Импланты сетчатки глаза. Бионический глаз — мифы и реальность. Новые технологии для бионического зрения

Глазной протез Argus II поступает в продажу в Европе и в скором времени - в Америке. В ходе испытаний этого «бионического глаза», частично удалось вернуть зрение 30 людям в возрасте от 28 до 77 лет.
Результаты получились различными - кто-то смог лишь частично видеть свет, кто-то стал разбирать газетные заголовки, некоторым даже удалось вернуть цветное зрение.

Протез Argus II берёт на себя функции фоторецепторов - светочувствительных сенсорных нейронов сетчатки глаза, которые преобразуют свет в электрохимические импульсы, передающиеся в мозг по зрительным нервам. При таких заболеваниях как, например, пигментный ретинит, происходит дегенерация этих фоторецепторов, и человек слепнет.

Argus II представляет собой комплекс из 60 электродов, вживлённых в сетчатку глаза, соединённых с миниатюрным приёмником, который так же, судя по описанию на сайте, крепится на глазное яблоко; очков, оснащённых камерой, и соединённых с носимым компьютером. Сигнал, полученный камерой, обрабатывается этим носимым компьютером, после чего передаётся на приёмник, который даёт вживлённым электродам начать стимуляцию уцелевших клеток сетчатки глаза и зрительного нерва.


Argus II на своём положенном месте.

Систему одобрили к использованию в Евросоюзе и, видимо, скоро так же одобрят в США. В Европе, правда, она стоит более 73 тысяч евро, а в США будет и того дороже.

В настоящее время в Массачуссетском технологическом институте разрабатывается аналогичная система, но вместо 60 у неё будут 400 электродов. В свою очередь, в Стэнфорде ведутся разработки другого метода, включающего имплантацию в глазное яблоко около пяти тысяч фотогальванических элементов, что, по идее, позволит добиться много лучших результатов, чем Argus II.


Ранний Аргус.

Несмотря на то, что технологии зрительных имплантов ещё не скоро позволят насладиться, к примеру, высоким разрешением видео, даже у несовершенных сенсоров с сотней пикселей разрешения есть потенциал обеспечить своим носителям несравнимо большую степень самостоятельности, нежели та, которая была бы у них при полном отсутствии зрения.

Не стоит упускать из виду, что подобные импланты в принципе не способны ничего поделать, если причиной слепоты является проблема со зрительным центром мозга или зрительным нервом, а не повреждение или деградация сетчатки. Но это уже другая ветвь технологий.

Вероятно, как свойственно высоким технологиям, со временем Argus II будет улучшаться и дешеветь, но пока на сайте технообзоров MIT мы видим цену в $115,000. Это цена самого устройства, не включающая стоимость его установки.

Видео с сайта разработчика .

Название "Аргус", вероятно, взято из греческой мифологии, где это имя носил неусыпный страж-великан. В разных вариантах мифа количество глаз у Аргуса варьировалось от 4 до 1000, но все они сходятся на моменте, что Аргус никогда не смыкал всех глаз одновременно и потому никогда не спал.
Гера поставила его охранять прекрасную Ио, на тот момент пребывавшую в облике не менее прекрасной, но всё же коровы. Аргус добросовестно выполнял поручение, однако в какой-то момент был убит Гермесом, богом торговли, воровства и обмана, которого Зевс отправил забрать Ио.
Узнав о смерти Аргуса, Гера сделала то, что полагается совершить важному персонажу мифа, когда повествование близится к концу: поместила глаза Аргуса на павлиньи перья. С тех пор, надо понимать, у нас есть не только невзрачные самки павлинов, но и отрадные глазу павлины-мужи.


О многочисленных глазах, павлинстве и умилении.
Если ко мне когда-нибудь попадёт представитель этого вида, единственное, насчёт чего не будет сомнений, это имя для него.

С вам был павлиний паук.
Прекрасное создание, которое, будь оно чуть покрупнее и не так склонно внезапно и очень быстро прыгать, могло бы лечить людей от арахнофобии.

Источники:

Используя совершенно новый метод, ученые смогли взять образцы клеток роговицы из глаз испытуемых и культивировать клетки в лаборатории. Они регенерировали и размножили клетки на синтетической пленке гидрогеля, затем имплантировали эту пленку обратно в глаза испытуемых.

Пленка толщиной в 50 микрометров сравнима с обычной контактной линзой. Выращенные в лаборатории клетки роговицы принялись за работу и восстановили баланс жидкости под роговицей, а через два месяца синтетическая пленка разложилась, оставив после себя здоровые клетки, которые продолжили поддерживать водный баланс роговицы.

