Гипоталамус - что это такое и его связь с долями гипофиза. Важный отдел головного мозга — гипоталамус: что это такое и за что он отвечает, причины патологических изменений, диагностика и лечение заболеваний Гипоталамус и его функции в организме человека

Гипоталамус I Гипотала́мус (hypothalamus)

отдел промежуточного мозга, которому принадлежит ведущая роль в регуляции многих функций организма, и прежде всего постоянства внутренней среды, Г. является высшим вегетативным центром, осуществляющим сложную интеграцию функций различных внутренних систем и их приспособление к целостной деятельности организма, играет существенную роль в поддержании оптимального уровня обмена веществ и энергии, в терморегуляции, в регуляции деятельности пищеварительной, сердечно-сосудистой, выделительной, дыхательной и эндокринной систем. Под контролем Г. находятся такие , как Гипофиз, Щитовидная железа, половые железы (см. Яичко , Яичники), Поджелудочная железа, Надпочечники и др.

В гипоталамусе выделяют три нерезко разграниченные области: переднюю, среднюю и заднюю. В передней области Г. сосредоточены нейросекреторные клетки, где они образуют с каждой стороны надзрительное (nucl. supraopticus) и паравентрикулярное (nucl. paraventricularis) ядра. Надзрительное состоит из клеток, лежащих между стенкой III желудочка мозга и дорсальной поверхностью зрительного перекреста. Паравентрикулярное ядро имеет пластинки между сводом (fornix) и стенкой III желудочка мозга. Аксоны нейронов паравентрикулярного и надзрительного ядер, образуя гипоталамо-гипофизарный , достигают задней доли гипофиза, где накапливаются , оттуда они поступают в .

В средней области Г., вокруг нижнего края III желудочка мозга, лежат серобугорные ядра (nucll. tuberaies), дуговидно охватывающие воронку (infundibulum) гипофиза. Кверху и немного латеральнее от них находятся крупные вентромедиальные и дорсомедиальные ядра.

В задней области Г. расположены ядра, состоящие из рассеянных крупных клеток, среди которых находятся скопления мелких клеток К этому отделу относятся также медиальные и латеральные ядра сосцевидного тела (nucll. corporis mamillaris mediales et laterales), которые на нижней поверхности промежуточного мозга имеют вид парных полушарий. Клетки этих ядер дают начало одной из так называемых проекционных систем Г. в продолговатый и . Наиболее крупным клеточным скоплением является медиальное ядро сосцевидного тела. Кпереди от сосцевидных тел выступает дно III желудочка мозга в виде серого бугра (tuber cinereum), образованного тонкой пластинкой серого вещества. Этот выступ вытягивается в воронку, переходящую в дистальном направлении в гипофизарную ножку и далее в заднюю долю гипофиза. Расширенная верхняя часть воронки - срединное возвышение - выстлано эпендимой, за которой идут слой нервных волокон гипоталамо-гипофизарного пучка и более тонкие волокна, берущие начало от ядер серого бугра. Наружная часть срединного возвышения образована опорными нейроглиальными (эпендимными) волокнами, между которыми залегают многочисленные нервные волокна. В этих нервных волокнах и около них наблюдается отложение нейросекреторных . Т.о., гипоталамус образован комплексом нервно-проводниковых и нейросекреторных клеток. В связи с этим регулирующие влияния Г. передаются к эффекторам, в т.ч. и к железам внутренней секреции, не только с помощью гипоталамических нейрогормонов, переносимых с током крови и, следовательно, действующих гуморально, но и по эфферентным нервным волокнам.

Значительна роль Г. в регуляции и координации функций вегетативной нервной системы. В регуляции функции ее симпатической части участвуют ядра задней области Г., а функции парасимпатической части вегетативной нервной системы регулируют ядра его передней и средней областей. передней и средней областей Г. вызывает реакции, характерные для парасимпатической нервной системы - урежение сердцебиений, усиление перистальтики кишечника, повышение тонуса мочевого пузыря и др., а задней области Г. проявляется усилением симпатических реакций - учащением сердцебиений и т.д.

С состоянием вегетативной нервной системы тесно связаны вазомоторные реакции гипоталамического происхождения. Различные виды артериальной гипертензии, развивающиеся после стимуляции Г., обусловлены комбинированным влиянием симпатической части вегетативной нервной системы и выделением адреналина надпочечниками (Надпочечники), хотя в данном случае нельзя исключить влияние нейрогипофиза, особенно в генезе устойчивой артериальной гипертензии.

