

Нейроны головного мозга. История открытия нейрона. Строение нейрона. Рождение нейрона, миграция, его функции и механизм действия. Отчего гибнут нейроны.

Нейроны головного мозга – термин на слуху у каждого кому близка тема ДЦП, но далеко не каждый знает, что собой представляет нейрон, как устроен и как работает.

Нейрон, или неврон в переводе с греческого – волокно, нерв.

Нейроны - это узкоспециализированные клетки из которых состоит нервная система. Задача нейронов – обмен информацией между телом и мозгом.

Нейроны - электрически возбудимые клетки, которые обрабатывают, хранят и передают информацию с помощью электрических и химических сигналов.

Нейроны головного мозга – история открытия

До недавнего времени большинство нейробиологов считали, что мы рождаемся с определенным набором нейронов и это окончательная цифра. В дальнейшем нейроны могут только гибнуть, но не могут восстанавливаться. Видимо отсюда и произошло высказывание, что «нервные клетки не восстанавливаются».

Используя набор нейронов, данных при рождении, ребенок по мере взросления выстраивает их в цепочки, соответствующие определенным навыкам и опыту. Таким образом эти цепочки являются информационными магистралями между мозгом и различными участками тела. Ученые полагали, что после того как нейроны головного мозга создали цепь, добавление в неё новых нейронов невозможно т.к. это нарушит информационный поток и отключит коммуникативную систему мозга.

В 1962 году представление о нейронах претерпело значительное изменение. Нейробиологу Джозефу Альтману удалось доказать факт рождения новых нейронов в мозге взрослой крысы. А в последующие годы были приведены доказательства миграции новых нейронов от места своего рождения в другие области мозга.

В 1983 году процесс рождения новых нейронов удалось зафиксировать и в мозге взрослой обезьяны.

Это открытие было настолько удивительным и невероятным, а мнение о нейронах мозга настолько устоявшимся, что что многие ученые отказывались верить, в возможность подобных процессов в мозге человека.

Однако последние десятилетия доказали рождение нейронов и в мозге взрослого человека.

Для некоторых нейробиологов и по сей день нейрозенез во взрослом мозге является недоказанной теорией. Но большинство считают, что открытие нейрогенеза открывает невероятные возможности в области неврологии человека.

Строение нейрона

Основными составляющими нейрона являются:

  • тело клетки с ядром
  • расширения клетки – аксон и дентрит
  • терминаль (концевая ветвь аксона)
  • глии (глиальные клетки)

Центральная нервная система (включая головной и спинной мозг) состоит из двух основных типов клеток – нейроны и глии. Глии количественно превосходят нейроны, но нейрон остается главной клеткой нервной системы.

Нейроны используют электрические импульсы и химические сигналы для передачи информации между различными областями мозга, а также между мозгом и остальной частью нервной системы.

Все, что мы думаем, чувствуем и делаем, было бы невозможно без работы нейронов и их опорных клеток, глиальных клеток.

Нейроны имеют три основные части: тело клетки и два расширения, называемые аксоном и дендритом. Внутри тела клетки находится ядро, которое контролирует активность клетки и содержит генетический материал клетки.

Аксон выглядит как длинный хвост, его задача передавать сообщения. Дендриты выглядят как ветви дерева и выполняют функции получения сообщений. Нейроны общаются друг с другом через крошечное пространство, называемое синапсом, между аксонами и дендритами соседних нейронов.

Существует три класса нейронов:

  1. Сенсорные нейроны- несут информацию из органов чувств (таких как глаза, уши, нос) в мозг.
  2. Моторные (двигательные) нейроны- контролируют добровольную мышечную активность, такую как речь, а также передают сообщения от нервных клеток в мышцы.
  3. Все остальные нейроны называются — интернейронами.

Нейроны являются наиболее разнообразными клетками в организме. Внутри этих трех классов нейронов есть сотни разных типов, каждый из которых обладает определенными способностями к передаче данных.

Общаясь друг с другом нейроны создают уникальные связи, это делает каждого из нас не похожим на другого в том, как мы думаем, чувствуем и действуем.

Зеркальные нейроны

Очень интересны функции зеркальных нейронов. Зеркальные нейроны – это такая разновидность нейронов головного мозга, которые возбуждаются не только при самостоятельном выполнении действия, но и при наблюдении за тем, как это действие выполняют другие.

Таким образом можно сказать, что зеркальные нейроны отвечают за подражание или имитацию.

Изучение принципов работы зеркальных нейронов очень перспективно в решении проблем реабилитации церебрального паралича.

Рождение нейронов

Рождение новых нейронов по-прежнему является вопросом, вокруг которого не умолкают споры. Хотя есть неоспоримые данные, подтверждающие что нейрогенез (рождение нейронов) процесс, не прекращающийся на протяжении всей жизни индивида.

Нейроны рождаются в особых клетках, называемых – . Наука о стволовых клетках является довольно молодой и вопросов в ней пока больше, чем ответов. Но мы знаем, что метод лечения ДЦП при помощи стволовых клеток уже имеет место быть и достаточно успешно используется.

Миграция нейронов

Очень интересный вопрос – ! Рождение нейрона по запросу нервной системы это только половина дела, ведь ему еще нужно добраться туда откуда послан запрос и где его ждут.

Как нейрон понимает куда ему идти и что помогает ему туда добраться? В настоящее время ученые увидели два процесса доставки нейронов от места рождения в другие отделы мозга.

  1. Передвижение по специальным клеткам – радиальным глиям. Эти клетки простирают свои волокна от внутренних слоев мозга к внешним. И нейроны скользят по ним, пока не достигнут места назначения.
  2. Химические сигналы. На поверхности нейронов были обнаружены специальные молекулы – адгезии, которые связываются с подобными молекулами на соседних глиальных клетках или аксонах нерва. И так передавая сигнал друг другу ведут нейрон к его окончательному местоположению.

Не все нейроны успешно преодолевают этот путь. Есть мнение, что две трети нейронов гибнет в пути. А часть из тех, что выжили сбиваются с пути и в последствии внедряются в цепочки на не свои места.

Некоторые ученые подозревают, что такие ошибки приводят к шизофрении, дислексии, . Доказательств нет, только предположение.

Гибель нейронов

В норме нейроны – клетки долгожители в организме человека. Но иногда они начинают массово гибнуть в тех или иных структурах мозга, приводя к различным заболеваниям нервной системы. Иногда причины их гибели удается установить, иногда нет, вопрос остается открытым.

Так, например, известно, что при болезни Паркинсона гибнут нейроны, которые продуцируют дофамин, в области мозга, которая контролирует движения тела. Это приводит к трудностям при инициировании движения. Что является спусковым механизмом этого процесса — нет ответа.

При болезни Альцгеймера враждебные белки накапливаются в нейронах и вокруг нейронов в неокортексе и гиппокампе (части мозга), которые контролируют память. Когда эти нейроны умирают, люди теряют способность запоминать и способность выполнять повседневные задачи.

Гипоксия мозга – приводит к кислородному голоданию нейронов и в дальнейшем, если процесс не остановить вовремя, к их гибели.

