Инструмент от шума волн и ветра. Законы распространения звуковых волн. Распространение звуковых волн, фаза и противофаза

Для создания различных музыкальных тонов на духовых инструментах, таких, как показанный на рисунке кларнет, музыкант начинает дуть в мундштук и одновременно с этим нажимать на рычажки клапанов, чтобы открывать те или иные отверстия в боковой стенке инструмента. Открывая отверстия, музыкант изменяет длину стоячей волны, определяемую протяженностью столба воздуха внутри инструмента, и тем самым увеличивает или уменьшает высоту тона.

Играя на таких духовых инструментах, как труба или туба, музыкант частично перекрывает проходное сечение раструба и регулирует положение клапанов, изменяя тем самым длину столба воздуха.

В тромбоне воздушный столб регулируется путем перемещения скользящего изогнутого колена. Отверстия в стенках простейших духовых инструментов, таких, как флейта и пикколо, для получения аналогичного эффекта перекрываются пальцами.

Одно из древнейших творений

Утонченная конструкция кларнета, показанного на рисунке вверху, обязана своим появлением грубым бамбуковым свирелям и примитивным флейтам, которые считаются первыми инструментами, созданными человеком на заре цивилизации. Старейшие духовые инструменты опередили струнные на несколько тысячелетий. Раструб на открытом конце кларнета делает поправку на динамическое взаимодействие звуковых волн с окружающим воздухом.

Тонкий язычок в мундштуке кларнета (рисунок вверху) колеблется при поперечном обтекании воздухом. Колебания распространяются в виде волн сжатия по трубке инструмента.

Телескопические трубки

В тромбоне скользящее изогнутое трубчатое колено (цуг) плотно прилегает к основной трубке. Перемещение телескопического цуга внутрь и наружу изменяет длину столба воздуха и, соответственно, тон звука.

Изменение тона при помощи пальцев

Когда отверстия закрыты, колеблющийся столб воздуха занимает всю длину трубки, создавая самый низкий тон.

Открытие двух отверстий приводит к укорачиванию воздушного столба и созданию более высокого тона.

Открытие большего количества отверстий еще сильнее укорачивает воздушный столб и обеспечивает дальнейшее повышение тона.

Стоячие волны в открытых трубах

В трубе, открытой с обоих концов, стоячие волны формируются так, что на каждом конце трубы находится пучность (участок с максимальной амплитудой колебаний).

Стоячие волны в закрытых трубах

В трубе с одним закрытым концом стоячие волны формируются так, что у закрытого конца расположен узел (участок с нулевой амплитудой колебаний), а у открытого - пучность.

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Команда ученых из Университета Пенсильвании при поддержке Ben and Jerry’s создала холодильник, который охлаждает еду с помощью звука. В его основе лежит принцип того, что звуковые волны сжимают и расширяют воздух вокруг себя, что нагревает и охлаждает его соответственно. Как правило, звуковые волны меняют температуру не больше чем на 1/10000 градуса, но если газ будет под давлением в 10 атмосфер, эффекты будут значительно сильнее. Так называемый термоакустический холодильник сжимает газ в охлаждающей камере и взрывает его с помощью 173 децибел звука, генерируя тепло. Внутри камеры серия металлических пластин на пути звуковых волн поглощает тепло и возвращает его в теплообменную систему. Тепло удаляется, а содержимое холодильника охлаждается.

Эта система была разработана как более экологичная альтернатива современным холодильникам. В отличие от традиционных моделей, которые используют химические хладагенты в ущерб атмосфере, термоакустический холодильник отлично работает с инертными газами вроде гелия. Поскольку гелий просто покидает атмосферу, если вдруг оказывается в ней, новая технология будет экологичнее любой другой на рынке. По мере развития этой технологии, ее дизайнеры надеются, что термоакустические модели в конечном счете обойдут традиционные холодильники по всем пунктам.

Ультразвуковая сварка


Ультразвуковые волны используются для сварки пластмасс с 1960-х годов. В основе этого метода лежит сжимание двух термопластичных материалов на вершине особого приспособления. Через раструб затем подаются ультразвуковые волны, которые вызывают вибрации в молекулах, что, в свою очередь, приводит к трению, генерирующему тепло. В конечном итоге два куска свариваются вместе равномерно и прочно.