Важно отметить, что эта процедура не испытывалась на людях, но восстановила зрение животным и не вызвала неблагоприятных иммунных реакций. Клинические испытания на людях начнутся в 2017 году и, возможно, изменят будущее для людей, страдающих от помутнения роговицы.

Бионические глаза

В 2013 году FDA одобрила первый бионический имплантат для лечения пигментного ретинита глаза, наследственного заболевания, которое приводит к дегенерации фоторецепторов сетчатки глаза. Пользователи этой технологии носят пару очков, оснащенных крошечной видеокамерой. Данные идут от камеры к блоку обработки видеосигнала и к группе электродов, имплантированных в сетчатку. Электроды преобразуют данные в электрические импульсы, которые стимулируют сетчатку на производство изображений.

Процедура, призванная справиться с возрастной макулярной дегенерацией, которая является ведущей причиной слепоты у людей, которым за 55, удаляет естественный хрусталик глаза и заменяет его телескопическим объектов размером с горошину, который увеличивает объект и проецирует изображения на оставшуюся здоровую область сетчатки.

Такие технологии уже помогли восстановить зрение тысячам людей, но чтобы сделать бионическое зрение эквивалентным идеальному зрению человека, предстоит решить еще много вопросов. Пациенты с имплантатами сетчатки или хрусталика жалуются на плохое разрешение, сложности со зрением при движении на высокой скорости и ограниченное поле зрения.

По мере прорывов в биологических методах лечения зрения и искусственных решениях, вроде бионических глаз, слепота может в один прекрасный день стать недугом прошлого.

В 2018 году 39 миллионов человек остаются слепыми. Из-за наследственных заболеваний, старения тканей, инфекций или травм. Одна из главных причин - это болезни сетчатки. Но наука развивается так быстро, что фантастика переходит из книг в лаборатории и операционные, снимая барьер за барьером. Ниже мы рассмотрим, какое будущее ждет офтальмологию, как будут лечить (и уже лечат), возвращать зрение, диагностировать недуги и восстанавливать глаза после операций.

Киборгизация: бионические глаза

Главный тренд офтальмологии будущего - бионические глаза. В 2018 году уже существуют 4 успешных проекта, и искусственные глаза сейчас - далеко не картинка из футуристического фэнтези.

Самый интересный проект - это Argus II от Second Sight. Устройство состоит из импланта, очков, камеры, кабеля и видеопроцессора. Имплант, имеющий передатчик, вживляется в сетчатку. Носимая с очками камера фиксирует изображения, которые процессор обрабатывает, генерируя сигнал, передатчик импланта принимает его и стимулирует клетки сетчатки. Так реконструируется зрение. Разработка изначально предназначалась для больных макулодистрофией. Это возрастное заболевание, оно сопровождается слабым кровоснабжением центра сетчатки и приводит к слепоте.

В чем недостаток технологии? Устройство стоит баснословные 150 тысяч долларов и не возвращает зрение полностью, лишь позволяя различать силуэты фигур. По состоянию на 2017 год 250 человек носят Argus II, что, безусловно, ничтожно мало.

У Argus II есть аналоги. Например, Boston Retinal Implant. Он тоже создан специально для пациентов с макулодистрофией и пигментным ретинитом (разложением фоторецепторов сетчатки). Он работает по похожему принципу, направляя сигналы нервным клеткам и создавая схематичное изображение объекта. Стоит назвать и IRIS, созданный для пациентов на последних стадиях деградации сетчатки. IRIS состоит из видеокамеры, носимого процессора и стимулятора. От них отличается Retina Implant AG. Имплант улавливает фотоны и активирует зрительный нерв, при этом устройство обходится без внешней камеры.

Импланты в головном мозге

Как ни странно, лечить зрение можно, не касаясь глаз. Для этого достаточно вживить в мозг чип, который будет стимулировать короткими электрическими разрядами зрительную кору. В этом направлении работает упомянутый выше Second Sight. Компания разработала альтернативную версию Argus II, которая совсем не затрагивает глаза и работает с мозгом напрямую. Девайс будет стимулировать нервные клетки током, извещая мозг о потоке света.

