Глазные имплантанты. Глазной имплант. Микрохирургические аспекты протезирования

Используя совершенно новый метод, ученые смогли взять образцы клеток роговицы из глаз испытуемых и культивировать клетки в лаборатории. Они регенерировали и размножили клетки на синтетической пленке гидрогеля, затем имплантировали эту пленку обратно в глаза испытуемых.

Пленка толщиной в 50 микрометров сравнима с обычной контактной линзой. Выращенные в лаборатории клетки роговицы принялись за работу и восстановили баланс жидкости под роговицей, а через два месяца синтетическая пленка разложилась, оставив после себя здоровые клетки, которые продолжили поддерживать водный баланс роговицы.

Важно отметить, что эта процедура не испытывалась на людях, но восстановила зрение животным и не вызвала неблагоприятных иммунных реакций. Клинические испытания на людях начнутся в 2017 году и, возможно, изменят будущее для людей, страдающих от помутнения роговицы.

Бионические глаза

В 2013 году FDA одобрила первый бионический имплантат для лечения пигментного ретинита глаза, наследственного заболевания, которое приводит к дегенерации фоторецепторов сетчатки глаза. Пользователи этой технологии носят пару очков, оснащенных крошечной видеокамерой. Данные идут от камеры к блоку обработки видеосигнала и к группе электродов, имплантированных в сетчатку. Электроды преобразуют данные в электрические импульсы, которые стимулируют сетчатку на производство изображений.

Процедура, призванная справиться с возрастной макулярной дегенерацией, которая является ведущей причиной слепоты у людей, которым за 55, удаляет естественный хрусталик глаза и заменяет его телескопическим объектов размером с горошину, который увеличивает объект и проецирует изображения на оставшуюся здоровую область сетчатки.

Такие технологии уже помогли восстановить зрение тысячам людей, но чтобы сделать бионическое зрение эквивалентным идеальному зрению человека, предстоит решить еще много вопросов. Пациенты с имплантатами сетчатки или хрусталика жалуются на плохое разрешение, сложности со зрением при движении на высокой скорости и ограниченное поле зрения.

По мере прорывов в биологических методах лечения зрения и искусственных решениях, вроде бионических глаз, слепота может в один прекрасный день стать недугом прошлого.

Можете ли вы представить себе, что чувствует человек, который не видит или почти не видит окружающий мир? Такое состояние называется слепотой – невозможностью воспринимать зрительные стимулы из-за патологических нарушений в самом глазу, в зрительных нервах или в мозге. В 1972 году Всемирная Организация Здравоохранения (ВОЗ) приняла следующее определение: человек считается слепым, если острота центрального зрения в условиях максимальной коррекции не превышает 3/60. При таком зрении человек в условиях дневного освещения с максимальной коррекцией оптики неспособен сосчитать пальцы с расстояния в 3 метра.

Так вот для таких случаев была предложена идея электрической стимуляции сетчатки или зрительной коры, создание протеза, который по механизму действия имитирует настоящие процессы передачи электрических сигналов.

Вариантов электронных имплантов несколько, каждый год появляются новые идеи, но термин и сам «Бионический глаз» (Bionic Eye) разработан Дэниелом Паланкером, сотрудником Стэнфордского университета и его научной группой «Биомедицинской физики и офтальмологических технологий».

Имплантация модели бионического глаза Argus II (кстати, единственной модели, имеющей ЕС марку, но не сертифицированной в России) была выполнена в России в июле 2017 года одному пациенту. И со всех источников телевещания мы услышали – теперь человек сможет увидеть мир как раньше. Сотни людей просят поставить бионический глаз, а некоторые вдобавок просят «вживить» чипы для суперзрения.

Так что же мы на сегодняшний день имеем и может ли стать явью мечта увидеть мир после того, как потерял зрение?

БИОЛОГИЧЕСКИЕ АСПЕКТЫ ПРОТЕЗИРОВАНИЯ СЕТЧАТКИ

Бионическими называют протезы и имплантируемые элементы частей организма человека, которые подобны по внешнему виду и функциям на настоящие органы или конечности. На сегодняшний день людям успешно помогают в полноценной жизни бионические руки, ноги, сердца, а также органы слуха. Цель создания электронного глаза - помочь слабовидящим с проблемами сетчатки или зрительного нерва. Имплантируемые вместо поврежденной сетчатки устройства должны заменить миллионы клеток фоторецепторов глаза, пусть не на все 100%.
Технология для глаз похожа на ту, которая используется в слуховых протезах, помогающим глухим людям слышать. Благодаря ей пациенты имеют меньше шансов потерять остаточное зрение, а утратившие зрение - видеть свет и иметь хоть какую-то способность ориентироваться в пространстве самостоятельно.

ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ

Общий принцип действия электронного глаза следующий: в специальные очки встраивается миниатюрная камера, с нее информация об изображении передается в девайс, который преобразует картинку в электронный сигнал и отсылает его на специальный передатчик, который в свою очередь посылает электронный сигнал на имплантированный в глаз или в мозг приёмник, или информация передается через крошечный проводок на электроды, присоединенные к сетчатке глаза, они стимулируют оставшиеся нервы сетчатки, посылая электрические импульсы в головной мозг через оптические нервы. Устройство призвано компенсировать утраченные зрительные ощущения при полной или неполной потере зрения.