Как и многие технологии, эта была обнаружена случайно. Роберт Солофф работал над ультразвуковой технологией герметизации и случайно коснулся зондом диспенсера скотча на столе. В итоге две части диспенсера спаялись вместе, а Солофф понял, что звуковые волны могут огибать углы и бока жесткого пластика, достигая внутренних частей. После открытия Солофф и его коллеги разработали и запатентовали метод ультразвуковой сварки.

С тех пор ультразвуковая сварка нашла широкое применение во многих отраслях промышленности. От подгузников до автомобилей, этот метод повсеместно используется для соединения пластмасс. В последнее время экспериментируют даже с ультразвуковой сваркой швов на специализированной одежде. Компании вроде Patagonia и Northface уже используют сварные швы в своей одежде, но только прямые, и выходит очень дорого. В настоящее время самым простым и универсальным методом по-прежнему остается ручное шитье.

Кража информации о кредитках


Ученые нашли способ передавать данные с компьютера на компьютер, используя только звук. К сожалению, этот способ также оказался эффективным в передаче вирусов.

Специалисту по безопасности Драгошу Руйу пришла эта идея после того, как он заметил нечто странное со своим MacBook Air: после установки OS X его компьютер спонтанно загрузил кое-что еще. Это был весьма мощный вирус, который мог удалять данные и вносить изменения по собственному желанию. Даже после удаления, переустановки и перенастройки всей системы проблема оставалась. Наиболее правдоподобное объяснение бессмертия вируса было таковым, что он проживал в BIOS и оставался там, несмотря на любые операции. Другая, менее вероятная теория была таковой, что вирус использовал высокочастотные передачи между динамиками и микрофоном для управления данным.

Эта странная теория казалась невероятной, но была доказана хотя бы в плане возможности, когда Германский институт нашел способ воспроизвести этот эффект. На основе разработанного для подводной связи программного обеспечения ученые разработали прототип вредоносной программы, которая передавала данные между неподключенными к Сети ноутбуками, используя их динамики. В тестах ноутбуки могли сообщаться на расстоянии до 20 метров. Диапазон можно было расширить, связав зараженные устройства в сеть, подобно ретрансляторам Wi-Fi.

Хорошие новости в том, что эта акустическая передача происходит крайне медленно, достигая скорости в 20 бит в секунду. Хотя этого недостаточно для передачи больших пакетов данных, этого достаточно, чтобы передавать информацию вроде нажатия клавиш, паролей, номеров кредитных карт и ключей шифрования. Поскольку современные вирусы умеют делать все это быстрее и лучше, маловероятно, что новая акустическая система станет популярной в ближайшем будущем.

Акустические скальпели

Врачи уже используют звуковые волны для медицинских процедур вроде УЗИ и разрушения камней в почках, но ученые из Университета штата Мичиган создали акустический скальпель, точность которого позволяет отделять даже одну клетку. Современные ультразвуковые технологии позволяют создать луч с фокусом в несколько миллиметров, однако новый инструмент обладает точностью уже в 75 на 400 микрометров.

Общая технология была известна с конца 1800-х, однако новый скальпель стал возможным, благодаря использованию линзы, обернутой в углеродные нанотрубки и материал под названием полидиметилсилоксан, которая конвертирует свет в звуковые волны высокого давления. При должном фокусе, звуковые волны создают ударные волны и микропузырьки, которые оказывают давление на микроскопическом уровне. Технологию протестировали, отделив одну клетку рака яичников и просверлив 150-микрометровую дыру в искусственном почечном камне. Авторы технологии считают, что ее можно будет наконец использовать для доставки лекарств или удаления малых раковых опухолей или бляшек. Ее можно даже использовать для проведения безболезненных операций, поскольку такой ультразвуковой луч сможет избегать нервные клетки.

Подзарядка телефона голосом


С помощью нанотехнологий ученые пытаются извлекать энергию из самых разных источников. Одна из таких задач - создание устройства, которое не нужно будет заряжать. Nokia даже запатентовала устройство, которое поглощает энергию движения.