Искусственная сетчатка

Мы сказали, что пигментный ретинит поражает фоторецепторы сетчатки, из-за чего человек перестает воспринимать свет и слепнет. Это заболевание кодируется генетически. Сетчатка состоит из миллионов рецепторов. Мутация лишь в одном из 240 генов запускает их гибель и портит зрение, даже если связанные с ней зрительные нейроны будут целы. Как быть в этом случае? Имплантировать новую сетчатку. Искусственный аналог состоит из электропроводящего полимера с шелковой подложкой, завернутого в полимерный полупроводник. Когда падает свет, полупроводник поглощает фотоны. Вырабатывается ток и электрические разряды касаются нейронов сетчатки. Эксперимент с мышами показал, что при освещенности в 4-5 лк (Люксов), как в начале сумерек, мыши с имплантами реагируют на свет так же, как и здоровые грызуны. Томография подтвердила, что зрительная кора мозга крыс была активна. Неясно, будет ли разработка полезной для людей. Итальянский технологический институт (IIT) обещает отчитаться о результатах опытов в 2018 году.

Ошибка в коде

Носимые, вшиваемые и встраиваемые устройства - не единственная надежда офтальмологии. Для того, чтобы вернуть зрение, можно переписать генетический код, из-за ошибки в котором человек начал слепнуть. Метод CRISPR, который базируется на инъекции раствора с вирусом, несущим правильный вариант ДНК, излечивает наследственные заболевания. Исправление кода позволяет бороться с возрастной дегенерацией сетчатки, а также с амаврозом Лебера - крайне редким недугом, убивающим светочувствительные клетки. В мире им страдает около 6 тысяч человек. Препарат Luxturna обещает покончить с ним. Он содержит раствор с правильной версией гена RPE65, шифрующим структуру необходимых белков. Это инъекционный препарат - его вводят в глаз микроскопической иглой.

Диагностика и восстановление после операции

Сопровождающий нас повсюду смартфон - прекрасный инструмент для быстрой и точной диагностики. Например, синхронизированный со смартфоном офтальмоскоп Peek Vision позволяет делать снимки сетчатки где и когда угодно. А Google в 2016 году представил алгоритм анализа изображений, основанный на искусственном интеллекте, который позволяет выявлять признаки диабетической ретинопатии на снимках сетчатки. Алгоритм отыскивает мельчайшие аневризмы, указывающие на патологию. Диабетическая ретинопатия - это тяжелое поражение сосудов сетчатой оболочки глаза, ведущее к слепоте.

Будущее - за быстрым восстановлением после операций. Интересен препарат Cacicol, представленный турецкими исследователями в 2015 году. Их разработка снимает боль, повышенную чувствительность и жжение после операции на глазах. Препарат уже опробовали клинически: пациенты, которым сшивали роговицу (этот метод используется при лечении ее истончения - кератоконуса), отмечали снижение побочных эффектов.

Каким будет зрение будущего?

Уже сейчас офтальмология достигла поразительных успехов: прежде неизлечимую слепоту можно обратить, а наследственные заболевания побороть, переписав несколько участков генетического кода. В каком направлении будет идти развитие? Попробуем предположить:

Лучше предотвратить, чем лечить. Окулист в смартфоне и нейронная сеть, ставящая диагноз, обещают заметно сократить риск запущенных и едва излечимых болезней глаз. Дополненная реальность (AR) позволит распространять медицинские знания в игровой и необременительной форме. Уже сейчас есть приложения AR, моделирующие последствия катаракты и глаукомы. Знание, как известно, сила. Заменить, если нельзя вылечить. Киборгизация - это ключевой медицинский тренд. Нынешние разработки хороши, но они реконструируют зрение лишь отчасти, позволяя различать размытые контуры. В ближайшие 10 лет технология будет идти по пути повышения качества изображения и детализации. Важная задача - избавиться от носимых компонентов: камеры, очков, кабеля. Имплант должен стать мягче и, можно сказать, дружелюбнее для тканей человека, чтобы не ранить их. Вероятно, чипы без внешних вспомогательных элементов, вживляемые прямо в мозг - это самая перспективная ветка киборгизации зрения. Дешевле и доступнее: 150 тысяч долларов за устройство пока делают бионические глаза очень далекими от рынка и недосягаемыми для большинства больных. Следующий шаг - сделать их максимально доступными. Восстановление за часы: вживление чипов, коррекция сетчатки и даже исправление ДНК требуют хирургического вмешательства. Оно оставляет резь, жжение, фантомные боли и другие неприятные следствия. Препараты будущего будут регенерировать поврежденные ткани за часы. Фантастическое зрение для всех: мгновенный снимок с помощью глаза и сетчатка, подключенная к интернету, только сейчас выглядят как научная фантастика.

Глаза - самая сложная система в организме. И нейробиологи выясняют до сих пор, каким образом визуальные стимулы могут превращаться в информационные сообщения, воспринимаемые мозгом. При этом данный орган весьма хрупок, а расстройства зрения являются одними из наиболее распространенных среди всех болезней.