С физиологической точки зрения Г. имеет ряд особенностей, прежде всего это касается его участия в формировании поведенческих реакций, важных для сохранения постоянства внутренней среды организма (см. Гомеостаз). Раздражение Г. приводит к формированию целенаправленного поведения - пищевого, питьевого, полового, агрессивного и т.п. Гипоталамусу принадлежит главная роль в формировании основных влечений организма (см. Мотивации). В некоторых случаях при повреждении верхнемедиального ядра и серобугровой области Г. наблюдают чрезмерное как результат полифагии (булимий) или кахексию. задних отделов Г. вызывает гипергликемию. Установлена роль надзрительного и паравентрикулярного ядер в механизме возникновения несахарного диабета (см. Диабет несахарный). Активация нейронов латерального Г. вызывает формирование пищевой . При двустороннем разрушении этого отдела пищевая полностью устраняется.

Обширные связи Г. с другими структурами головного мозга способствуют генерализации возбуждений, возникающих в его клетках. Г. находится в непрерывных взаимодействиях с другими отделами подкорки и корой головного мозга. Именно это лежит в основе участия Г. в эмоциональной деятельности (см. Эмоции). Кора головного мозга может оказывать тормозящий эффект на функции Г. Приобретенные корковые механизмы подавляют многие и первичные побуждения, формирующиеся с его участием. Поэтому нередко приводит к развитию реакции «мнимой ярости» (расширение зрачков, развитие внутричерепной гипертензии, усиление саливации и т.д.).

Гипоталамус является одной из главных структур, участвующих в регуляции смены сна (Сон) и бодрствования. Клиническими исследованиями установлено, что летаргического сна при эпидемическом энцефалите обусловлен именно повреждением Г. В поддержании состояния бодрствования решающую роль играет задняя область Г. Обширное разрушение средней области Г. в эксперименте приводило к развитию длительного сна. Нарушение сна в виде нарколепсии объясняется поражением Г. и ростральной части ретикулярной формации среднего мозга.

Г. играет важную роль в терморегуляции (Терморегуляция). Разрушение задних отделов Г. приводит к стойкому снижению температуры тела.

Клетки Г. обладают способностью трансформировать гуморальные изменения внутренней среды организма в нервный процесс. Центры Г. характеризуются выраженной избирательностью возбуждения в зависимости от различных изменений состава крови и кислотно-щелочного состояния, а также нервных импульсов из соответствующих органов. в нейронах Г., обладающих избирательной рецепцией по отношению к константам крови, возникает не сразу, как только изменится какая-либо из них, а через определенный промежуток времени. Если же изменение константы крови поддерживается длительно, то в этом случае нейронов Г. быстро поднимается до критической величины и состояние этого возбуждения поддерживается на высоком уровне все время, пока существует изменение константы. Возбуждение одних клеток Г. может возникать периодически через несколько часов, как, например, при гипогликемии, других - через несколько суток или даже месяцев, как, например, при изменении содержания в крови половых гормонов.

Информативными методами исследования Г. являются плетизмографические, биохимические, рентгенологические исследования и др. Плетизмографические исследования (см. Плетизмография) выявляют широкий спектр изменений в Г. - от состояния вегетативной сосудистой неустойчивости и парадоксальной реакции до полной арефлексии. При биохимических исследованиях у больных с поражением Г. независимо от его причины ( , воспалительный процесс и др.) часто определяется увеличение содержания катехоламинов и гистамина в крови, увеличивается относительное содержание α-глобулинов и снижается относительное содержание β-глобулинов в сыворотке крови, изменяется с мочой 17-кетостероидов. При различных формах поражения Г. проявляются нарушения терморегуляции и интенсивности потоотделения. ядер Г. (преимущественно надзрительного и паравентрикулярного) наиболее вероятно при заболеваниях желез внутренней секреции, черепно-мозговых травмах, приводящих к перераспределению цереброспинальной жидкости, опухолях, нейроинфекциях, интоксикациях и др. Вследствие повышения проницаемости стенок сосудов при инфекциях и интоксикациях гипоталамические ядра могут подвергаться патогенным воздействиям бактериальных и вирусных токсинов и химических веществ, циркулирующих в крови. Особенно опасны в этом отношении нейровирусные инфекции. Поражения Г. наблюдаются при базальном туберкулезном менингите, сифилисе, саркоидозе, лимфогранулематозе, лейкозах.

Из опухолей Г. наиболее часто встречаются различного вида глиомы, краниофарингиомы, эктопические пинеаломы и тератомы, менингиомы: в Г. прорастают супраселлярные аденомы гипофиза (Аденома гипофиза). Клинические проявления и нарушений функций и заболеваний гипоталамуса - см. Гипоталамо-гипофизарная недостаточность , Гипоталамические синдромы, Адипозогенитальная дистрофия, Иценко - Кушинга болезнь, Диабет несахарный, Гипогонадизм, Гипотиреоз и др.