Поскольку звук - это всего лишь сжатие и расширение газов в воздухе, а значит движение, он может стать жизнеспособным источником энергии. Ученые экспериментируют с возможностью зарядки телефона прямо во время использования - пока вы звоните, например. В 2011 году ученые из Сеула взяли наностержни из оксида цинка, зажатые между двух электродов, чтобы добыть электричество из звуковых волн. Эта технология могла вырабатывать 50 милливольт просто из шума движения машин. Этого недостаточно, чтобы зарядить большинство электрических устройств, но в прошлом году лондонские инженеры решили создать устройство, вырабатывающее 5 вольт - и этого уже хватает, чтобы подзарядить телефон.

Хотя зарядка телефонов с помощью звуков может быть хорошей новостью для любителей поболтать, она может оказать серьезное влияние на развивающийся мир. Та же технология, которая обеспечила существование термоакустического холодильника, может быть использована для преобразования звука в электричество. Score-Stove - это плита и холодильник, которая извлекает энергию в процессе приготовления на топливной биомассе для производства небольших объемов электричества, порядка 150 ватт. Это немного, но достаточно, чтобы обеспечить 1,3 миллиарда людей на Земле, не имеющих доступа к электричеству, энергией.

Превратить тело человека в микрофон


Ученые из Disney сделали устройство, которое превращает человеческое тело в микрофон. Названное «ишин-ден-шин» в честь японского выражения, означающего общение через негласное взаимопонимание, оно позволяет кому-либо передать записанное сообщение, просто коснувшись уха другой персоны.

Это устройство включает микрофон, прикрепленный к компьютеру. Когда кто-то говорит в микрофон, компьютер сохраняет речь в виде записи на повторе, которая затем преобразуется в едва слышный сигнал. Этот сигнал передается по проводу от микрофона к телу любого, кто его держит, и производит модулированное электростатическое поле, которое вызывает крошечные вибрации, если человек чего-то касается. Вибрации могут быть услышаны, если человек коснется чужого уха. Их даже можно передавать от человека к человеку, если группа людей находится в физическом контакте.


Иногда наука создает что-то, о чем даже Джеймс Бонд мог только мечтать. Ученые из Массачусетского технологического института, и Adobe разработали алгоритм, который может считывать пассивные звуки от неодушевленных объектов на видео. Их алгоритм анализирует незаметные колебания, которые звуковые волны создают на поверхностях, и делает их слышимыми. В ходе одного эксперимента удалось считать внятную речь с пакета картофельных чипсов, лежащих на расстоянии 4,5 метра за звуконепроницаемым стеклом.

Для достижения наилучших результатов алгоритм требует, чтобы число кадров в секунду на видео было выше частоты аудиосигнала, для чего необходима высокоскоростная камера. Но, на худой конец, можно взять и обычную цифровую камеру, чтобы определить, к примеру, число собеседников в комнате и их пол - возможно, даже их личности. Новая технология обладает очевидными применениями в судебно-медицинской экспертизе, правоохранительных органах и шпионских войнах. Обладая такой технологией, можно узнать, что происходит за окном, просто достав цифровую камеру.

Акустическая маскировка


Ученые сделали устройство, которое может прятать объекты от звука. Оно похоже на странную дырявую пирамиду, но ее форма отражает траекторию звука так, будто бы он отражается от плоской поверхности. Если вы разместите эту акустическую маскировку на объекте на плоской поверхности, он будет неуязвим для звука вне зависимости от того, под каким углом вы будете звук направлять.

Хотя, возможно, эта накидка и не предотвратит прослушивание разговора, она может пригодиться в местах, где объект нужно спрятать от акустических волн, например, концертный зал. С другой стороны, военные уже положили глаз на эту маскировочную пирамиду, поскольку у нее есть потенциал прятать объекты от сонара, например. Поскольку под водой звук путешествует почти так же, как по воздуху, акустическая маскировка может сделать подводные лодки невидимыми к обнаружению.

Притягивающий луч


Долгие годы ученые пытались воплотить в жизнь технологии из «Звездного пути», в том числе и тяговый луч, с помощью которого можно захватывать и притягивать те или иные вещи. В то время как весьма много исследований фокусируется на оптическом луче, который использует тепло для передвижения объектов, эта технология ограничена размером объектов в несколько миллиметров. Ультразвуковые тяговые лучи, однако, доказали, что могут двигать большие объектов - до 1 сантиметра шириной. Возможно, это все еще мало, но у нового луча сила в миллиарды раз превосходит старые наработки.