Стоит упомянуть, что самыми серьезными неприятностями со зрением являются заболевания ( , пигментный и др.), ведь около четверти пациентов с данными заболеваниями заканчивают полной . И все было бы не так плохо, если бы заболевания сетчатки поддавались лечению, однако любая терапия в таких случаях ограничивается только попытками замедлить болезнь.

Правда, в последнее время, опираясь на успехи нейробиологических технологий, ученые начинают задумываться о восстановлении утраченных в процессе заболеваний сетчатки фоторецепторов, что поможет вернуть зрение. При этом самым очевидным выходом является использование стволовых клеток. И на этой стезе достигнуты впечатляющие успехи. К примеру, таким образом частично вернули зрение слепым мышам и доказали безопасность использования стволовых клеток в человеческой сетчатке.

В то же время, существует и нейрокомпьютерное решение данной проблемы – замена сетчатки электронным протезом. Одно из таких устройств, Argus II, создано компанией SecondSight и уже рекомендовано к широкому применению в США. Клинические испытания данного приспособления прошли успешно, однако у Argus II все еще остается масса неизученных возможностей, коим и посвятила свое исследование рабочая группа из Глазной больницы Мурфилдс (Великобритания), под руководством проф. Ивонны Ло.

Нужно сказать, что Argus II - это миниатюрная видеокамера на очках и устройство, беспроводным образом передающее визуальную информацию электронному имплантату. Задача последнего - стимулировать клетки, которые собирают информацию, в соответствии с инструкциями, получаемыми от «внешнего устройства».

Для участия в эксперименте отобрали восемь пациентов, практически лишенных зрения вследствие дегенерации сетчатки. Их задачей было с помощью прибора различить два объекта (белый и металлический): сначала на темном фоне, а после, с выделенными контурами. Для начала, больным с тяжелой формой пигментного ретинита предлагалось сделать это с выключенным устройством, затем - с работающим некорректно, и наконец, с работающим нормально.

Различить два предмета с выключенным устройством пациентам удалось в 12,5% случаев для первого опыта и в 9,4% - для второго. С плохо работающим прибором процент успеха поднялся до 26,2% и 20,7%. И наконец, с хорошо функционирующим устройством, степень точности различения составила 32,8% и 41,4% соответственно, что не может не впечатлять.

Успешную конкуренцию SecondSight в этом направлении составляет BostonRetinalImplantProject (США), в котором участвуют исследователи из Гарварда, Флоридского международного университета, Массачусетского технологического института и пр.

Отличительной особенностью такого рода устройств является микрочип, передающий внешние сигналы к клеткам глазного нерва. Это происходит посредством электродов. К примеру, у Argus II этих электродов 60, при этом, чем их больше, тем более детальным получится изображение, ведь микрочип сможет активировать больше клеток, а значит сообщать мозгу больше информации.

В этой связи можно с уверенностью предсказать борьбу между производителями имплантатов за увеличение числа электродов подобное тому, что произошло в сфере процессорных технологий, когда на единице площади пытались уместить по возможности больше транзисторов.

Так вот, рабочей группе проф. Кинзи Джонсу из международного университета во Флориде сделать это удалось. По их технологии производят чипы уже с 256 электродами. Данная технология, правда, пока что ждет клинических испытаний, но, ученые уверены, что их чипам уготовано блестящее будущее.

Однако не нужно думать, что подобные устройства - панацея от связанных с сетчаткой проблем. Какие бы успехи не предрекали таким протезам, вряд ли в обозримом будущем они смогут полностью заменить сетчатку в человеческом глазу.

Сегодня во всем мире живет примерно 285 миллионов людей с различными нарушениями зрения, из которых порядка 36 миллионов являются полностью слепыми. Чтобы облегчить их жизнь во многих странах сегодня разрабатываются различные методы лечения и технологии, основанные на использовании стволовых клеток, генной терапии и разного рода фармакологического воздействия. Но для людей, потерявших зрение в результате дегенеративных изменений в сетчатке, есть еще одна надежда – разрабатываемые сейчас устройства, получившие название ретинальные протезные системы или проще - бионические глаза (надо отметить, что должны оставаться сохранными некоторые клетки сетчатки).

На данный момент, за 25 лет разработок и длительных испытаний подобные "протезы зрения" имеют уже более 260 людей во всем мире, в России же первая имплантация ретинального протеза была произведена в 2017 году.

Бионический глаз: что это?