Главные условия успешной работы системы:

МИКРОХИРУРГИЧЕСКИЕ АСПЕКТЫ ПРОТЕЗИРОВАНИЯ

Это обширнейшие операции. Если описать, например, имплантацию субретинального (расположенного под сетчаткой) бионического глаза – нужно полностью сетчатку поднять, потом сделать обширную ретинэктомию (обрезать часть сетчатки), потом под сетчатку установить этот чип, затем сетчатку пришить ретинальными гвоздями, приклеить сетчатку лазеркоагуляцией и залить силиконовым маслом. Силиконовая тампонада необходима, иначе моментально появится ПВР (пролиферативная витреоретинопатия) и возникнет отслойка. Да, еще и хрусталика собственного не должно быть или он должен быть предварительно заменен на искусственную линзу.

Для операции нужны особые инструменты с щадящими силиконовыми наконечниками. Это совершенно непростая операция, кроме того еще нужен оро-фациальный хирург или ЛОР – они через кожу выводят электроды наружу. И получается такое устройство – чип внутри глаза, а в руках такой приборчик величиной с мобильный телефон, которым ты можешь изменять интенсивность сигнала, он соединяется с подкожными электродами. Одного офтальмолога-хирурга при операции недостаточно – нужна помощь других дисциплин, операция длится долгих 6 часов.

ЭКОНОМИЧЕСКИЕ АСПЕКТЫ ПРОТЕЗИРОВАНИЯ

  1. Во-первых, это дорого. Только прибор стоит порядка 150 тыс. долларов, то есть почти 8,5 миллионов рублей. А все лечение одного такого пациента может достигать 10 миллионов рублей. Речь идет о модели Argus II. На сегодняшний день в некоторых странах, например, в Германии эта операция оплачивается за счет страховок.
  2. Фирмы, занимающиеся разработкой и производством, во всем мире живут на государственных дотациях, на грантах. Это здорово - такие вещи должны поддерживаться, иначе никакого развития не будет.
  3. Сертификата в России нет ни на какое из нижеперечисленных устройств.

МЕДИЦИНСКИЕ АСПЕКТЫ ПРОТЕЗИРОВАНИЯ

1. Результаты довольно скромные – после операции таких людей нельзя назвать зрячими, они видят на уровне 0,05 максимум, т.е. могут видеть контуры и определять направление движения тени, цветов вообще не различают, предметы могут различаться только те, которые помнятся из прежней «зрячей» жизни, например: «ага – это, наверное, банан, так как что-то полукруглое». Видят, что что-то на них движется, могут догадаться, что это человек, но лицо его не различают.

2. При каких заболеваниях может быть полезен бионический глаз?
Первые пациенты – это пациенты с пигментным ретинитом (retinitis pigmentoza) – заболеванием с первичным исчезновением фоторецепторов и вторичной атрофией зрительного нерва. В России таких пациентов 20-30 тысяч человек, в Германии – всего несколько тысяч.

Следующими на очереди стоят пациенты с географической атрофической макулярной дегенерацией. Это чрезвычайно распространенная возрастная патология глаза.
Третьими будут, больные глаукомой. Глаукомой пока не занимались, так как атрофия зрительного нерва в этом случае первичная, поэтому способ передачи должен быть другой – в обход зрительного нерва.

Диабет – это самая сложно решаемая проблема. Один из методов лечения диабетических изменений на сетчатке – лазеркоагуляция по всей поверхности. После такой процедуры технически невозможно поднять сетчатку из-за лазеркоагулятов - это получается «решето». А если не сделано лазером – ситуация не лучше: обычно глаз настолько поврежден, что имплантация в этом случае бесполезна.

3. К сожалению, нынешний прототип бионического глаза не позволяет людям видеть окружающий мир так, как видим его мы. Их цель - перемещаться самостоятельно без посторонней помощи. До массового использования этой технологии еще далеко, однако ученые подарят надежду людям, потерявшим зрение.

ТЕКУЩИЕ ПРОЕКТЫ «БИОНИЧЕСКИХ ГЛАЗ»

В последние несколько десятков лет ученые разных стран работают над идеями бионических электронных глаз. С каждым разом технологии совершенствуются, однако на рынок для массового использования свое изделие еще никто не представил.

1. Argus retinal prosthesis

Ретинальный протез Argus – это американский проект, довольно хорошо коммерциализированный. В первой модели разрабатывался командой исследователей в начале 1990-х годов: пакистанского происхождения офтальмологом Марком Хамейуном (Mark Humayun, кстати, профессор Секундо с ним знаком по Johns Hopkins University – в то время он был резидентом 2-го года, Вальтер - студентом), Евгеном Дейаном, инженером Ховардом Филлипсом, биоинженером Вентай Лью и Робертом Гринбергом. Первая модель, выпущенная в конце 1990-х, компанией Second Sight имела всего 16 электродов.

«Полевые испытания» первой версии бионической сетчатки были проведены Марком Хамейуном шести пациентам с потерей зрения в результате заболевания retinitis pigmentosa в промежутке с 2002 по 2004 год. Retinitis pigmentosa - неизлечимая болезнь, при которой человек теряет зрение. Наблюдается примерно в одном случае на каждые три с половиной тысячи человек.