Сосредоточив два ультразвуковых луча на цели, объект можно подтолкнуть по направлению к источнику луча, рассеивая волны в противоположном направлении (объект будет словно подпрыгивать на волнах). Хотя ученым пока не удалось создать лучший вид волны для своей техники, они продолжают работу. В будущем эту технологию можно будет использовать непосредственно для управления объектами и жидкостями в теле человека. Для медицины она может оказаться незаменимой. К сожалению, в космическом вакууме звук не распространяется, поэтому едва ли технология будет применима для управления космическими кораблями.

Тактильные голограммы


Наука также работает над другим творением «Звездного пути» - голодеком. Хотя в технологии голограммы нет ничего нового, на данный момент нам доступны не такие хитроумные ее проявления, как показывают фантастические фильмы. Правда, важнейшей чертой, отделяющей фантастические голограммы от реальных, остаются тактильные ощущения. Оставались, если быть точным. Инженеры из Университета Бристоля разработали так называемую технологию UltraHaptics, которая в состоянии передавать тактильные ощущения.

Изначально технология разрабатывалась для оказания силы на вашу кожу, чтобы облегчить жестовое управление определенными устройствами. Механик с грязными руками, например, мог бы пролистать руководство по эксплуатации. Технология должна была придать сенсорным экранам ощущение физической страницы.

Поскольку эта технология использует звук для производства вибраций, которые воспроизводят ощущение прикосновения, уровень чувствительности можно изменять. 4-герцевые вибрации похожи на тяжелые капли дождя, а 125-герцевые напоминают прикосновения к пене. Единственным недостатком на данный момент остается то, что эти частоты могут быть услышаны собаками, но дизайнеры говорят, что это поправимо.

Сейчас же они дорабатывают свое устройство для производства виртуальных форм вроде сфер и пирамид. Правда, это не совсем виртуальные формы. В основе их работы лежат сенсоры, которые следуют за вашей рукой и соответственно образуют звуковые волны. В настоящее время этим объектам не хватает детализации и некоторой точности, но дизайнеры говорят, что однажды технология будет совместима с видимой голограммой, а человеческий мозг будет в состоянии сложить их в одну картинку.

По материалам listverse.com

Сегодня озвучка театральных пьес и кинофильмов относительно проста. Большинство необходимых шумов существует в электронном виде, недостающие записываются, обрабатываются на компьютере. Но еще полвека назад для имитации звуков использовались удивительной хитроумности механизмы.

Тим Скоренко

Эти удивительные шумовые машины выставлялись на протяжении последних лет в самых разных местах, впервые — несколько лет тому назад в Политехническом музее. Там мы подробно рассмотрели эту занимательную экспозицию. Дерево-металлические устройства, удивительным образом имитирующие звуки прибоя и ветра, проезжающего автомобиля и поезда, цокот копыт и звон мечей, стрекотание кузнечика и кваканье лягушки, лязг гусениц и разрывы снарядов — все эти удивительные машины разработал, усовершенствовал и описал Владимир Александрович Попов — актер и создатель шумового оформления в театре и кино, — которому и посвящена выставка. Наиболее интересна интерактивность экспозиции: приборы не стоят, как нередко у нас принято, за тремя слоями пуленепробиваемого стекла, а предназначены для пользователя. Подходи, зритель, притворись звукооформителем, посвисти ветром, пошуми водопадом, поиграй в поезд — и это интересно, действительно интересно.


Фисгармония. «Для передачи шума танка используется музыкальный инструмент фисгармония. Исполнитель нажимает одновременно несколько нижних клавиш (и черных, и белых) на клавиатуре и при этом накачивает воздух с помощью педалей» (В.А. Попов).

Шумовых дел мастер

Владимир Попов начинал карьеру в качестве актера МХАТа, причем еще до революции, в 1908 году. В своих воспоминаниях он писал, что с детства увлекался звукоимитацией, пытался копировать различные шумы, природные и искусственные. С 1920-х годов он окончательно уходит в звуковую отрасль, проектируя разнообразные машины для шумового оформления спектаклей. А в тридцатых его механизмы появились и в кино. Например, с помощью своих удивительных машин Попов озвучивал легендарную картину Сергея Эйзенштейна «Александр Невский».