Физические травмы мозга – приводят к разрыву связей между нейронами. Таким образом нейроны живы, но у них нет возможности взаимодействовать друг с другом.

Искусственный нейрон

Дальнейшее изучение вопросов жизни и гибели нейронов, дает надежду на разработку новых методов лечения нервной системы.

Современные исследования показывают, что нервные клетки в состоянии восстанавливаться. Стволовые клетки могут генерировать все типы нейронов. Возможно стволовыми клетками можно манипулировать и стимулировать в них рождение новых нейронов необходимого типа.

Таким образом процесс восстановления, обновления мозга, замены погибших нейронов нейронами нового поколения – звучит не так уж фантастически.

Возможно термин – искусственные нейроны головного мозга, это наше не такое уж далекое будущее.

Нейрон - электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Клетка содержит ядро, тело клетки и отростки (дендриты и аксоны). В головном мозге человека насчитывается в среднем около 65 миллиардов нейронов. Нейроны соединяются между собой, формируя таким образом человеческие функции мозга, память, отделы и сознание.

Видите это изображение выше? С помощью этого странного изображения нейробиологи Массачусетского технологического института смогли активировать отдельные нейроны мозга. Используя лучшую из доступных модель зрительной нейронной сети мозга, ученые разработали новый способ точного управления отдельными нейронами и их популяциями в середине этой сети. В ходе испытания на животных команда показала, что информация, полученная из вычислительной модели, позволила им создавать изображения, которые сильно активировали определенные нейроны мозга.

Свежий вкусен сам по себе, из винограда делают замечательные , а если высушить виноград — получится сладкий изюм. Но какие ещё плюсы несёт в себе эта ягода с богатейшей историей? Исследователи из Школы медицины на горе Синай пришли к выводу, что на основе винограда можно создать эффективное и безопасное средство против депрессии, которое будет обладать минимальными побочными эффектами для здоровья человека.


Нервная система представляется наиболее сложной частью человеческого организма. В ее состав включаются около 85 миллиардов нервных и глиальных клеток. На сегодняшний день ученым удалось исследовать всего лишь 5 % нейронов. Другие 95% до сих пор остаются загадкой, поэтому проводятся многочисленные исследования данных компонентов мозга человека.

Рассмотрим, как устроен мозг человека, а именно его клеточную структуру.

Строение нейрона составляют 3 основные составляющие части:

1. Клеточное тело

Данная часть нервной клетки является ключевой, в состав которой входит цитоплазма и ядра, в совокупности создающие протоплазму, на поверхности которого образуется мембранная граница, состоящая из двух слое липидов. На мембранной поверхности находятся белки, представляющие форму глобул.

Нервные клетки коры состоят из тел, содержащих в себе ядро, а также ряд органелл, включая интенсивно и эффективно развивающуюся площадь рассеивания шероховатой формы, которая обладает активными рибосомами.

2. Дендриты и аксон

Аксон представляется продолжительным отростком, который эффективно приспосабливается к возбуждающим процессам от тела человека.

Дендриты имеют совсем иную анатомическую структуру. Их главное отличие от аксона то, что они имеют значительно меньшую длину, а также характеризуются наличием аномально развитых отростков, которые выполняют функции основного участка. В этом участке начинают возникать тормозящие синапсы, благодаря чему существует способность непосредственно влиять на сам нейрон.

Значительная часть нейронов в больше степени состоит из дендритов, при этом имеется всего один аксон. Одна нервная клетка имеет множество связей с другими клетками. В некоторых случаях количество данных связей превышает 25000.

Синапс – это место, где формируется контактный процесс между двумя клетками. Основной функцией является передача импульсов между различными клетками, при этом частота сигнала может изменяться в зависимости от скорости и типов передачи этого сигнала.

Как правило, чтобы начался возбуждающий процесс нервной клетки, в роли раздражителей могут выступить несколько возбуждающих синапсов.

Что собой представляет тройной мозг человека

Еще в 1962 году ученый-нейробиолог Пол Маклин выделил три мозга человека, а именно:

  1. Рептильный

Этот рептильный тип мозга человека существует более чем 100 млн. лет. Он оказывает значительное влияние на поведенческие качества человека. Его главной функцией является управление базовым поведением, которое включает в себя такие функции как:

  • Размножение на основе человеческих инстинктов
  • Агрессия
  • Желание все контролировать
  • Следовать определенным шаблонам
  • Имитировать, обманывать
  • Бороться за влияние над другими

Также рептильный головной мозг человека характеризуется такими особенностями как хладнокровие по отношению к другим, отсутствием сопереживания, полное безразличие к последствиям своих действий, в отношении к другим. Также данный тип не способен распознавать воображаемую угрозу с реальной опасностью. Вследствие этого, в некоторых ситуациях, данный мозг полностью подчиняет разум и тело человека.

  1. Эмоциональный (лимбическая система)

Представляется мозгом млекопитающего, возраст которого составляет около 50 млн. лет.

Отвечает за такие функциональные особенности особи как:

  • Выживание, самосохранение и самозащита
  • Управляет социальным поведением, включая материнскую заботу и воспитание
  • Учавствует в регулировании функций органов, обоняния, инстинктивного поведения, памяти, состояния сна и бодрствования и ряда других

Данный мозг практически полностью идентичен мозгу животных.

  1. Визуальный

Является мозгом, выполняющим функции нашего мышления. Другими словами это рациональный разум. Является наиболее молодой структурой, возраст которой не превышает 3 млн. лет.

Представляется тем, что мы именуем рассудком, который включает в себя такие способности как;

  • Размышлять
  • Проводить умозаключения
  • Способность анализировать

Выделяется наличием пространственного мышления, где возникают свойственные визуальные изображения.

Классификация нейронов

На сегодняшний день выделяется ряд классификация нейронных клеток. Одна из распространенных классификаций нейронов выделяется по числу отростков и месту их локализации, а именно:

  1. Мультиполярные. Данные клетки характеризуются большим скоплением в ЦНС. Представляются с одним аксоном и несколькими дендритами.
  2. Биполярные. Характеризуются одним аксоном и одним дендритом и располагаются в сетчатке глаза, обонятельной ткани, а также в слуховом и вестибулярном центре.

Также в зависимости выполняемых функций, нейроны подразделяются на 3 большие группы:

1. Афферентные

Отвечают за процесс передачи сигналов от рецепторов в отдел ЦНС. Различаются как:

  • Первичные. Первичные располагаются в спинальных ядрах, которые связываются с рецепторами.
  • Вторичные. Находятся в зрительных буграх и выполняют функции передачи сигналов в вышележащие отделы. Данный тип клеток не вступает в связь с рецепторами, а принимают сигналы от клеток-нейроцитов.

2. Эфферентные или двигательные

Этот тип формирует передачу импульса к остальным центрам и органам человеческого организма. Например, нейроны двигательной зоны больших полушарий – пирамидные, которые передают сигнал моторным нейронам спинномозгового отдела. Ключевая особенность моторных эфферентных нейронов – это наличие аксон значительной протяженности, обладающий высокой скоростью передачи сигнала возбуждения.

Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы. Эти нейронные связи головного мозга обеспечивают отношения внутри полушарий и между ними, следовательно, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

3. Вставочные или ассоциативные

Данный тип осуществляет взаимодействие между нейронами, а также обрабатывает данные, которые были переданы от чувствительных клеток и затем передают ее другим вставочным или моторным нервным клеткам. Эти клетки представляются меньшим размером, в сравнении с афферентными и эфферентными клетками. Аксоны представлены небольшой протяженностью, однако сеть дендритов довольно обширна.

Специалисты сделали вывод, что непосредственными нервными клетками, которые локализованы в головном мозге, являются ассоциативные нейроны мозга, а остальные регулируют деятельность мозга вне его самого.

Восстанавливаются ли нервные клетки

Современная наука уделяет достаточно внимания процессам гибели и восстановления нервных клеток. Весь организм человека имеет возможность восстанавливаться, но имеют ли такую возможность нервные клетки мозга?

Еще в процессе зачатия организм настраивается на отмирание нервных клеток.

Ряд ученых утверждает, что количество отираемых клеток составляет около 1% в год. Исходя из этого утверждения, получается, что головной мозг уже износился бы вплоть до потери способностей выполнять элементарные вещи. Однако такого процесса не происходит, и мозг продолжает функционировать до самой своей смерти.

Каждая ткань организма самостоятельно восстанавливает себя путем деления «живых» клеток. Однако после ряда исследований нервной клетки люди установили, что клетка не делится. Утверждается, что новые клетки головного мозга образуются вследствие нейрогенеза, который запускается еще во внутриутробном периоде и продолжается на протяжении всей жизни.

Нейрогенез – это синтез новые нейронов с предшественников – стволовых клеток, которые впоследствии дифференцируются и формируются в зрелые нейроны.

Такой процесс был впервые описан в 1960 году, однако в то время данный процесс ничем подкреплялся.

Дальнейшие исследования подтвердили, что нейрогенез может происходить в определенных мозговых областях. Одной из таких областей выступает пространство вокруг мозговых желудочков. Ко второму участку можно отнести гиппокамп, который располагается непосредственно возле желудочков. Гиппокамп, выполняет функции нашей памяти, мышления и эмоций.

Вследствие этого способности к запоминанию и размышлению формируются в процессе жизнедеятельность под влиянием различных факторов. Как можно отметить из вышесказанного, наш головного мозг, определение структур которого, хоть и было выполнено всего на 5%, все же выделяется ряд фактов, которые подтверждают способность нервных клеток восстанавливаться.

Заключение

Не стоит забывать, что для полноценного функционирования нервных клеток следует знать, как улучшить нейронные связи головного мозга. Многие специалисты отмечают, что главный залог здоровых нейронов – это здоровое питание и образ жизни и только затем может использоваться дополнительная фармакологическая поддержка.

Организуйте свой сон, откажитесь от алкоголя, курения и в конечном итоге ваши нервные клетки скажут вам спасибо.

Статья на конкурс «био/мол/текст»: Клеточные процессы, обеспечивающие обмен информацией между нейронами, требуют много энергии. Высокое энергопотребление способствовало в ходе эволюции отбору наиболее эффективных механизмов кодирования и передачи информации. В этой статье вы узнаете о теоретическом подходе к изучению энергетики мозга, о его роли в исследованиях патологий, о том, какие нейроны более продвинуты, почему синапсам иногда выгодно не «срабатывать», а также, как они отбирают только нужную нейрону информацию.

Генеральный спонсор конкурса - компания : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро ».


«Книжный» спонсор конкурса - «Альпина нон-фикшн »

Происхождение подхода

С середины ХХ века известно, что головной мозг потребляет значительную часть энергоресурсов всего организма: четверть всей глюкозы и ⅕ всего кислорода в случае высшего примата . Это вдохновило Уильяма Леви и Роберта Бакстера из Массачусетского технологического института (США) на проведение теоретического анализа энергетической эффективности кодирования информации в биологических нейронных сетях (рис. 1) . В основе исследования лежит следующая гипотеза. Поскольку энергопотребление мозга велико, ему выгодно иметь такие нейроны, которые работают наиболее эффективно - передают только полезную информацию и затрачивают при этом минимум энергии.

Это предположение оказалось справедливым: на простой модели нейронной сети авторы воспроизвели экспериментально измеренные значения некоторых параметров . В частности, рассчитанная ими оптимальная частота генерации импульсов варьирует от 6 до 43 имп./с - почти так же, как и у нейронов основания гиппокампа . Их можно подразделить на две группы по частоте импульсации: медленные (~10 имп./с) и быстрые (~40 имп./с). При этом первая группа значительно превосходит по численности вторую . Аналогичная картина наблюдается и в коре больших полушарий: медленных пирамидальных нейронов (~4-9 имп./с) в несколько раз больше, чем быстрых ингибиторных интернейронов (>100 имп./с) , . Так, видимо, мозг «предпочитает» использовать поменьше быстрых и энергозатратных нейронов, чтобы те не израсходовали все ресурсы , .

Рисунок 1. Представлены два нейрона. В одном из них фиолетовым цветом окрашен пресинаптический белок синаптофизин . Другой нейрон полностью окрашен зеленым флуоресцентным белком . Мелкие светлые крапинки - синаптические контакты между нейронами . Во вставке одна «крапинка» представлена ближе.
Группы нейронов, связанных между собой синапсами, называются нейронными сетями , . Например, в коре больших полушарий пирамидальные нейроны и интернейроны образуют обширные сети. Слаженная «концертная» работа этих клеток обусловливает наши высшие когнитивные и другие способности. Аналогичные сети, только из других типов нейронов, распределены по всему мозгу, определенным образом связаны между собой и организуют работу всего органа.

Что такое интернейроны?

Нейроны центральной нервной системы разделяются на активирующие (образуют активирующие синапсы) и тормозящие (образуют тормозящие синапсы). Последние в значительной степени представлены интернейронами , или промежуточными нейронами. В коре больших полушарий и гиппокампе они ответственны за формирование гамма-ритмов мозга , которые обеспечивают слаженную, синхронную работу других нейронов. Это крайне важно для моторных функций, восприятия сенсорной информации, формирования памяти , .

Поиск оптимума

Фактически, речь идет о задаче оптимизации : поиска максимума функции и определения параметров, при которых он достигается. В нашем случае, функция - это отношение количества полезной информации к энергозатратам. Количество полезной информации можно примерно вычислить с помощью формулы Шеннона, широко используемой в теории информации , . Для расчета энергозатрат существуют два метода, и оба дают правдоподобные результаты , . Один из них - «метод счета ионов» - основан на подсчете количества ионов Na + , попавших внутрь нейрона при том или ином сигнальном событии (ПД или ПСП, см. врезку «Что такое потенциал действия ») с последующим переводом в число молекул аденозинтрифосфата (АТФ ), главной энергетической «валюты» клеток . Второй базируется на описании ионных токов через мембрану по законам электроники и позволяет вычислить мощность эквивалентной электрической цепи нейрона, которая затем переводится в затраты АТФ .