Ретинальная протезная система или просто "бионический глаз" - это система искусственного зрения для людей, потерявших зрение в результате болезни, связанной с дегенерацией наружного слоя клеток сетчатки – фоторецепторов, клеток, которые будучи живыми трансформируют свет в понятный мозгу электрический сигнал. Такие устройства имеют различные конструкции, но основной их рабочей частью являются матрицы микро-электродов, которые хирургическим путем помещаются в глаз, в области глазного нерва (который передает импульсы из глаза в мозг) или непосредственно в головной мозг. Эти микро-электроды, в зависимости от вида протеза могут стимулировать либо все еще функционирующую часть сетчатки потерявшего зрение человека, либо зрительный нерв как проводящую структуру или воздействать непосредственно на визуальный отдел коры головного мозга. Стимуляция происходит за счет слабых электрических импульсов, примерно так же, как это происходит при применении кохлеарного имплантата.

Электростимуляция нейронов воспринимается человеком как появление небольших световых пятен, которые носят название «фосфены». Такие фосфены позволяют человеку с бионическим глазом получать видение сформированного устройством (с помощью камеры или без нее) окружающего пространства. На самом деле пока бионический глаз не может обеспечивать нормальное зрение и далек от идеала, а "показывает" набор световых пятен и форм, подобных световой мозаике, которую человек после определенной тренировки может использовать для идентификации окружающей его среды. Но исследования продолжаются и качество таких устройств становится все лучше.

История вопроса

Системы бионического зрения разрабатываются сразу в нескольких странах и эти проекты находятся сегодня в разной стадии готовности. Причем пока считается, что подобные бионические системы пригодны только для людей, потерявших зрение вследствие дегенеративных заболеваний зрения, таких как, например, и . Это связано с тем, что при таких заболеваниях определенная часть клеток сетчатки, как и глазной нерв, остаются неповрежденными.

В настоящее время лишь несколько подобных бионических протезов разрешены к коммерческому использованию регуляторами отрасли здравоохранения разных стран. Это Argus II, разработанный в США, немецкая система RI Alpha AMS, IRIS II из Франции и принципиально отличающаяся от них система VisionCare (США).

Виды имплантатов

По своей конструкции и методам функционирования глазные имплантаты делятся на эпиретинальные (на сетчатке), субретинальные (позади сетчатки), супрахориоидальные (выше сосудистой оболочки), интрасклеральные, на зрительном нерве, а также имплантируемые в мозг.

Эпиретинальные импланты

Argus II ( Second Sight , США)

Система Argus, разработанная американской компанией Second Sight, является самым первым имплантируемым в глаз протезом, который стал применяться для частичного восстановления зрения у людей, страдающих тяжелой формой . Кроме того, этот имплантат тестировался для применения у людей с более часто встречающимся заболеванием - . Argus - эпиретинальная система, т.е. имплантат помещается поверх сетчатки. Впервые это устройство было имплантировано человеку в 2006 году. Сегодня компания использует вторую версию этого протеза - Argus II, который уже имеет разрешение на использование от европейских (2011 г.) и американских (2013 г.) регуляторов отрасли здравоохранения.

Это устройство использует камеру, интегрированную в очки, и имплантат, располагающийся частично вокруг глаза и частично на поверхности сетчатки. Argus II пока что позволяет человеку видеть только тени и очертания фигур. При этом все, что видит камера, преобразуется в электрические сигналы, которые беспроводным образом транслируются в имплантат. В свою очередь имплантированный чип стимулирует клетки сетчатки, заставляя их отправлять полученную информацию в оптический нерв и дальше для обработки в зрительную кору головного мозга.

Сама операция имплантации длится порядка пяти часов и через две недели пациент надевает очки, чтобы начать учиться использовать Argus II.

Стоимость:

Цена устройства - около $150 000, без учета стоимости операции и тренинга для обучения пользованию этой системой.

  • Обеспечивает возможность ориентироваться в пространстве
  • Некоторые пользователи получают возможность читать большие буквы и самостоятельно передвигаться в городе.

Недостатки устройства:

  • В сущности, человек не получает нормального зрения и это связано с тем, что данная версия импланта имеет только 60 электродов, а для того, чтобы видеть хорошо, необходимы примерно 1 млн электродов
  • Высокая стоимость
  • Относительно громоздкие очки


IRIS II (Pixium Vision, Франция )

Система бионического зрения IRIS II, предназначенная для людей, потерявших зрение вследствие пигментного ретинита, использует камеру, встроенную в специальные очки, и состоящий из 150 электродов эпиретинальный имплант, устанавливаемый на сетчатке. Технология разработана специально для людей, те же патологические изменения, что и при Argus II.