Он относился к шумам как к музыке, писал партитуры для звукового фона спектаклей и радиопостановок — и изобретал, изобретал, изобретал. Некоторые машины, созданные Поповым, сохранились до сих пор и пылятся в подсобках различных театров — развитие звукозаписи сделало его хитроумные механизмы, требующие определенных навыков обращения, ненужными. Сегодня шум поезда моделируется электронными методами, в поповские же времена целый оркестр по строго заданному алгоритму работал с различными устройствами, чтобы создать достоверную имитацию приближающегося состава. В шумовых композициях Попова порой было задействовано до двадцати музыкантов.


Шум танка. «Если танк появляется на сцене, то в этот момент вступают в действие четырехколесные приборы с металлическими пластинами. Прибор приводится в действие вращением крестовины вокруг оси. Получается сильный звук, очень похожий на лязг гусениц большого танка» (В.А. Попов).

Итогами его работы стали книга «Звуковое оформление спектакля», вышедшая в 1953 году, и полученная тогда же Сталинская премия. Можно привести здесь много различных фактов из жизни великого изобретателя — но мы обратимся к технике.

Дерево и железо

Важнейшим моментом, на который далеко не всегда обращают внимание посетители выставки, является тот факт, что каждая шумовая машина — музыкальный инструмент, на котором нужно уметь играть и который требует определенных акустических условий. Например, «громовая машина» во время спектаклей всегда ставилась на самый верх, на мостки над сценой, чтобы раскаты грома разносились по всему зрительному залу, создавая ощущение присутствия. В небольшой же комнате она производит не такое яркое впечатление, звук ее не столь естественен и находится значительно ближе к тому, чем является на самом деле, — к лязгу железных колес, встроенных в механизм. Впрочем, «ненатуральность» некоторых звуков объясняется тем, что многие из механизмов не предназначены для «сольной» работы — только «в ансамбле».

Иные машины, напротив, идеально имитируют звук независимо от акустических свойств помещения. К примеру, «Перекат» (механизм, издающий шум прибоя), огромный и неповоротливый, настолько точно копирует удары волн о пологий берег, что, закрыв глаза, можно легко вообразить себя где-то у моря, на маяке, в ветреную погоду.


Конный транспорт №4. «Прибор, воспроизводящий шум пожарного обоза. Чтобы в начале действия прибора дать слабый шум, исполнитель отводит ручку регулятора влево, благодаря чему происходит смягчение силы шума. При перемещении оси в другую сторону шум возрастает до значительной силы» (В.А. Попов).

Попов делил шумы на ряд категорий: батальные, природные, индустриальные, бытовые, транспортные и т. д. Некоторые универсальные приемы могли использоваться для имитации различных шумов. Например, подвешенные на определенном расстоянии друг от друга листы железа различной толщины и размеров могли сымитировать и шум приближающегося паровоза, и лязг производственных машин, и даже гром. Универсальным устройством Попов называл также огромный барабан-ворчун, способный работать в разных «отраслях».

Но большинство подобных машин достаточно просты. Специализированные же механизмы, предназначенные для имитации одного и только одного звука, заключают в себе весьма занимательные инженерные мысли. Например, падение капель воды имитируется вращением барабана, боковую сторону которого заменяют натянутые на разных расстояниях веревки. При вращении они приподнимают неподвижно укрепленные кожаные хлыстики, которые хлопают по следующим веревкам — и это действительно похоже на капель. Ветры различной силы также имитируются с помощью барабанов, трущихся о всевозможные ткани.

Кожа для барабана

Пожалуй, самая замечательная история, связанная с реконструкцией машин Попова, случилась во время изготовления большого барабана-ворчуна. Для огромного, диаметром почти в два метра, музыкального инструмента требовалась кожа — но оказалось, что приобрести выделанную, но не выдубленную барабанную кожу в России невозможно. Музыканты отправились на настоящую скотобойню, где купили две свежеснятые с быков шкуры. «В этом было что-то сюрреалистическое, — смеется Петр. — Подъезжаем мы на машине к театру, а у нас в багажнике — окровавленные шкуры. Мы затаскиваем их на крышу театра, там мездрим, сушим — неделю на всю Сретенку запах стоял…» Но барабан в итоге удался на славу.

Каждый прибор Владимир Александрович в обязательном порядке снабжал подробной инструкцией для исполнителя. Например, устройство «Мощный треск»: «Сильные сухие разряды грозы выполняются с помощью прибора «Мощный треск». Встав на площадку станка прибора, исполнитель, подавшись грудью вперед и положив обе руки поверх зубчатого вала, обхватывает его и повертывает по направлению к себе».