Пациенты, которым был вживлен бионический глаз, показали способность не только различать свет и движение, но и определять предметы размером с кружку для чая или даже ножа.
Устройство для испытаний было усовершенствовано - вместо шестнадцати светочувствительных электродов в него было вмонтировано шестьдесят электродов и названо Argus II. В 2007 году начато мультицентровое исследование в 10 центрах 4-х стран США и Европы – всего 30 пациентов. В 2012 году Argus II получил разрешение для коммерческого использования в Европе, годом позже в 2013 году – в США. В России разрешения нет.

По сей день эти исследования субсидируются государственными фондами, в США их три - National Eye Institute, Department of Energy, and National Science Foundation, а также рядом исследовательских лабораторий.


Так выглядит чип на поверхности сетчатки

2. Microsystem-based visual prosthesis (MIVP)

Модель протеза спроектирована Клодом Вераартом (Claude Veraart) в университете Лувена в виде спиральной манжеты электродов вокруг зрительного нерва в задней части глаза. Она коннектится со стимулятором, имплантированным в небольшую ямку в черепе. Стимулятор получает сигналы от внешней камеры, которые переводятся в электрические сигналы, стимулирующие непосредственно зрительный нерв.


Схема MIVP

3. Implantable miniature telescope

На самом деле это устройство нельзя назвать «протезом сетчатки», поскольку этот телескоп имплантируется в заднюю камеру глаза и работает как лупа, увеличивающая ретинальное изображение в 2.2 или 2.7 раз, что позволяет уменьшить влияние на зрение скотом (слепых зон) в центральной части поля зрения. Имплантируется только в один глаз, поскольку наличие телескопа ухудшает периферическое зрение. Второй глаз работает для периферии. Имплантируется через довольно большой разрез роговицы.

Кстати, похожий принцип используется в добавочных интраокулярных линзах Шариотта. У меня самый большой опыт имплантации этих линз в России и результатами пациенты довольны. В этом случае вначале предварительно проводится факоэмульсификация катаракты. Хотя это, конечно, не 100% бионический глаз.

Подробнее об этом в предыдущих постах:



Телескопическая система для задней камеры глаза

4. Tübingen MPDA Project Alpha IMS

В 1995 году в Университетской глазной клинике Тюбингена началась разработка субретинальных протезов сетчатки. Под сетчатку укладывался чип с микрофотодиодами, который воспринимал свет и трансформировал в электрические сигналы, стимулирующие ганглионарные клетки наподобие естественного процесса в фоторецепторах неповрежденной сетчатки.

Конечно, фоторецепторы во много крат чувствительнее искусственных фотодиодов, поэтому они требовали специального усиления.

Первые эксперименты на микросвинках и кроликах были начаты в 2000 году, и только в 2009 году импланты были вживлены 11 пациентам в рамках клинического пилотного исследования. Первые результаты были обнадеживающими – большинство пациентов смогли отличать день от ночи, некоторые даже могли распознавать предметы – чашку, ложку, следить за перемещением крупных предметов. Кстати, дальнейшая участь этих пациентов была печальна – всем участникам эксперимента, даже тем, кто что-то увидел, согласно подписанному соглашению были удалены «бионические глаза» и они вернулись в исходное состояние.

На сегодняшний день Alpha IMS, производства Retina Implant AG Germany имеет 1500 электродов, размер 3×3 мм, толщиной 70 микрон. После установки под сетчатку это позволяет почти всем пациентам получить некоторую степень восстановления светоощущения.

Технически эту сложную операцию в Германии делают только в трех центрах: в Аахене, в Тюбингене и Лейпциге. В итоге это делают хирурги так называемой Кельнской школы, ученики профессора витреоретинального хирурга Хайнеманна, к сожалению, довольно рано скончавшегося от лейкемии, но все его ученики стали руководителями кафедр в Тюбингене, Лейпциге и в Аахене.

Эта группа ученых обменивается опытом, ведет совместные научные разработки, у этих хирургов (в Аахене – профессор Вальтер (это его фамилия), в Тюбингене – профессор Барц-Шмиц) самый большой опыт работы с бионическими глазами, потому как в этом случае 7-8-10 имплантаций считается большим опытом.


Alpha IMS на глазном дне

5. Harvard/MIT Retinal Implant

Джозеф Риццо и Джон Уайетт из Массачусета начали исследовать возможность создания протеза сетчатки в 1989 году, и провели испытания стимуляции на слепых добровольцах в период между 1998 и 2000 годами. На сегодняшний день это идея устройства минимально инвазивного беспроводного субретинального нейростимулятора, состоящего из массы электродов, который помещается под сетчатку в субретинальном пространстве и получает сигналы изображения от камеры, установленной на паре очков. Чип-стимулятор декодирует данные изображения из камеры и стимулирует соответственно ганглиозные клетки сетчатки. Протез второго поколения собирает данные и передает их имплантату через радиочастотные поля из катушки передатчиков, установленных на очках. Вторичная катушка приемника зашита вокруг радужки.