Принцип работы устройства основан на том, что изображение улавливается камерой, затем попадает в миниатюрный компьютер, подключенный к очкам проводом, где обрабатывается и по беспроводному каналу передается на имплантат. Имплантат с помощью электродов стимулирует зрительный нерв, позволяя пользователю различать черный и белый цвет, а также около десяти оттенков серого цвета. Камера в очках имеет независимые пиксели, которые непрерывно распознают изменения в окружающей среде. В сущности, система работает как матрица клеток-фоторецепторов, которые она заменяет, обеспечивая людей базовыми возможностями зрения, которого без этого устройства они не имели.

Так же, как и в случае с Argus II, по мере использования «зрение» будет постепенно приспосабливаться и через некоторое время человек научится распознать лица людей. Уверенность ученым дают испытания, проведенные на животных, в частности, зрение крыс удавалось восстанавливать до уровня 20/250, т.е. для людей это означает возможность читать текст, написанный крупными буквами, и различать лица.

Стоимость:

Нет данных.


Достоинства бионического глаза:

  • Более высокая разрешающая способность, чем у Argus II (в 2,5 раза)
  • После длительного использования позволяет различать лица и читать крупные буквы
  • Внешняя электроника также позволяет иметь полный контроль над обработкой изображений и даже адаптировать обработку для каждого пациента

Недостатки:

  • Относительная непродолжительность работы имплантата, что со временем требует его замены
  • Необходимость внешнего устройства, которое достаточно громоздкое
  • Высокая стоимость операции и устройства
  • Не позволяет различать цвета

PRIMA (Pixium Vision, Франция)

Новая система компании Pixium Vision предназначена для помощи людям, страдающим сухой формой при которой нарушается центральное зрение. Как и IRIS, PRIMA работает в паре с очками, которые с помощью камеры снимает окружающую пользователя сцену, передает информацию на компьютер для обработки, который затем передает ее на сам имплантат с помощью инфракрасного излучения (к которому чувствительная электродная решетка). С помощью этого же излучения осуществляется питание ретинального импланта. Этот электронный чип имеет размеры 2 х 2 миллиметра, толщину 30 мкм (а это в три раза тоньше человеческого волоса) и 378 электродов, т.е. в два раза больше, чем IRIS II.

Первая тестовая имплантацию этого устройства пациенту была проведена в конце 2017 года.

Операция по имплантации устройства занимает 90 минут.

Стоимость:

Пока не определена.

Достоинства устройства:

  • Может использоваться для больных
  • Имеет большую разрешающую способность, чем IRIS II и Argus II

Недостатки:

  • Проводная связь с управляющим блоком
  • Не позволяет различать цвета
  • Сложная операция, связанная с риском для здоровья
  • Необходимость внешнего устройства, которое относительно громоздкое

Субретинальный имплант


Alpha IMS (Retina Implant AG,
Германия )

Субретинальные импланты располагаются между слоем фоторецепторов и ретинальным пигментным эпителием. Данные устройства стимулируют в первую очередь клетки сетчатки, находящиеся со стороны фоторецепторов, что, как полагают разработчики, должно формировать более естественный поток импульсов в головной мозг. Именно такой имплантат разработала немецкая компания Retina Implant, который уже имеет официальное разрешение европейских регулирующих органов на его применение. Имплантат Alpha AMS предназначен для людей, страдающих от , и работает с оптическими сигналами, поступающими непосредственно на сетчатку, без применения внешней камеры. Это обеспечивает свободное движение глаз пациента, в то время как, например, больному с Argus II для того, чтобы посмотреть в сторону, нужно повернуть туда голову. Причем окружающие могут даже не заметить, что перед ними человек с бионическим зрением. Правда, для питания устройства требуется вживлять под кожу головы систему, подобную той, что используется при кохлеарной имплантации.

Технология, использованная в устройстве, обеспечивает глаз самым большим количеством электродов по сравнению с аналогичными устройствами. Имплантат представляет собой чип 3х3 мм, содержащий 1600 фотодиодов (пикселей) с фоточувствительным элементом и парным электродом. При попадании света, фотодиод преобразует фотоны в электрический сигнал, который усиливается и воздействует на . Яркость и контрастность изображения регулируется самим пациентом с помощью пульта на батарейках,

Alpha AMS, к сожалению, не может восстановить зрение у пациента (наш глаз имеет примерно 100 миллионов «фоторецепторов-пикселей»), но может несколько повысить способность слабовидящего человека ориентироваться в пространстве и различать крупные контрастные предметы.