Стоит заметить, что многие из машин, использованных Поповым, были разработаны до него: Владимир Александрович лишь усовершенствовал их. В частности, ветровые барабаны применялись в театрах еще во времена крепостного права.

Изящная жизнь

Одним из первых фильмов, целиком озвученным с помощью механизмов Попова, была комедия режиссёра Бориса Юрцева «Изящная жизнь». Помимо голосов актёров, в этом фильме, вышедшем на экраны в 1932 году, нет ни одного записанного с натуры звука — всё сымитировано. Стоит заметить, что из шести полнометражных фильмов, снятых Юрцевым, этот — единственный сохранившийся. Попавший в опалу в 1935 году режиссёр был сослан на Колыму; его фильмы, кроме «Изящной жизни», были утеряны.

Новая инкарнация

После появления звуковых библиотек про машины Попова почти забыли. Они отошли в разряд архаизмов, в прошлое. Но нашлись люди, заинтересованные в том, чтобы техника прошлого не только «восстала из пепла», но и вновь стала востребованной.

Идея сделать музыкальный арт-проект (тогда еще не оформившийся как интерактивная выставка) давно теплилась в сознании московского музыканта, пианиста-виртуоза Петра Айду — и вот наконец нашла свое материальное воплощение.


Прибор «лягушка». Инструкция к прибору «Лягушка» значительно сложнее, нежели аналогичные указания к прочим устройствам. Исполнитель квакающего звука должен был хорошо владеть инструментом, чтобы итоговая звукоимитация получилась достаточно натуральной.

Команда, работавшая над проектом, частично базируется в театре «Школа драматического искусства». Сам Петр Айду — помощник главного режиссера по музыкальной части, координатор производства экспонатов Александр Назаров — руководитель театральных мастерских и т. д. Впрочем, в работе над выставкой принимали участие десятки людей, не связанных с театром, но готовых помогать, тратить свое время на странный культурологический проект — и все это было не зря.

Мы беседовали с Петром Айду в одной из комнат с экспозицией, в страшном грохоте и гаме, извлекаемом из экспонатов посетителями. «В этой экспозиции множество пластов, — говорил он. — Некий исторический пласт, поскольку мы подняли на свет историю очень талантливого человека, Владимира Попова; интерактивный пласт, поскольку люди получают удовольствие от происходящего; музыкальный пласт, поскольку по окончании выставки мы планируем использовать ее экспонаты в наших спектаклях, причем не столько для озвучки, сколько как самостоятельные арт-объекты». В то время, как Петр говорил, за его спиной работал телевизор. На экране сцена, где двенадцать человек слаженно играют композицию «Шум поезда» (это фрагмент спектакля «Реконструкция утопии»).


«Перекат». «Исполнитель приводит прибор в действие мерным ритмическим покачиванием резонатора (корпуса прибора) вверх и вниз. Тихий прибой волн выполняется медленным ссыпанием (не до конца) содержимого резонатора с одного его конца в другой. Прекратив ссыпание содержимого в одну сторону, быстрым движением приводят резонатор в горизонтальное положение и сейчас же отводят его в другую сторону. Мощный прибой волн выполняется медленным ссыпанием до конца всего содержимого резонатора» (В.А.Попов).

Автоматы изготовлялись по оставленным Поповым чертежам и описаниям — сохранившиеся в коллекции МХАТа оригиналы некоторых машин создатели выставки увидели уже после окончания работ. Одной из основных проблем было то, что легко добываемые в 1930-х годах детали и материалы сегодня нигде не используются и в свободной продаже не водятся. Например, латунный лист толщиной 3 мм и размерами 1000x1000 мм найти практически нереально, потому что нынешний ГОСТ подразумевает разрезку латуни только 600x1500. Проблемы возникали даже с фанерой: требуемая 2,5-миллиметровая по современным стандартам относится к авиамодельной и достаточно редка, разве что из Финляндии выписывать.


Автомобиль. «Шум автомобиля производится двумя исполнителями. Один из них вращает ручку колеса, а другой нажимает рычаг подъёмной доски и приоткрывает крышки» (В.А. Попов). Стоит заметить, что с помощью рычагов и крышек можно было значительно варьировать звук автомобиля.