Эти «оптимальные» значения параметров затем нужно сравнить с измеренными экспериментально и определить, насколько они отличаются. Общая картина отличий укажет на степень оптимизации данного нейрона в целом: насколько реальные, измеренные экспериментально, значения параметров совпадают с рассчитанными. Чем слабее выражены отличия, тем нейрон более близок к оптимуму и работает энергетически более эффективно, оптимально. С другой стороны, сопоставление конкретных параметров покажет, в каком конкретно качестве этот нейрон близок к «идеалу».

Далее, в контексте энергетической эффективности нейронов рассмотрены два процесса, на которых основано кодирование и передача информации в мозге. Это нервный импульс, или потенциал действия, благодаря которому информация может быть отправлена «адресату» на определенное расстояние (от микрометров до полутора метров) и синаптическая передача, лежащая в основе собственно передачи сигнала от одного нейрона на другой.

Потенциал действия

Потенциал действия (ПД ) - сигнал, которые отправляют друг другу нейроны. ПД бывают разные: быстрые и медленные, малые и большие . Зачастую они организованы в длинные последовательности (как буквы в слова), либо в короткие высокочастотные «пачки» (рис. 2).

Рисунок 2. Разные типы нейронов генерируют различные сигналы. В центре - продольный срез мозга млекопитающего. Во вставках представлены разные типы сигналов, зарегистрированные методами электрофизиологии , . а - Кортикальные (Cerebral cortex ) пирамидальные нейроны могут передавать как низкочастотные сигналы (Regular firing ), так и короткие взрывные, или пачечные, сигналы (Burst firing ). б - Для клеток Пуркинье мозжечка (Cerebellum ) характерна только пачечная активность на очень высокой частоте. в - Релейные нейроны таламуса (Thalamus ) имеют два режима активности: пачечный и тонический (Tonic firing ). г - Нейроны средней части поводка (MHb , Medial habenula ) эпиталамуса генерируют тонические сигналы низкой частоты.

Что такое потенциал действия?

  1. Мембрана и ионы. Плазматическая мембрана нейрона поддерживает неравномерное распределение веществ между клеткой и внеклеточной средой (рис. 3б ) . В числе этих веществ есть и маленькие ионы, из которых для описания ПД важны К + и Nа + .
    Ионов Na + внутри клетки мало, снаружи - много. Из-за этого они постоянно стремятся попасть в клетку. Напротив, ионов К + много внутри клетки, и они норовят из нее выйти. Самостоятельно ионы этого сделать не могут, потому что мембрана для них непроницаема. Для прохождения ионов через мембрану необходимо открывание специальных белков - ионных каналов мембраны.
  2. Рисунок 3. Нейрон, ионные каналы и потенциал действия. а - Реконструкция клетки-канделябра коры головного мозга крысы. Синим окрашены дендриты и тело нейрона (синее пятно в центре), красным - аксон (у многих типов нейронов аксон разветвлен намного больше, чем дендриты , ). Зеленые и малиновые стрелки указывают направление потока информации: дендриты и тело нейрона принимают ее, аксон - отправляет ее к другим нейронам. б - Мембрана нейрона, как и любой другой клетки, содержит ионные каналы. Зеленые кружки - ионы Na + , синие - ионы К + . в - Изменение мембранного потенциала при генерации потенциала действия (ПД) нейроном Пуркинье. Зеленая область : Na-каналы открыты, в нейрон входят ионы Na + , происходит деполяризация. Синяя область: открыты К-каналы, К + выходит, происходит реполяризация. Перекрывание зеленой и синей областей соответствует периоду, когда происходит одновременный вход Na + и выход К + .

  3. Ионные каналы. Разнообразие каналов огромно , . Одни открываются в ответ на изменение мембранного потенциала, другие - при связывании лиганда (нейромедиатора в синапсе, например), третьи - в результате механических изменений мембраны и т.д. Открывание канала заключается в изменении его структуры, в результате которого через него могут проходить ионы. Некоторые каналы пропускают только определенный тип ионов, а для других характерна смешанная проводимость.
    В генерации ПД ключевую роль играют каналы, «чувствующие» мембранный потенциал, - потенциал-зависимые ионные каналы . Они открываются в ответ на изменение мембранного потенциала. Среди них нас интересуют потенциал-зависимые натриевые каналы (Na-каналы), пропускающие только ионы Na + , и потенциал-зависимые калиевые каналы (K-каналы), пропускающие только ионы К + .
  4. ПД - это относительно сильное по амплитуде скачкообразное изменение мембранного потенциала.

  5. Ионный ток и ПД. Основой ПД является ионный ток - движение ионов через ионные каналы мембраны . Так как ионы заряжены, их ток приводит к изменению суммарного заряда внутри и вне нейрона, что немедленно влечет за собой изменение мембранного потенциала.
    Генерация ПД, как правило, происходит в начальном сегменте аксона - в той его части, что примыкает к телу нейрона , . Тут сконцентрировано много Na-каналов. Если они откроются, внутрь аксона хлынет мощный ток ионов Na + , и произойдет деполяризация мембраны - уменьшение мембранного потенциала по абсолютной величине (рис. 3в ). Далее необходимо возвращение к его исходному значению - реполяризация . За это отвечают ионы К + . Когда К-каналы откроются (незадолго до максимума ПД), ионы К + начнут выходить из клетки и реполяризовать мембрану.
    Деполяризация и реполяризация - две основные фазы ПД. Помимо них выделяют еще несколько, которые из-за отсутствия необходимости здесь не рассматриваются. Детальное описание генерации ПД можно найти в , . Краткое описание ПД есть также в статьях на «Биомолекуле» , .
  6. Начальный сегмент аксона и инициация ПД. Что приводит к открыванию Na-каналов в начальном сегменте аксона? Опять же, изменение мембранного потенциала, «приходящее» по дендритам нейрона (рис. 3а ). Это - постсинаптические потенциалы (ПСП ), возникающие в результате синаптической передачи. Подробнее этот процесс объясняется в основном тексте.
  7. Проведение ПД. К ПД в начальном сегменте аксона будут неравнодушны Na-каналы, находящиеся неподалеку. Они тоже откроются в ответ на это изменение мембранного потенциала, что также вызовет ПД. Последний, в свою очередь, вызовет аналогичную «реакцию» на следующем участке аксона, все дальше от тела нейрона, и так далее. Таким образом происходит проведение ПД вдоль аксона , . В конце концов он достигнет его пресинаптических окончаний (малиновые стрелки на рис. 3а ), где сможет вызвать синаптическую передачу.
  8. Энергозатраты на генерацию ПД меньше, чем на работу синапсов. Скольких молекул аденозинтрифосфата (АТФ), главной энергетической «валюты», стоит ПД? По одной из оценок, для пирамидальных нейронов коры мозга крысы энергозатраты на генерацию 4 ПД в секунду составляют около ⅕ от общего энергопотребления нейрона. Если учесть другие сигнальные процессы, в частности, синаптическую передачу, доля составит ⅘. Для коры мозжечка, отвечающего за двигательные функции, ситуация похожа: энергозатраты на генерацию выходного сигнала составляют 15% от всех, а около половины приходится на обработку входной информации . Так, ПД является далеко не самым энергозатратным процессом. В разы больше энергии требует работа синапса , . Однако это не означает, что процесс генерации ПД не проявляет черт энергетической эффективности.