Модель MIT Retinal Implant

6. Artificial silicon retina (ASR)

Братьями Аланом Чоу и Винсентом Чоу был разработан микрочип, содержащий 3500 фотодиодов, которые обнаруживают свет и преобразуют его в электрические импульсы, стимулирующие здоровые ганглионарные клетки сетчатки. «Искусственная силиконовая сетчатка» не требует использования внешних устройств. Микрочип ASR - это кремниевый чип диаметром 2 мм (та же концепция, что и в компьютерных чипах), 25 микрон толщиной, содержащий ~5000 микроскопических солнечных элементов под названием «микрофотодиоды», каждый из которых имеет свой собственный стимулирующий электрод.


Схема ASR

7. Photovoltaic retinal prosthesis

Даниэль Palanker и его группа в Стэнфордском университете разработали фотоэлектрическую систему, она же и есть «бионический глаз». Система включает в себя субретинальной фотодиод и инфракрасную проекционную систему изображения, установленную на видеоочки.

Информация с видеокамеры обрабатывается в девайсе и отображается в импульсном инфракрасном (850-915 нм) видеоизображении. ИК-изображение проецируется на сетчатку через естественную оптику глаза и активирует фотодиоды в субретинальном имплантате, которые преобразуют свет в импульсный бифазный электрический ток в каждом пикселе.

Интенсивность сигнала может быть дополнительно увеличена с помощью увеличения общего напряжения, обеспечиваемого радиочастотным приводом имплантируемого источника питания.

Схожесть между электродами и нейронными клетками, необходимая для стимуляции высокого разрешения, может быть достигнута с использованием эффекта миграции сетчатки.


Модель Паланкера

8. Bionic Vision Australia

Австралийская команда во главе с профессором Энтони Буркиттом разрабатывает два протеза сетчатки.

Устройство Wide-View сочетает в себе новые технологии с материалами, которые были успешно использованы для других клинических имплантатов. Этот подход включает в себя микрочип с 98 стимулирующими электродами и направлен на повышение мобильности пациентов, чтобы помочь им безопасно перемещаться в своей среде. Этот имплантат будет помещен в супрахориоидальное пространство. Первые тесты пациентов с этим устройством начаты в 2013 году.

Bionic Vision Australia - это микрочип-имплантат с 1024 электродами. Этот имплантат помещается в супрахориоидальное пространство. Каждый прототип состоит из камеры, прикрепленной к паре очков, которая посылает сигнал на имплантированный микрочип, где преобразуется в электрические импульсы для стимуляции оставшихся здоровых нейронов сетчатки. Затем эта информация передается зрительному нерву и центрам обработки зрения головного мозга.

Австралийский исследовательский совет присудил Bionic Vision Australia грант в размере 42 миллионов долларов США в декабре 2009 года, и консорциум был официально запущен в марте 2010 года. Bionic Vision Australia объединяет многопрофильную команду, многие из которых имеют большой опыт разработки медицинских устройств, таких как «бионическое ухо».


Модель Bionic Vision Australia

Благодаря исследователям из Института бионики (Мельбурн, Австралия) и компании evok3d, трудящихся над «бионическим глазом», люди, страдающие пигментной дистрофией сетчатки и возрастной молекулярной дегенерацией, в перспективе смогут восстановить зрение. Для проведения процедур восстановления необходимы оставшиеся у пациента ганглионарные клетки, здоровый зрительный нерв и здоровая зрительная зона коры головного мозга. В этом случае у человека есть возможность вновь обрести зрение.

Для изготовления прототипа глаза, а также формы для его отливки, ученые из Института бионики обратились за помощью к специалистам компании evok3d, специализирующейся на 3D-услугах и для печати «искусственного глаза» использовали 3D-принтер ProJet 1200.

Понадобилось всего четыре часа, чтобы напечатать прототип на ProJet 1200, до появления 3D-печати на его изготовление тратили недели или даже месяцы. Вот так 3D-печать ускорила научно-исследовательский и производственный процесс.

Бионическая зрительная система включает в себя камеру, передающую радиосигналы микрочипу, расположенному в задней части глаза. Эти сигналы превращаются в электрические импульсы, стимулирующие клетки в сетчатке и зрительный нерв. Потом они передаются в зрительные зоны коры мозга и преобразуются в изображение, которое видит пациент.

9. Dobelle Eye

Аналогично по функции устройству Гарвард/МИТ (6), кроме стимуляторной микросхемы, которая имплантируется прямо в мозг в первичную зрительную кору, а не на сетчатку глаза. Первые впечатления от имплантата были неплохие. Еще в стадии развития, после смерти Добеля, было решено превратить этот проект из коммерческого в проект, финансируемый государством.