II Гипотала́мус (hypothalamus, BNA, JNA; гипо- (Гип-) + ; ,: , подбугорная область, )

отдел промежуточного мозга, расположенный книзу от таламуса и составляющий нижнюю стенку (дно) III желудочка; Г, секретирует нейрогормоны и является высшим подкорковым центром вегетативной нервной системы.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Синонимы :

Смотреть что такое "Гипоталамус" в других словарях:

    Гипоталамус … Орфографический словарь-справочник

    гипоталамус - структура мозга промежуточного, расположенная под таламусом. Содержит 12 пар ядер важнейших центров вегетативных функций. Сверх того, он тесно связан с гипофизом, активность коего регулирует. Словарь практического психолога. М.: АСТ, Харвест. С.… … Большая психологическая энциклопедия

    ГИПОТАЛАМУС, отдел промежуточного мозга (под таламусом), в котором расположены центры вегетативной нервной системы; тесно связан с гипофизом. Гипоталамус вырабатывает нейрогормоны, которые регулируют обмен веществ, деятельность сердечно… … Современная энциклопедия

    Отдел промежуточного мозга (под таламусом), в котором расположены центры вегетативной нервной системы; тесно связан с гипофизом. Нервные клетки гипоталамуса вырабатывают нейрогормоны вазопрессин и окситоцин (выделяемые гипофизом), а также… … Большой Энциклопедический словарь

    - (от гипо... и таламус), отдел промежуточного мозга; высший центр регуляции вегетативных функций организма и размножения; место взаимодействия нервной и эндокринной систем. Филогенетически Г. древний отдел головного мозга, существующий у всех… … Биологический энциклопедический словарь

Гипоталамус – одна из главных структур, участвующих в формировании поведенческих реакций организма, которые необходимы для постоянства внутренней среды. Стимуляция его ядер приводит к формированию целенаправленного поведения – пищевого, полового, агрессивного и т.д. Ему принадлежит и главная роль в возникновении основных влечений (мотиваций) организма

У позвоночных животных гипоталамус является главным подкорковым центром интеграции висцеральных процессов. Он управляет всеми основными гомеостатическими функциями организма. Интегративная функция гипоталамуса обеспечивается автономными, соматическими и эндокринными механизмами.

Передача информации в гипоталамусе

Чувствительная информация от внутренних органов и поверхности тела поступает в гипоталамус по восходящим спинобульбарным путям. Одни из них проходят через таламус, другие – через лимбическую область среднего мозга, третьи следуют по пока еще не полностью идентифицированным полисинаптическим путям. Кроме того, гипоталамус снабжен и своими специфическими «входами». В нем имеются высокочувствительные к изменениям осмотического давления внутренней среды осморецепторы и чувствительные к изменениям температуры крови терморецепторы. Эфферентные пути гипоталамуса полисинаптические. Они связывают его с ретикулярной формацией ствола мозга, ядрами спинного мозга. Нисходящие влияния гипоталамуса обеспечивают регуляцию функций главным образом через автономную нервную систему. Вместе с тем важным компонентом в осуществлении нисходящих влияний гипоталамуса являются и гормоны гипофиза . Кроме афферентных и эфферентных связей в гипоталамусе существует комиссуральный путь. Благодаря ему медиальные гипоталамические ядра одной стороны вступают в контакт с медиальными и латеральными ядрами другой стороны.

Связи гипоталамуса

Многочисленные связи гипоталамуса с другими образованиями мозга способствуют генерализации возбуждений, возникающих в клетках гипоталамуса. Возбуждение в первую очередь распространяется на лимбические структуры мозга и через ядра таламуса на передние отделы коры больших полушарий. Степень распространения восходящих активирующих влияний гипоталамуса зависит от величины исходного возбуждения центров гипоталамуса.

Гипоталамус и поведенческие реакции организма

Гипоталамус – одна из главных структур, участвующих в формировании поведенческих реакций организма, которые необходимы для постоянства внутренней среды. Стимуляция его ядер приводит к формированию целенаправленного поведения – пищевого, полового, агрессивного и т.д. Ему принадлежит и главная роль в возникновении основных влечений (мотиваций) организма.

Кровоснабжение гипоталамуса

Главным источником артериального кровоснабжения гипоталамических ядер является артериальный круг мозга. Его ветви обеспечивают обильное изолированное кровоснабжение отдельных групп ядер, капиллярная сеть которых в несколько раз превышает по густоте кровообеспечение других отделов нервной системы. Капиллярную сеть гипоталамуса отличает высокая проницаемость для крупномолекулярных соединений. Фактическое отсутствие в этой области гематоэнцефалического барьера позволяет этим соединениям крови оказывать непосредственное воздействие на гипоталамические нейроны.

Гипоталамо-гипофизарная система

Многочисленные нервные и сосудистые связи между гипоталамусом и гипофизом являются основой функционального комплекса, называемого гипоталамо-гипофизарной системой. Главное назначение комплекса состоит в интегрировании нервной и гормональной регуляции висцеральных функций организма. Со стороны гипоталамуса она осуществляется двумя путями: парааденогипофизарным (минуя аденогипофиз) и трансаденогипофизарным (через аденогипофиз).