Анализ разных типов нейронов (рис. 4) показал, что нейроны беспозвоночных не очень энергоэффективны, а некоторые нейроны позвоночных почти совершенны . По результатам этого исследования, наиболее энергоэффективными оказались интернейроны гиппокампа , участвующего в формировании памяти и эмоций, а также таламокортикальные релейные нейроны, несущие основной поток сенсорной информации от таламуса к коре больших полушарий.

Рисунок 4. Разные нейроны эффективны по-разному. На рисунке представлено сравнение энергозатрат разных типов нейронов. Энергозатраты рассчитаны в моделях как с исходными (реальными) значениями параметров (черные столбцы ), так и с оптимальными, при которых с одной стороны нейрон выполняет положенную ему функцию, с другой - затрачивает при этом минимум энергии (серые столбцы ). Самыми эффективными из представленных оказались два типа нейронов позвоночных: интернейроны гиппокампа (rat hippocampal interneuron , RHI ) и таламокортикальные нейроны (mouse thalamocortical relay cell , MTCR ), так как для них энергозатраты в исходной модели наиболее близки к энергозатратам оптимизированной. Напротив, нейроны беспозвоночных менее эффективны. Условные обозначения: SA (squid axon ) - гигантский аксон кальмара; CA (crab axon ) - аксон краба; MFS (mouse fast spiking cortical interneuron ) - быстрый кортикальный интернейрон мыши; BK (honeybee mushroom body Kenyon cell ) - грибовидная клетка Кеньона пчелы.

Почему они более эффективны? Потому что у них малó перекрывание Na- и К-токов. Во время генерации ПД всегда есть промежуток времени, когда эти токи присутствуют одновременно (рис. 3в ). При этом переноса заряда практически не происходит, и изменение мембранного потенциала минимально. Но «платить» за эти токи в любом случае приходится, несмотря на их «бесполезность» в этот период. Поэтому его продолжительность определяет, сколько энергетических ресурсов растрачивается впустую. Чем он короче, тем более эффективно использование энергии , . Чем длиннее - тем менее эффективно. Как раз в двух вышеупомянутых типах нейронов, благодаря быстрым ионным каналам, этот период очень короткий, а ПД - самые эффективные .

Кстати, интернейроны гораздо более активны, чем большинство других нейронов мозга. В то же время они крайне важны для слаженной, синхронной работы нейронов, с которыми образуют небольшие локальные сети , . Вероятно, высокая энергетическая эффективность ПД интернейронов является некой адаптацией к их высокой активности и роли в координации работы других нейронов .

Синапс

Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе . Мы рассмотрим только химические синапсы (есть еще электрические ), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ .

На пресинаптическом окончании аксона ПД вызывает выброс нейромедиатора во внеклеточную среду - к принимающему нейрону. Последний только этого и ждет с нетерпением: в мембране дендритов рецепторы - ионные каналы определенного типа - связывают нейромедиатор, открываются и пропускают через себя разные ионы. Это приводит к генерации маленького постсинаптического потенциала (ПСП) на мембране дендрита. Он напоминает ПД, но значительно меньше по амплитуде и происходит за счет открывания других каналов. Множество этих маленьких ПСП, каждый от своего синапса, «сбегаются» по мембране дендритов к телу нейрона (зеленые стрелки на рис. 3а ) и достигают начального сегмента аксона, где вызывают открывание Na-каналов и «провоцируют» его на генерацию ПД.

Такие синапсы называются возбуждающими : они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы. Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции .

Как это ни странно, выброс нейромедиатора в синапсе может и не произойти вовсе - это процесс вероятностный , . Нейроны так экономят энергию: синаптическая передача и так обусловливает около половины всех энергозатрат нейронов . Если бы синапсы всегда срабатывали, вся энергия пошла бы на обеспечение их работы, и не осталось бы ресурсов для других процессов. Более того, именно низкая вероятность (20–40%) выброса нейромедиатора соответствует наибольшей энергетической эффективности синапсов. Отношение количества полезной информации к затрачиваемой энергии в этом случае максимально , . Так, выходит, что «неудачи» играют важную роль в работе синапсов и, соответственно, всего мозга. А за передачу сигнала при иногда «не срабатывающих» синапсах можно не беспокоиться, так как между нейронами обычно много синапсов, и хоть один из них да сработает.

Еще одна особенность синаптической передачи состоит в разделении общего потока информации на отдельные компоненты по частоте модуляции приходящего сигнала (грубо говоря, частоте приходящих ПД) . Это происходит благодаря комбинированию разных рецепторов на постсинаптической мембране , . Некоторые рецепторы активируются очень быстро: например, AMPA-рецепторы (AMPA происходит от α-a mino-3-hydroxy-5-m ethyl-4-isoxazolep ropionic a cid). Если на постсинаптическом нейроне представлены только такие рецепторы, он может четко воспринимать высокочастотный сигнал (такой, как, например, на рис. 2в ). Ярчайший пример - нейроны слуховой системы, участвующие в определении местоположения источника звука и точном распознавании коротких звуков типа щелчка, широко представленных в речи , . NMDA-рецепторы (NMDA - от N -m ethyl-D -a spartate) более медлительны. Они позволяют нейронам отбирать сигналы более низкой частоты (рис. 2г ), а также воспринимать высокочастотную серию ПД как нечто единое - так называемое интегрирование синаптических сигналов . Есть еще более медленные метаботропные рецепторы , которые при связывании нейромедиатора, передают сигнал на цепочку внутриклеточных «вторичных посредников » для подстройки самых разных клеточных процессов. К примеру, широко распространены рецепторы, ассоциированные с G-белками . В зависимости от типа они, например, регулируют количество каналов в мембране или напрямую модулируют их работу .

Различные комбинации быстрых AMPA-, более медленных NMDA- и метаботропных рецепторов позволяют нейронам отбирать и использовать наиболее полезную для них информацию, важную для их функционирования . А «бесполезная» информация отсеивается, она не «воспринимается» нейроном. В таком случае не приходится тратить энергию на обработку ненужной информации. В этом и состоит еще одна сторона оптимизации синаптической передачи между нейронами.

Что еще?

Энергетическая эффективность клеток мозга исследуется также и в отношении их морфологии , . Исследования показывают, что ветвление дендритов и аксона не хаотично и тоже экономит энергию , . Например, аксон ветвится так, чтобы суммарная длина пути, который проходит ПД, была наименьшей. В таком случае энергозатраты на проведение ПД вдоль аксона минимальны.