Схема Dobelle Eye

10. Intracortical visual prosthesis

Лаборатория нейронных протезов из Иллинойского технологического института в Чикаго, разрабатывает визуальный протез, используя внутрикорковые электроды. В принципе, аналогично системе Добеля, применение внутрикорковых электродов позволяет значительно увеличить пространственное разрешение в сигналах стимуляции (больше электродов на единицу площади). Кроме того, разрабатывается система беспроводной телеметрии для устранения необходимости в транскраниальных (внутричерепных) проводах. Электроды, покрытые слоем активированной пленки оксида иридия (AIROF), будут имплантированы в зрительной коре, расположенной в затылочной доле мозга. Наружный блок будет захватывать картинку, обрабатывать ее и генерировать инструкции, которые затем будут передаваться в имплантированные модули по телеметрическому линку. Схема декодирует инструкции и стимулирует электроды, в свою очередь стимулируя зрительную кору. Группа разрабатывает датчики внешней системы захвата и обработки изображений для сопровождения специализированных имплантируемых модулей, встроенных в систему. В настоящее время проводятся исследования на животных и психофизические исследования человека для проверки целесообразности имплантации добровольцам.


Чип на фоне монеты

ИТОГ

Сейчас все в стадии пусть не первичной, но такой вторичной разработки, что о массовой эксплуатации и решении всех проблем вообще пока речи не идет. Слишком мало людей прооперировано и никак нельзя говорить о массовом производстве. В настоящее время все это еще стадия разработки.

Первые работы начались более 20 лет назад. В 2000-2001 году что-то начало получаться на мышах. В настоящее время мы получили первые результаты на людях. То есть вот такая скорость.

Пока будет что-то серьезное, еще двадцать лет может пройти. Мы находимся на очень-очень ранней стадии, на которой есть первый положительный эффект – распознавание контуров, света, и не у всех – пока не могут предсказать кому это поможет, а кому нет.
Хирургов, которые занимаются этими экспериментами – по пальцам пересчитать.

Имплантировать один протез – это только с рекламной целью. Этими работами должны заниматься люди, у которых есть возможность делать 100-200 операций в год в рамках одной проектной группы, чтобы появилась критическая масса. Тогда появится понимание в каких случаях можно ожидать эффекта. Такие программы должны субсидироваться бюджетом или специализированными фондами.

Хотя еще нет совершенной модели, все существующие требует доработки, ученые полагают, что в будущем электронный глаз может заменить функцию клеток сетчатки и помочь людям обрести хоть малейшую способность видеть с такими заболеваниями, как пигментный ретинит, дегенерация желтого пятна, старческая слепота и глаукома.

Если у вас есть свои идеи, как еще можно с помощью технологий вернуть зрение людям (пусть пока еще и труднореализуемыми способами) – предлагаем их обсудить ниже.

А история с бионическими контактными линзами, потенциале редактирования генома, о том, как можно слышать цвета посредством кое-чего, вживленного в мозг – в следующих постах.

Только зарегистрированные пользователи могут участвовать в опросе. , пожалуйста.

В 2018 году 39 миллионов человек остаются слепыми. Из-за наследственных заболеваний, старения тканей, инфекций или травм. Одна из главных причин - это болезни сетчатки. Но наука развивается так быстро, что фантастика переходит из книг в лаборатории и операционные, снимая барьер за барьером. Ниже мы рассмотрим, какое будущее ждет офтальмологию, как будут лечить (и уже лечат), возвращать зрение, диагностировать недуги и восстанавливать глаза после операций.

Киборгизация: бионические глаза

Главный тренд офтальмологии будущего - бионические глаза. В 2018 году уже существуют 4 успешных проекта, и искусственные глаза сейчас - далеко не картинка из футуристического фэнтези.

Самый интересный проект - это Argus II от Second Sight. Устройство состоит из импланта, очков, камеры, кабеля и видеопроцессора. Имплант, имеющий передатчик, вживляется в сетчатку. Носимая с очками камера фиксирует изображения, которые процессор обрабатывает, генерируя сигнал, передатчик импланта принимает его и стимулирует клетки сетчатки. Так реконструируется зрение. Разработка изначально предназначалась для больных макулодистрофией. Это возрастное заболевание, оно сопровождается слабым кровоснабжением центра сетчатки и приводит к слепоте.

В чем недостаток технологии? Устройство стоит баснословные 150 тысяч долларов и не возвращает зрение полностью, лишь позволяя различать силуэты фигур. По состоянию на 2017 год 250 человек носят Argus II, что, безусловно, ничтожно мало.

У Argus II есть аналоги. Например, Boston Retinal Implant. Он тоже создан специально для пациентов с макулодистрофией и пигментным ретинитом (разложением фоторецепторов сетчатки). Он работает по похожему принципу, направляя сигналы нервным клеткам и создавая схематичное изображение объекта. Стоит назвать и IRIS, созданный для пациентов на последних стадиях деградации сетчатки. IRIS состоит из видеокамеры, носимого процессора и стимулятора. От них отличается Retina Implant AG. Имплант улавливает фотоны и активирует зрительный нерв, при этом устройство обходится без внешней камеры.

Импланты в головном мозге

Как ни странно, лечить зрение можно, не касаясь глаз. Для этого достаточно вживить в мозг чип, который будет стимулировать короткими электрическими разрядами зрительную кору. В этом направлении работает упомянутый выше Second Sight. Компания разработала альтернативную версию Argus II, которая совсем не затрагивает глаза и работает с мозгом напрямую. Девайс будет стимулировать нервные клетки током, извещая мозг о потоке света.