Стоимость:

В настоящее время такие устройства имплантируются только в Германии и стоимость устройства обычно возмещается в рамках медицинской страховки. Других данных о стоимости нет.

Достоинства устройства:

  • Относительно высокая разрешающая способность
  • Для получения изображения устройство использует оптический аппарат глаза
  • Обеспечивается возможности узнавать лица людей, очертания фигур, распознавать различные объекты
  • Простота устройства по сравнению с эпиретинальными системами
  • Более простая фиксация имплантата из-за ограниченности субретинального пространства и давления на устройство, которое создает пигментный эпителий

Недостатки:

  • Необходимость внешнего питания, закрепляемого под кожей на голове.
  • Во время испытаний были зафиксированы отказы устройства, требующие повторной операции
  • Отсутствие цветового зрения
  • Ограничение по размеру вследствие небольшого объема субретинального пространства
  • Возможность повреждения сетчатки из-за выделения тепла имплантатом

Cупрахориоидальный имплантат


Bionic
Vision ( Bionic Vision , Австралия)

Еще один вариант бионического импланта, разработанный в Австралии, помещается между (сосудистая оболочка). Такой супрахориоидальный имплант, по мнению разработчиков, обеспечивает большую стабильность устройства, чем субретинальный или эпиретинальный. Он, также, обеспечивает большую безопасность для пациента, поскольку операция имплантации более простая и менее инвазивная. Процедура не затрагивает тканей сетчатки и не требует удаления стекловидного тела из глаза, что снижает вероятность осложнений после операций.

Данный ретинальный протез может принести пользу людям с на столько же сохранной системой передачи информации от сетчатки до мозга, сколько и при использовании предыдущих устройств.

Бионический глаз состоит из небольшой цифровой камеры, закрепленной на очках, внешнего процессора и имплантата (микрочип и стимулирующие электроды). Передача информации на имплантат осуществляется беспроводным способом. На сегодняшний день разработаны три версии устройства: прототип с 44 электродами, вариант с широким полем зрения и 98 электродами, и самый продвинутый с 256 электродами. Размер самого современного имплантата - 5 х 5 мм. В дальнейшем разработчики планируют испытать версию с 1024 электродами, которая представляет собой матрицу из четырех 256-электродных чипов. Это должно позволить пользователю различать лица и читать.

Система использует "умную" обработку сигнала, прежде чем отправлять ее на имплант. Она не просто повышает контрастность, а кодирует объекты в зависимости от того, что находится рядом сними, что позволяет пользователю легче избегать столкновений.

Бионический глаз конвертирует изображение в высококонтрастное представление, часть которого проходит дополнительную обработку. На рисунке ниже эта зона выделена голубым и соответствует зоне области зрения, плохо видимой для бионического глаза. Процессор затем преобразует изображение в параметры электростимуляции, направляемые в электроды. Пациент при этом получает "замыленное" изображение, составленное из световых вспышек.

Область зрения при этом небольшая - не более 30°, поэтому пациенту надо иметь хорошую память, чтобы "собирать" полную картину своего окружения.

Стоимость:

Цена устройства и стоимость операции по его имплантации пока не определены.

Достоинства устройства:

  • Обеспечивается лучший контроль стимуляции зрительного нерва по сравнению с фотодиодным вариантом за счет предварительной обработки зрительного сигнала
  • Более безопасная операция имплантации, по сравнению с субретинальным или эпиретинальным методом
  • Позволяет людям ориентироваться в окружающем пространстве

Недостатки:

  • Невысокая разрешающая способность
  • Отсутствие цветового зрения
  • Необходимость относительно длительной тренировки, чтобы научиться распознавать окружение

Устройство, имплантируемое в мозг (кортикальный имплант)

Orion I (Second Sight, США )

Система Orion I Visual Cortial Prosthesis представляет собой еще одно устройство компании Second Sight и несколько отличается от него по своему принципу работы - оно не использует оптический нерв и всю систему зрения, а напрямую стимулирует зрительную кору головного мозга. Это позволит видеть даже людям, которые потеряли всю функциональность своих глаз. В остальном это устройство представляет собой модифицированную версию Argus II, т.е. состоит из очков с камерой, внешнего процессора и имплантируемого чипа.

Принцип работы устройства заключается в преобразовании изображений, полученных при помощи миниатюрной камеры, закрепленной на очках пациента, в серию электрических импульсов, которые беспроводным образом транслируются в электроды, имплантированные на поверхности зрительной коры головного мозга. Такая система потенциально может восстановить зрение у ослепших людей путем обхода поврежденных сетчатки и зрительного нерва, и прямой стимуляции зрительной области коры головного мозга. Клинические испытания Orion I начаты в феврале 2018 года.