Снижение энергозатрат нейрона достигается также при определенном соотношении тормозящих и возбуждающих синапсов . Это имеет прямое отношение, например, к ишемии (патологическому состоянию, вызванному нарушением кровотока в сосудах) головного мозга. При этой патологии, вероятнее всего, первыми выходят из строя наиболее метаболически активные нейроны , . В коре они представлены ингибиторными интернейронами, образующими тормозящие синапсы на множестве других пирамидальных нейронов , . В результате гибели интернейронов, снижается торможение пирамидальных . Как следствие, возрастает общий уровень активности последних (чаще срабатывают активирующие синапсы, чаще генерируются ПД). За этим немедленно следует рост их энергопотребления, что в условиях ишемии может привести к гибели нейронов.

При изучении патологий внимание уделяют и синаптической передаче как наиболее энергозатратному процессу . Например, при болезнях Паркинсона , Хантингтона , Альцгеймера происходит нарушение работы или транспорта к синапсам митохондрий, играющих основную роль в синтезе АТФ , . В случае болезни Паркинсона, это может быть связано с нарушением работы и гибелью высоко энергозатратных нейронов черной субстанции , важной для регуляции моторных функций, тонуса мышц. При болезни Хантингтона, мутантный белок хангтингтин нарушает механизмы доставки новых митохондрий к синапсам, что приводит к «энергетическому голоданию» последних, повышенной уязвимости нейронов и избыточной активации. Все это может вызвать дальнейшие нарушения работы нейронов с последующей атрофией полосатого тела и коры головного мозга. При болезни Альцгеймера нарушение работы митохондрий (параллельно со снижением количества синапсов) происходит из-за отложения амилоидных бляшек . Действие последних на митохондрии приводит к окислительному стрессу, а также к апоптозу - клеточной гибели нейронов.

Еще раз обо всем

В конце ХХ века зародился подход к изучению мозга, в котором одновременно рассматривают две важные характеристики: сколько нейрон (или нейронная сеть, или синапс) кодирует и передает полезной информации и сколько энергии при этом тратит , . Их соотношение является своего рода критерием энергетической эффективности нейронов, нейронных сетей и синапсов.

Использование этого критерия в вычислительной нейробиологии дало существенный прирост к знаниям относительно роли некоторых явлений, процессов , . В частности, малая вероятность выброса нейромедиатора в синапсе , определенный баланс между торможением и возбуждением нейрона , выделение только определенного рода приходящей информации благодаря определенной комбинации рецепторов - все это способствует экономии ценных энергетических ресурсов.

Более того, само по себе определение энергозатрат сигнальных процессов (например, генерация, проведение ПД, синаптическая передача) позволяет выяснить, какой из них пострадает в первую очередь при патологическом нарушении доставки питательных веществ , . Так как больше всего энергии требуется для работы синапсов, именно они первыми выйдут из строя при таких патологиях, как ишемия, болезни Альцгеймера и Хантингтона , . Схожим образом определение энергозатрат разных типов нейронов помогает выяснить, какой из них погибнет раньше других в случае патологии. Например, при той же ишемии, в первую очередь выйдут из строя интернейроны коры , . Эти же нейроны из-за интенсивного метаболизма - наиболее уязвимые клетки и при старении, болезни Альцгеймера и шизофрении .

Благодарности

Искренне благодарен моим родителям Ольге Наталевич и Александру Жукову, сестрам Любе и Алене, моему научному руководителю Алексею Браже и замечательным друзьям по лаборатории Эвелине Никельшпарг и Ольге Слатинской за поддержку и вдохновение, ценные замечания, сделанные при прочтении статьи. Я также очень благодарен редактору статьи Анне Петренко и главреду «Биомолекулы» Антону Чугунову за пометки, предложения и замечания.

Литература

  1. Прожорливый мозг ;
  2. SEYMOUR S. KETY. (1957). THE GENERAL METABOLISM OF THE BRAIN IN VIVO . Metabolism of the Nervous System . 221-237;
  3. L. Sokoloff, M. Reivich, C. Kennedy, M. H. Des Rosiers, C. S. Patlak, et. al.. (1977). THE DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT . J Neurochem . 28 , 897-916;
  4. Magistretti P.J. (2008). Brain energy metabolism . In Fundamental neuroscience // Ed by. Squire L.R., Berg D., Bloom F.E., du Lac S., Ghosh A., Spitzer N. San Diego: Academic Press, 2008. P. 271–297;
  5. Pierre J. Magistretti, Igor Allaman. (2015). A Cellular Perspective on Brain Energy Metabolism and Functional Imaging . Neuron . 86 , 883-901;
  6. William B Levy, Robert A. Baxter. (1996). Energy Efficient Neural Codes . Neural Computation . 8 , 531-543;
  7. Sharp P.E. and Green C. (1994). Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat . J. Neurosci. 14 , 2339–2356;
  8. H. Hu, J. Gan, P. Jonas. (2014). Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function . Science . 345 , 1255263-1255263;
  9. Oliver Kann, Ismini E Papageorgiou, Andreas Draguhn. (2014). Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks . J Cereb Blood Flow Metab . 34 , 1270-1282;
  10. David Attwell, Simon B. Laughlin. (2001). An Energy Budget for Signaling in the Grey Matter of the Brain . J Cereb Blood Flow Metab . 21 , 1133-1145;
  11. Henry Markram, Maria Toledo-Rodriguez, Yun Wang, Anirudh Gupta, Gilad Silberberg, Caizhi Wu. (2004).

Была представлена модель нервной системы, опишу теорию и принципы, которые легли в её основу.

Теория основана на анализе имеющейся информации о биологическом нейроне и нервной системе из современной нейробиологии и физиологии мозга.

Сначала приведу краткую информацию об объекте моделирования, вся информация изложена далее, учтена и использована в модели.

НЕЙРОН

Нейрон является основным функциональным элементом нервной системы, он состоит из тела нервной клетки и её отростков. Существуют два вида отростков: аксоны и дендриты. Аксон – длинный покрытый миелиновой оболочкой отросток, предназначенный для передачи нервного импульса на далекие расстояния. Дендрит – короткий, ветвящийся отросток, благодаря которым происходит взаимосвязь с множеством соседних клеток.

ТРИ ТИПА НЕЙРОНОВ

Нейроны могут сильно отличаться по форме, размерам и конфигурации, не смотря на это, отмечается принципиальное сходство нервной ткани в различных участках нервной системе, отсутствуют и серьезные эволюционные различия. Нервная клетка моллюска Аплизии может выделять такие же нейромедиаторы и белки, что и клетка человека.

В зависимости от конфигурации выделяют три типа нейронов:

А) рецепторные, центростремительные, или афферентные нейроны, данные нейроны имеют центростремительный аксон, на конце которого имеются рецепторы, рецепторные или афферентные окончания. Эти нейроны можно определить, как элементы, передающие внешние сигналы в систему.

Б) интернейроны (вставочные, контактные, или промежуточные) нейроны, не имеющие длинных отростков, но имеющие только дендриты. Таких нейронов в человеческом мозгу больше чем остальных. Данный вид нейронов является основным элементом рефлекторной дуги.

В) моторные, центробежные, или эфферентные, они имеют центростремительный аксон, который имеет эфферентные окончания передающий возбуждение мышечным или железистым клеткам. Эфферентные нейроны служат для передачи сигналов из нервной среды во внешнюю среду.