Искусственная сетчатка

Мы сказали, что пигментный ретинит поражает фоторецепторы сетчатки, из-за чего человек перестает воспринимать свет и слепнет. Это заболевание кодируется генетически. Сетчатка состоит из миллионов рецепторов. Мутация лишь в одном из 240 генов запускает их гибель и портит зрение, даже если связанные с ней зрительные нейроны будут целы. Как быть в этом случае? Имплантировать новую сетчатку. Искусственный аналог состоит из электропроводящего полимера с шелковой подложкой, завернутого в полимерный полупроводник. Когда падает свет, полупроводник поглощает фотоны. Вырабатывается ток и электрические разряды касаются нейронов сетчатки. Эксперимент с мышами показал, что при освещенности в 4-5 лк (Люксов), как в начале сумерек, мыши с имплантами реагируют на свет так же, как и здоровые грызуны. Томография подтвердила, что зрительная кора мозга крыс была активна. Неясно, будет ли разработка полезной для людей. Итальянский технологический институт (IIT) обещает отчитаться о результатах опытов в 2018 году.

Ошибка в коде

Носимые, вшиваемые и встраиваемые устройства - не единственная надежда офтальмологии. Для того, чтобы вернуть зрение, можно переписать генетический код, из-за ошибки в котором человек начал слепнуть. Метод CRISPR, который базируется на инъекции раствора с вирусом, несущим правильный вариант ДНК, излечивает наследственные заболевания. Исправление кода позволяет бороться с возрастной дегенерацией сетчатки, а также с амаврозом Лебера - крайне редким недугом, убивающим светочувствительные клетки. В мире им страдает около 6 тысяч человек. Препарат Luxturna обещает покончить с ним. Он содержит раствор с правильной версией гена RPE65, шифрующим структуру необходимых белков. Это инъекционный препарат - его вводят в глаз микроскопической иглой.

Диагностика и восстановление после операции

Сопровождающий нас повсюду смартфон - прекрасный инструмент для быстрой и точной диагностики. Например, синхронизированный со смартфоном офтальмоскоп Peek Vision позволяет делать снимки сетчатки где и когда угодно. А Google в 2016 году представил алгоритм анализа изображений, основанный на искусственном интеллекте, который позволяет выявлять признаки диабетической ретинопатии на снимках сетчатки. Алгоритм отыскивает мельчайшие аневризмы, указывающие на патологию. Диабетическая ретинопатия - это тяжелое поражение сосудов сетчатой оболочки глаза, ведущее к слепоте.

Будущее - за быстрым восстановлением после операций. Интересен препарат Cacicol, представленный турецкими исследователями в 2015 году. Их разработка снимает боль, повышенную чувствительность и жжение после операции на глазах. Препарат уже опробовали клинически: пациенты, которым сшивали роговицу (этот метод используется при лечении ее истончения - кератоконуса), отмечали снижение побочных эффектов.

Каким будет зрение будущего?

Уже сейчас офтальмология достигла поразительных успехов: прежде неизлечимую слепоту можно обратить, а наследственные заболевания побороть, переписав несколько участков генетического кода. В каком направлении будет идти развитие? Попробуем предположить:

Лучше предотвратить, чем лечить. Окулист в смартфоне и нейронная сеть, ставящая диагноз, обещают заметно сократить риск запущенных и едва излечимых болезней глаз. Дополненная реальность (AR) позволит распространять медицинские знания в игровой и необременительной форме. Уже сейчас есть приложения AR, моделирующие последствия катаракты и глаукомы. Знание, как известно, сила. Заменить, если нельзя вылечить. Киборгизация - это ключевой медицинский тренд. Нынешние разработки хороши, но они реконструируют зрение лишь отчасти, позволяя различать размытые контуры. В ближайшие 10 лет технология будет идти по пути повышения качества изображения и детализации. Важная задача - избавиться от носимых компонентов: камеры, очков, кабеля. Имплант должен стать мягче и, можно сказать, дружелюбнее для тканей человека, чтобы не ранить их. Вероятно, чипы без внешних вспомогательных элементов, вживляемые прямо в мозг - это самая перспективная ветка киборгизации зрения. Дешевле и доступнее: 150 тысяч долларов за устройство пока делают бионические глаза очень далекими от рынка и недосягаемыми для большинства больных. Следующий шаг - сделать их максимально доступными. Восстановление за часы: вживление чипов, коррекция сетчатки и даже исправление ДНК требуют хирургического вмешательства. Оно оставляет резь, жжение, фантомные боли и другие неприятные следствия. Препараты будущего будут регенерировать поврежденные ткани за часы. Фантастическое зрение для всех: мгновенный снимок с помощью глаза и сетчатка, подключенная к интернету, только сейчас выглядят как научная фантастика.

Рубрика: Методы лечения в Германии

При некоторых заболеваниях удаление глаза неизбежно, к его потере может привести травма, случаются и врожденные дефекты. Современные глазные протезы хоть и не возвращают зрение, но выполняют множество других важных функций.

КОГДА УДАЛЯЮТ ГЛАЗ?

Разные причины могут привести к необходимости удаления глаза, или, выражаясь медицинским термином, его энуклеации.