По мнению разработчиков, новое устройство может предоставить пациенту примерно такой же уровень зрения, как Argus II, или, возможно, несколько меньше. Т.е. пользователь сможет отличать свет от темноты и распознавать очертания предметов, но не будет различать цвета.

Стоимость:

Стоимость устройства не определена, поскольку оно находится на стадии тестирования.

Достоинства устройства:

  • Устройство может помочь людям, страдающим потерей зрения по разным причинам
  • Обеспечивает возможность человеку видеть свет и ориентироваться
  • Возможно будет дешевле, чем Argus, так как может применяться у большего числа пациентов

Недостатки:

  • Риск появлением судорог в результате манипуляции на мозге
  • Не обеспечивает возможность различать цвета
  • Использование внешнего вычислительного блока, создающего неудобство при ношении

Новые технологии для бионического зрения


Искусственная сетчатка

Ученые из Итальянского технологического института придумали имплант, который работает как замена поврежденной сетчатки и изготавливается из тонкого слоя проводящего полимера, помещенного в субстрат на основе шелка и покрытого полупроводниковым полимером. Этот полупроводник работает как фотоэлектрический материал, поглощающий фотоны, когда свет попадает в глаз. Когда это происходит, электрический сигнал стимулирует нейрон сетчатки, заполняя таким образом "пробел", оставленный естественными, но поврежденными фоторецепторами глаза.

«Как показали эксперименты на крысах, при освещенности как при сумерках или лучше, реакция животных с имплантатами на свет практически ничем не отличалась от реакции здоровых животных. Тем не менее, нам необходимо дождаться результатов исследований нового материала на людях, чтобы понять может ли этот метод использоваться для лечения людей с » - комментируют разработчики.

Похожую технологию разрабатывают специалисты Оксфордского университета (США). Они создали мягкий синтетический материал, который по своим характеристикам намного ближе к человеческой ткани, из которой состоит сетчатка, чем материалы, применяемые сегодня в глазных имплантатах. Он представляет собой клеточную структуру из натуральных, биоразлагаемых материалов и не содержит инородных тел или живых клеток. Это делает имплантат менее инвазивным, чем механическое устройство, и он с меньшей вероятностью может вызвать негативную реакцию организма.

"Копия" сетчатки состоит из капелек воды, заключенных в оболочку из белков мембраны клеток. Похожие на миниатюрные фотокамеры, такие клетки работают как пиксели, обнаруживая и реагируя на свет, что позволяет создавать изображение в серых тонах. Данный материал может генерировать электрический сигнал, который будет стимулировать нейроны на задней части глаза так же, как и реальная сетчатка.

Пока эта технология протестирована только в лаборатории, поэтому следует дождаться результатов тестирования на людях, чтобы понять насколько эта прорывная разработка эффективна для помощи слабовидящим людям.

Российский опыт

В России системы бионического зрения начали внедряться только в самое последнее время. 30 июня 2017 года устройство Argus II было имплантировано 59-летнему Григорию Ульянову из Челябинска, который более 20 лет назад потерял зрение вследствие Операцию провела международная бригада врачей в Москве, в Научно-клиническом центре оториноларингологии ФМБА, российскую часть команды возглавлял Христо Тахчиди.

Эта операция - совместный проект Фонда поддержки слепоглухих «Со-единение», благотворительного фонда Алишера Усманова «Искусство, наука и спорт», АНО «Лаборатория «Сенсор-Тех», ФГБУ «Научно-клинический центр оториноларингологии ФМБА России» и компании Second Sight.

Операция очень дорогая и пока малодоступная, но по мнению специалистов, со временем удастся включить имплантацию в программы бесплатной высокотехнологичной медицинской помощи.

Как говорит Григорий Ульянов,

Я был потрясен и очень доволен. Я видел контуры окон и дверей, очертания предметов. Только с людьми есть проблема: вижу фигуру человека, но не понимаю, кто это, мужчина или женщина. Я и дочку не сразу узнал. Вижу, кто-то идет. «Папа, это я!» По голосу узнал, что дочка. Говорю: «Вижу тебя, могу подойти!» Очень обрадовался.

Я вижу, но не так, как вы. Я-то вижу по-другому, по черно-белому. Изображение поступает в мозг, мозг его обрабатывает, выдает внешние координаты, и я по ним начинаю ориентироваться. Я уже могу перемещаться по улице, ориентируясь на большие объекты. Я не могу сказать, что иду по слуху или по зрению - по всему вместе.