Обычно в статьях по искусственным нейронным сетям оговаривается наличие только моторных нейронов (с центробежным аксоном), которые связаны в слои иерархической структуры. Подобное описание применимо к биологической нервной системе, но является своего рода частным случаем, речь идет о структурах, базовых условных рефлексов. Чем выше в эволюционном значении нервная система, тем меньше в ней превалируют структуры типа «слои» или строгая иерархия.

ПЕРЕДАЧА НЕРВНОГО ВОЗБУЖДЕНИЯ

Передача возбуждения происходит от нейрона к нейрону, через специальные утолщения на концах дендритов, называемых синапсами. По типу передачи синапсы разделяют на два вида: химические и электрические. Электрические синапсы передают нервный импульс непосредственно через место контакта. Таких синапсов в нервных системах очень мало, в моделях не будут учитываться. Химические синапсы передают нервный импульс посредством специального вещества медиатора (нейромедиатора, нейротрансмиттера), данный вид синапса широко распространен и подразумевает вариативность в работе.
Важно отметить, что в биологическом нейроне постоянно происходят изменения, отращиваются новые дендриты и синапсы, возможны миграции нейронов. В местах контактов с другими нейронами образуются новообразования, для передающего нейрона - это синапс, для принимающего - это постсинаптическая мембрана, снабжаемая специальными рецепторами, реагирующими на медиатор, то есть можно говорить, что мембрана нейрона - это приемник, а синапсы на дендритах - это передатчики сигнала.

СИНАПС

При активации синапса он выбрасывает порции медиатора, эти порции могут варьироваться, чем больше выделится медиатора, тем вероятнее, что принимаемая сигнал нервная клетка будет активирована. Медиатор, преодолевая синоптическую щель, попадает на постсинаптическую мембрану, на которой расположены рецепторы, реагирующие на медиатор. Далее медиатор может быть разрушен специальным разрушающим ферментом, либо поглощен обратно синапсом, это происходит для сокращения времени действия медиатора на рецепторы.
Так же помимо побудительного воздействия существуют синапсы, оказывающие тормозящее воздействие на нейрон. Обычно такие синапсы принадлежат определенным нейронам, которые обозначаются, как тормозящие нейроны.
Синапсов связывающих нейрон с одной и той же целевой клеткой, может быть множество. Для упрощения примем, всю совокупность, оказываемого воздействия одним нейроном, на другой целевой нейрон за синапс с определённой силой воздействия. Главной характеристикой синапса будет, является его сила.

СОСТОЯНИЕ ВОЗБУЖДЕНИЯ НЕЙРОНА

В состоянии покоя мембрана нейрона поляризована. Это означает, что по обе стороны мембраны располагаются частицы, несущие противоположные заряды. В состоянии покоя наружная поверхность мембраны заряжена положительно, внутренняя – отрицательно. Основными переносчиками зарядов в организме являются ионы натрия (Na+), калия (K+) и хлора (Cl-).
Разница между зарядами поверхности мембраны и внутри тела клетки составляет мембранный потенциал. Медиатор вызывает нарушения поляризации – деполяризацию. Положительные ионы снаружи мембраны устремляются через открытые каналы в тело клетки, меняя соотношение зарядов между поверхностью мембраны и телом клетки.


Изменение мембранного потенциала при возбуждении нейрона

Характер изменений мембранного потенциала при активации нервной ткани неизменен. Независимо от того кокой силы воздействия оказывается на нейрон, если сила превышает некоторое пороговое значение, ответ будет одинаков.
Забегая вперед, хочу отметить, что в работе нервной системы имеет значение даже следовые потенциалы (см. график выше). Они не появляются, вследствие каких-то гармонических колебаний уравновешивающих заряды, являются строгим проявлением определённой фазы состояния нервной ткани при возбуждении.

ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ

Итак, далее приведу теоретические предположения, которые позволят нам создавать математические модели. Главная идея заключается во взаимодействии между зарядами формирующихся внутри тела клетки, во время её активности, и зарядами с поверхностей мембран других активных клеток. Данные заряды являются разноименными, в связи этим можно предположить, как будут располагаться заряды в теле клетки под воздействием зарядов других активных клеток.

Можно сказать, что нейрон чувствует активность других нейронов на расстоянии, стремится направить распространения возбуждения в направлении других активных участков.
В момент активности нейрона можно рассчитать определённую точку в пространстве, которая определялась бы, как сумма масс зарядов, расположенных на поверхностях других нейронов. Указанную точку назовем точкой паттерна, её месторождение зависит от комбинации фаз активности всех нейронов нервной системы. Паттерном в физиологии нервной системы называется уникальная комбинация активных клеток, то есть можно говорить о влиянии возбуждённых участков мозга на работу отдельного нейрона.
Нужно представлять работу нейрона не просто как вычислителя, а своего рода ретранслятор возбуждения, который выбирает направления распространения возбуждения, таким образом, формируются сложные электрические схемы. Первоначально предполагалось, что нейрон просто избирательно отключает/включает для передачи свои синапсы, в зависимости от предпочитаемого направления возбуждения. Но более детальное изучение природы нейрона, привело к выводам, что нейрон может изменять степень воздействия на целевую клетку через силу своих синапсов, что делает нейрон более гибким и вариативным вычислительным элементом нервной системы.

Какое же направление для передачи возбуждения является предпочтительным? В различных экспериментах связанных с образованием безусловных рефлексов, можно определить, что в нервной системе образуются пути или рефлекторные дуги, которые связывают активируемые участки мозга при формировании безусловных рефлексов, создаются ассоциативные связи. Значит, нейрон должен передавать возбуждения к другим активным участкам мозга, запоминать направление и использовать его в дальнейшем.
Представим вектор начало, которого находится в центре активной клети, а конец направлен в точку паттерна определённую для данного нейрона. Обозначим, как вектор предпочитаемого направления распространения возбуждения (T, trend). В биологическом нейроне вектор Т может проявляться в структуре самой нейроплазмы, возможно, это каналы для движения ионов в теле клетки, или другие изменения в структуре нейрона.
Нейрон обладает свойством памяти, он может запоминать вектор Т, направление этого вектора, может меняться и перезаписываться в зависимости от внешних факторов. Степень с которой вектор Т может подвергается изменениям, называется нейропластичность.
Этот вектор в свою очередь оказывает влияние на работу синапсов нейрона. Для каждого синапса определим вектор S начало, которого находится в центре клетки, а конец направлен в центр целевого нейрона, с которым связан синапс. Теперь степень влияния для каждого синапса можно определить следующим образом: чем меньше угол между вектором T и S, тем больше синапс будет, усиливается; чем меньше угол, тем сильнее синапс будет ослабевать и возможно может прекратить передачу возбуждения. Каждый синапс имеет независимое свойство памяти, он помнит значение своей силы. Указанные значения изменяются при каждой активизации нейрона, под влиянием вектора Т, они либо увеличиваются, либо уменьшаются на определённое значение.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Входные сигналы (x1, x2,…xn) нейрона представляют собой вещественные числа, которые характеризуют силу синапсов нейронов, оказывающих воздействие на нейрон.
Положительное значение входа означает побудительное воздействие, оказываемое на нейрон, а отрицательное значение – тормозящее воздействие.
Для биологического нейрона не имеет значение, откуда поступил возбуждающий его сигнал, результат его активности будет идентичен. Нейрон будет активизирован, когда сумма воздействий на него будет превышать определённое пороговое значение. Поэтому, все сигналы проходят через сумматор (а), а поскольку нейроны и нервная система работают в реальном времени, следовательно, воздействие входов должно оцениваться в короткий промежуток времени, то есть воздействие синапса имеет временный характер.
Результат сумматора проходит пороговую функцию (б), если сумма превосходит пороговое значение, то это приводит к активности нейрона.
При активации нейрон сигнализирует о своей активности системе, передовая информацию о своём положении в пространстве нервной системы и заряде, изменяемом во времени (в).
Через определённое время, после активации нейрон передает возбуждение по всем имеющимся синапсам, предварительно производя пересчет их силы. Весь период активации нейрон перестает реагировать на внешние раздражители, то есть все воздействия синапсов других нейронов игнорируются. В период активации входит так же период восстановления нейрона.
Происходит корректировка вектора Т (г) с учётом значения точки паттерна Pp и уровнем нейропластичности. Далее происходит переоценка значений всех сил синапсов в нейроне(д).
Обратите внимание, что блоки (г) и (д) выполняются параллельно с блоком (в).