Необратимая слепота, сопровождающаяся болями, также служит показанием к энуклеации. Обычно это возникает при критически растущем внутриглазном давлении, которое, в свою очередь, развивается на фоне сахарного диабета или закупорки сосудов с последующей неоваскулярной глаукомой.

Бывает показано удаление с последующим протезированием и при некоторых тяжелых косметических дефектах, обусловленных, например, воспалением роговицы, растущим бельмом или травмами.

КАК ПРОВОДИТСЯ ОПЕРАЦИЯ

Пораженный или травмированный глаз удаляется под общим наркозом. Слизистая оболочка отделяется от глазного яблока, удерживающие его мышцы и глазной нерв разрезаются, и глаз может быть удален. Конъюнктива (слизистая) остается при этом в тканях практически полностью. Чтобы заполнить образовавшуюся полость, части глазных мышц сшиваются вместе, вводятся собственные ткани пациента либо искусственный материал. До момента собственно протезирования необходимо подождать заживления послеоперационной раны. Через одну или несколько недель вставляется временный пластмассовый имплантант, препятствующий сокращению глазной впадины, и лишь через несколько месяцев - постоянный, из медицинской пластмассы или специального стекла.

Иногда в связи с проблемной конъюнктивой необходимо бывает сделать несколько операций для того, чтобы оптимально подготовить глазное дно к имплантированию.

В некоторых случаях операция может проводиться даже амбулаторно, но в течение нескольких дней необходимы регулярные перевязки и контроль.

Конечно, такое хирургическое вмешательство психологически обычно тяжело переносится пациентом, несмотря даже на то, что уже и до этого он едва ли мог много видеть поврежденным глазом, который наверняка доставлял и немало других проблем. Однако привыкание к ограниченной зрительной перспективе происходит, как правило, очень быстро, вполне возможно и вождение автомобиля. А качественный и успешно поставленный имплантант, который практически невозможно отличить от собственного глаза, решает все косметические и эстетические проблемы.

ЗАДАЧИ И ТИПЫ ПРОТЕЗОВ

Одна из главных задач имплантированного протеза заключается в том, чтобы обеспечивать максимальную естественную подвижность, поддерживаемую сохранившимися глазными мышцами. С медицинской точки зрения, имплантат обязан защищать глазную впадину и препятствовать ее естественному сокращению со временем. Для детей очень важна поддержка процесса их роста и развития с сохранением симметричных черт лица.

Существуют два основных типа протезов - стеклянные и пластмассовые. Оба выполняются редкими специалистами в своем деле, имеющими специальное образование.

Синтетический материал, в отличие от стекла, легче и теплее, дает больше ощущения прочной посадки в глазной впадине. Пластик также проще регулировать по размеру и визуально (например, цвет или имитацию кровеносных сосудов) - даже спустя время после имплантации. «Разрисовывается» такой протез вручную, что требует довольно долгого времени. Хотя он не разрушается, что, несомненно, является существенным преимуществом, но бледнеет и повреждается с течением лет, требует регулярной профессиональной чистки и достаточно частой замены. Среди недостатков также - плохая смачиваемость и поэтому легко пересыхающая поверхность имплантанта, повышенная аллергенность.

Лишь очень чувствительные люди могут действительно в данном случае по температуре определить различие между пластмассой и стеклом. Стеклянные имплантанты из особого криолитного или других специальных видов стекла после визуальной примерки сырых заготовок, подходящих данному пациенту, индивидуально у него на глазах в течение часа или немногим дольше выдуваются, особым образом полируются и доводятся до совершенства специалистом. Стекло, как правило, лучше переносится, хорошо увлажняется - как бы «плавает» в слезной жидкости. Это хорошо совместимый с биологическими тканями, лишенный токсичности материал. Кроме того, изготовление и установка здесь - очень быстрый процесс. Однако стеклянный имплантант более хрупкий, чем синтетический, и также, хоть и в меньшей степени, подвержен естественному износу и требует периодической замены - как правило, один раз в год, для детей - раз в полгода.

Оптически оба типа глазных протезов не отличаются друг от друга и, будучи удачно подобранными и подогнанными, не только не бросаются в глаза окружающим, но и фактически их наличие может стать заметным лишь при пристальном рассматривании вблизи.

УСТАНОВКА И НОШЕНИЕ ПРОТЕЗА

При первой установке протеза болезненных ощущений нет, однако они могут быть непривычными. После имплантации пациент чувствует некоторый дискомфорт, который проходит обычно спустя уже несколько дней, по мере привыкания глазной впадины к протезу. Возможно, придется немного потренироваться, чтобы закрывать и открывать глаза так, как прежде, без усилия. Носить протез также и ночью или нет - вопрос, требующий отдельного обсуждения со своим врачом; в последние годы предпочтение отдается круглосуточному ношению.

Очень частое и, к сожалению, неустранимое осложнение - повышенная слезоточивость на месте удаленного глаза. Регулярное вынимание и промывание протеза уже скоро осуществляется буквально за несколько секунд и позволяет снизить слезоотделение и повысить ощущение комфорта. Рекомендуют делать это как минимум раз в день, по утрам, обычной чистой водой комнатной температуры, ни в коем случае не над раковиной или иной твердой поверхностью, а над полотенцем. При наличии сильных загрязнений можно замочить протез на десять минут в подсоленной воде - но не использовать какие-либо чистящие средства, за исключением дезинфицирующей жидкости, рекомендуемой окулистом, или уксуса.