Была и еще одна сложность. Сам Попов неоднократно замечал: чтобы сымитировать какой-либо звук, нужно абсолютно точно представлять себе, чего хочешь добиться. Но, например, звук переключения семафора 1930-х годов никто из наших современников никогда не слышал в живую — как же удостовериться в том, что соответствующий прибор изготовлен правильно? Никак — остается только надеяться на интуицию и старые кинофильмы.

Но в общем и целом интуиция создателей не подвела — им все удалось. Хотя изначально шумовые машины предназначались для людей, умеющих с ними обращаться, а не для потехи, в качестве интерактивных экспонатов музея они очень хороши. Вращая рукоять очередного механизма, глядя на транслируемый на стену немой кинофильм, ты ощущаешь себя великим звукорежиссером. И чувствуешь, как под твоими руками рождается не шум, но музыка.

Следует учитывать, что звук может передаваться не только по воздуху, но и по конструкциям: стенам, трубам, перекрытиям. В них акустическая энергия распространяется в виде упругих колебаний (вибраций). В большинстве случаев возникновение шума происходит из-за преобразования энергии вибраций в звуковую энергию. Звук исходит от колеблющихся поверхностей машин, механизмов, перегородок и т. д. Очень хорошие источники звука - тонкостенные металлические поверхности, которые эффективно излучают звуковую энергию в окружающую среду в широком диапазоне частот.

Энергию упругих колебаний можно достаточно эффективно уменьшить с помощью так называемых вибропоглощающих покрытий. Возьмем две одинаковые по форме пластины, сделанные из металла и пластмассы, подвесим их на нити и ударим чем-нибудь твердым. В пластмассовой пластине колебания утихнут быстро, а металлическая будет "звенеть" еще некоторое время. В пластмассе акустическая энергия эффективно преобразовалась в тепловую. Для уменьшения излучения звука поверхности на нее наносят вибропоглощающее покрытие, в котором колебания затухают, как в пластмассовой пластине. Вибропоглощающее покрытие должно обладать большой жесткостью и высокими внутренними потерями акустической энергии. Чем больше жесткость покрытия, тем бoльшая часть энергии колебаний будет затрачена на его деформацию, а чем больше внутренние потери, тем больше энергии перейдет в тепло.

Вибропоглощающие покрытия широко применяются в автомобилестроении - для внутренней облицовки кузовов машин, в авиастроении - для нанесения на внутренние части фюзеляжей самолетов и т. д. Но не всегда использование того или иного вибропоглощающего покрытия дает положительный результат. Так, например, для снижения шума и вибрации отбойного молотка вибропоглощающее покрытие неэффективно.

Другой способ борьбы с вибрацией - виброизоляция. Для ее создания используется тот же принцип, что и для звукоизоляции: требуется такое препятствие, чтобы от него отразилось как можно больше энергии. С этой целью применяют упругие вставки (амортизаторы). Их устанавливают между работающей машиной или механизмом и его фундаментом. Обычно амортизаторы делают из резины, или они представляют собой стальные пружины. Важно правильно выбрать амортизатор, иначе виброизоляция может оказаться малоэффективной, а в ряде случаев вибрация даже усилится.

Защититься от шума можно и с помощью индивидуальных средств защиты. Прежде всего, это ушные протекторы. Первый тип протектора - тампон или заглушка из мягкого материала, предназначенная для разового применения. Если просто заткнуть ухо кусочком ваты, то эффект звукоизоляции будет мал, поскольку вата обладает небольшой плотностью и слишком пористая. В аптеках можно купить специально сконструированные утяжеленные вставки в ухо "Беруши" из волокнистого материала. Они обладают хорошими звукоизолирующими свойствами и гигиеничны. Иногда в продаже встречаются специальные пластмассовые заглушки-пробки разных размеров.

Но все же гораздо более эффективно предохраняют от шума наружные ушные протекторы, или наушники. В числе их недостатков - неудобство и неприятные ощущения, возникающие при длительном ношении. Зато наушники обеспечивают хорошую звукоизоляцию, а с помощью жидкого уплотнения в специальных валиках - амбушюрах - достигается плотное прилегание к уху. При очень высоком уровне шума - выше 130 дБ (например, на стендах для испытаний авиационных реактивных двигателей) - недостаточны и наушники. В этом случае для защиты от шума приходится использовать специальные звукоизолирующие шлемы.