ЭФФЕКТ ВОЛНЫ

Если внимательно проанализировать предложенную модель, то можно увидеть, что источник возбуждения должен оказывать большее влияние на нейрон, чем другой удалённый, активный участок мозга. Следовательно возникает вопрос: почему же все равно происходит передача в направлении другого активного участка?
Данную проблему я смог определить, только создав компьютерную модель. Решение подсказал график изменения мембранного потенциала при активности нейрона.


Усиленная реполяризация нейрона, как говорилось ранее, имеет важное значение для нервной системы, благодаря ей создается эффект волны, стремление нервного возбуждения распространятся от источника возбуждения.
При работе с моделью я наблюдал два эффекта, ели пренебречь следовым потенциалом или сделать его недостаточно большим, то возбуждение не распространяется от источников, а в большей степени стремится к локализации. Если сделать следовой потенциал сильно большим, то возбуждение стремится «разбежаться» в разные стороны, не только от своего источника, но и от других.

КОГНИТИВНАЯ КАРТА

Используя теорию электромагнитного взаимодействия, можно объяснить многие явления и сложные процессы, протекающие в нервной системе. К примеру, одним из последних открытий, которое широко обсуждается в науках о мозге, является открытие когнитивных карт в гиппокампе.
Гиппокамп – это отдел мозга, которому отвечает за кратковременную память. Эксперименты на крысах выявили, что определённому месту в лабиринте соответствует своя локализованная группа клеток в гиппокампе, причем, не имеет значение, как животное попадает в это место, все равно будет активирован соответствующий этому месту участок нервной ткани. Естественно, животное должно помнить данный лабиринт, не стоит рассчитывать на топологическое соответствие пространства лабиринта и когнитивной карты.

Каждое место в лабиринте представляется в мозге, как совокупность раздражителей различного характера: запахи, цвет стен, возможные примечательные объекты, характерные звуки и т. д. Указанные раздражители отражаются на коре, различных представительствах органов чувств, в виде всплесков активности в определённых комбинациях. Мозг одновременно обрабатывает информацию в нескольких отделах, зачастую информационные каналы разделяются, одна и та же информация поступает в различные участки мозга.


Активация нейронов места в зависимости от положения в лабиринте (активность разных нейронов показана разным цветом).

Гиппокамп расположен в центре мозга, вся кара и её области удалены от него, на одинаковые расстояния. Если определить для каждой уникальной комбинации раздражителей точку масс зарядов поверхностей нейронов, то можно увидеть, что указанные точки будут различны, и будут находиться примерно в центре мозга. К этим точкам будет стремиться и распространятся возбуждение в гиппокампе, формируя устойчивые участки возбуждения. Более того, поочередная смена комбинаций раздражителей, будет приводить к смещению точки паттерна. Участки когнитивной карты будут ассоциативно связываться друг с другом последовательно, что приведет к тому, что животное, помещенное в начало знакомого ей лабиринта, может вспомнить весь последующий путь.

Заключение

У многих возникнет вопрос, где в данной работе предпосылки к элементу разумности или проявления высшей интеллектуальной деятельности?
Важно отметить, что феномен человеческого поведения, есть следствие функционирования биологической структуры. Следовательно, чтобы имитировать разумное поведение, необходимо хорошо понимать принципы и особенности функционирования биологических структур. К сожалению, в науке биологии пока не представлен четкий алгоритм: как работает нейрон, как понимает, куда необходимо отращивать свои дендриты, как настроить свои синапсы, что бы в нервной системе смог сформироваться простой условный рефлекс, на подобие тех, которые демонстрировал и описывал в своих работах академик И.П. Павлов.
С другой стороны в науке об искусственном интеллекте, в восходящем (биологическом) подходе, сложилось парадоксальная ситуация, а именно: когда используемые в исследованиях модели основаны на устаревших представлениях о биологическом нейроне, консерватизм, в основе которого берётся персептрон без переосмысления его основных принципов, без обращения к биологическому первоисточнику, придумывается все более хитроумные алгоритмы и структуры, не имеющих биологических корней.
Конечно, никто не уменьшает достоинств классических нейронных сетей, которые дали множество полезных программных продуктов, но игра с ними не является путем к созданию интеллектуально действующей системы.
Более того, не редки заявления, о том, что нейрон подобен мощной вычислительной машине, приписывают свойство квантовых компьютеров. Из-за этой сверхсложности, нервной системе приписывается невозможность её повторения, ведь это соизмеримо с желанием смоделировать человеческую душу. Однако, в реальности природа идет по пути простоты и элегантности своих решений, перемещение зарядов на мембране клетки может служить, как для передачи нервного возбуждения, так и для трансляции информации о том, где происходит данная передача.
Несмотря на то, что указанная работа демонстрирует, как образуются элементарные условные рефлексы в нервной системе, она приближает к пониманию того, что такое интеллект и разумная деятельность.

Существуют еще множество аспектов работы нервной системы: механизмы торможения, принципы построения эмоций, организация безусловных рефлексов и обучение, без которых невозможно построить качественную модель нервной системы. Есть понимание, на интуитивном уровне, как работает нервная система, принципы которой возможно воплотить в моделях.
Создание первой модели помогли отработать и откорректировать представление об электромагнитном взаимодействии нейронов. Понять, как происходит формирование рефлекторных дуг, как каждый отдельный нейрон понимает, каким образом ему настроить свои синапсы для получения ассоциативных связей.
На данный момент я начал разрабатывать новую версию программы, которая позволит смоделировать многие другие аспекты работы нейрона и нервной системы.

Прошу принять активное участие в обсуждении выдвинутых здесь гипотез и предположений, так как я могу относиться к своим идеям предвзято. Ваше мнение очень важно для меня.

Теги: Добавить метки