С современными протезами возможно при соблюдении простых мер предосторожности заниматься практически любыми, даже экстремальными видами спорта.

В заключение стоит отметить, что в Германии исторически накоплен огромный опыт глазного протезирования, которое осуществляется во многих городах. Особенно успешным стало оно после 1870 года, когда был найден идеальный материал - криолит, до сих пор используемый с этой целью.

Яна Илькун



Кохлеарные имплантаты для глухих и слабослышащих Облучение или химиотерапия? Рак почек: традиционное и экспериментальное лечение

Уже более двадцати лет имплантируемые слабослышащим во внутреннее ухо электроды (кохлеарные имплантаты) являются альтернативой обычным слуховым аппаратам. Вместе с развитием техники и цифровых...

Сравнивая лучевую и химиотерапию, необходимо отметить, что ни пациент, ни врач часто не имеют возможности выбора лечения. Выбранный метод зависит от вида онкологического заболевания, его...

все это и многое другое вы найдете на страницах журнала в разделе "Информация для врачей".
Общественный транспорт Германии

Прилетая на самолете на лечение в Германию, вы из аэропорта можете относительно недорого добраться до места назначения по железной дороге. Страна обладает разветвленной сетью железных дорог. Концерн «Немецкие железные дороги» - Deutsche Bahn (DB) предлагает несколько видов поездов, отличающихся не только внешним видом, но и, в первую очередь, скоростью и стоимостью проезда. ICE (Интер Сити Экспресс) и IC (Интер Сити) - это самые быстрые и комфортабельные экспрессы, на которых можно добраться не только до крупных городов Германии, но и 6-ти соседних стран: Австрии, Бельгии, Дании, Нидерландов, Франции и Швейцарии.

Можно осторожно утверждать, что мы являемся свидетелями зарождающейся бионической революции. Инженерия и хирургия позволяют людям вернуть утерянные чувства. Например, Лайфхакер писал о , способной возместить человеку чувство осязания ампутированной конечности. Сегодняшний материал посвящен другому ощущению человека — зрению. Именно визуально мы получаем большую часть информации, поступающей к нам от окружающего мира. К сожалению, образ жизни современного человека и врожденные заболевания притупляют наше зрение. В одних случаях на помощь придет , в более сложных — ультрасовременные протезы. Предлагаем ознакомиться с двумя схожими разработками бионических глаз, которые способны частично вернуть зрение в, казалось бы, безнадежных ситуациях.

Рассмотрим наиболее успешные разработки, уже проходящие тестирование на реальных пациентах.

Argus II Retinal Prosthesis System

В конце января американские хирурги выполнили операцию по имплантации искусственной сетчатки глаза больному пигментным ретинитом. Это дегенеративное наследственное заболевание характеризуется постепенной потерей светочувствительности сетчатки глаза. Имплантат представляет собой лист из 60 электродов, устанавливаемый в глаз. Специальные электронные очки оснащены видеокамерой, захватывающей изображение со стекол. Полученный сигнал передается в виде серии импульсов на электроды, стимулирующие оставшиеся нервные волокна пациента.

Argus II не дает привычной картинки нормального зрения. Вместо этого, аппарат позволяет пациентам видеть вспышки света, которые они могут научиться интерпретировать как визуальные модели. Процесс обучения занимает от одного до трех месяцев. Конечно, протез еще далек от совершенства, но развитие все же идет в правильном направлении. Со временем ученые намерены усовершенствовать свою технологию. Стоимость без проведения операции составляет $150 000.

Alpha IMS

Возможно, более интересная разработка немецких умов. Принцип схож. Бионический глаз контролирует интенсивность света с помощью электродов, имплантированных под сетчатку пациента, до его подачи в микрочип, ответственный за передачу сигнала прямиком в мозг. Тем самым, мозг обрабатывает привычные для себя данные здорового глаза человека. В результате пациент видит черно-белое изображение. За ухом устанавливается регулятор яркости, и вся система работает без проводов, питаясь от карманного аккумулятора.

Протез имеет намного большее количество электродов в сравнении с американской разработкой. 1 500 против 60, тем самым предлагает изображение гораздо большего разрешения и четкости. Установка имплантата позади сетчатки также позволяет пациенту более естественно поворачивать глаза и голову.

Девять пациентов уже был оснащены протезами, восемь операций были успешными. Отзывы испытуемых обнадеживают. Пациенты смогли на крупных планах различать движения рта, например, улыбку, определять наличие очков на лице прохожих, а также распознавать столовые приборы, телефоны и мелкие детали вещей. В диапазоне далекого зрения пациенты могли разобрать линию горизонта, дома, деревья и реки.

Дополнительные тестирования проводятся в странах Европы. Ученые испытывают долгосрочность стабильности и безопасности применения имплантата. Исследователи также надеются разработать специальные методы обучения, чтобы помочь пациентам улучшить свои способности распознавания объектов.

Надеемся, озвученные технологии будут признаны полностью безопасными для длительного использования, а их цена будет существенно снижена.