Гормоны гипофиза

На высвобождение гормонов передней доли гипофиза влияют гормоны нейронов гипофизотропной зоны медиальной области гипоталамуса. Они способны оказывать стимулирующее и тормозное действие на гипофизарные клетки. В первом случае это так называемые рилизинг-факторы (либерины), во втором – ингибирующие факторы (статины). Регуляция гипоталамо-гипофизарной системой висцеральных функций осуществляется по принципу обратной связи. Ее действие проявляется даже после полного отделения медиальной области гипоталамуса от других отделов мозга. Роль центральной нервной системы состоит в приспособлении этой регуляции к внутренним и внешним потребностям организма.

Клетки гипоталамуса

Клетки гипоталамуса избирательно чувствительны к содержанию тех или иных веществ в крови и при любом изменении их концентрации приходят в состояние возбуждения. Например, гипоталамические нейроны чувствительны к малейшим отклонениям рН крови, напряжению О2 и СО2, содержанию ионов, особенно К и Na. Так, в супраоптическом ядре содержатся клетки, избирательно чувствительные к изменению осмотического давления крови, в вентромедиальном ядре – содержанию глюкозы, в переднем гипоталамусе – половых гормонов. Следовательно, клетки гипоталамуса выполняют функции рецепторов, воспринимающих изменение гомеостаза. Они обладают, способностью трансформировать гуморальные изменения внутренней среды в нервный процесс – биологически окрашенное возбуждение. Однако они могут избирательно активироваться не только при изменении определенных констант крови, но и нервными импульсами из соответствующих органов, связанных с данной потребностью. Рецепторные клетки работают по триггерному типу. Возбуждение возникает в них не сразу, как только изменяется какая-либо константа крови, а через определенный промежуток времени, когда их деполяризация достигнет критического уровня. Следовательно, нейроны мотивационных центров гипоталамуса отличает периодичность работы. В том случае, когда изменение константы крови поддерживается длительно, деполяризация нейронов поднимается до критического уровня и состояние возбуждения устанавливается на этом уровне все время, пока существует изменение константы, вызвавшей развитие процесса возбуждения. Постоянная импульсная активность этих нейронов исчезает только тогда, когда устраняется вызвавшее ее раздражение, т. е. нормализуется содержание того или иного фактора крови. Возбуждение одних клеток гипоталамуса может возникать периодически через несколько часов, как, например, при недостатке глюкозы, других – через несколько суток или даже месяцев, как, например, при изменении содержания половых гормонов.

Удаление гипоталамуса

Разрушение ядер или удаление всего гипоталамуса сопровождается нарушением гомеостатических функций организма. Гипоталамус играет ведущую роль в поддержании оптимального уровня метаболизма (белкового, углеводного, жирового, минерального, водного) и энергии, в регуляции температурного баланса организма, деятельности сердечно-сосудистой, пищеварительной, выделительной, дыхательной систем. Под его влиянием находятся функции эндокринных желез. При возбуждении гипоталамических структур нервный компонент сложных реакций обязательно дополняется гормональным.

Задние ядра гипоталамуса

Исследования показали, что стимуляция задних ядер гипоталамуса сопровождается эффектами, аналогичными раздражению симпатической нервной системы: расширением зрачков и глазной щели, возрастанием частоты сердечных сокращений, повышением артериального давления крови, торможением моторной активности желудка и кишечника, возрастанием концентрации в крови адреналина 3aдняя область гипоталамуса оказывает тормозящее влияние на половое развитие. Ее повреждение приводит также к гипергликемии, а в некоторых случаях к развитию ожирения. Разрушение задних ядер гипоталамуса сопровождается полной потерей терморегуляции. Температура тела у этих животных не может поддерживаться. Реакции, возникающие при возбуждении заднего отдела гипоталамуса и сопровождающиеся активацией симпатической нервной системы, мобилизацией энергии организма, увеличением способности к физическим нагрузкам, получили название эрготропных.

Передние ядра гипоталамуса

Стимуляция группы передних ядер гипоталамуса характеризуется реакциями, подобными раздражению парасимпатической нервной системы, сужением зрачков и глазной щели, урежением частоты сердечных сокращений, снижением величины артериального давления крови, усилением моторной активности желудка и кишки, активацией секреции желез желудка, возрастанием секреции инсулина и как результат – снижением ровня глюкозы в крови. Группа передних ядер гипоталамуса оказывает стимулирующее влияние на половое развитие. С ней связан и механизм потери тепла. Разрушение этой области приводит к нарушению процесса теплоотдачи, в результате чего организм быстро перегревается.

Средние ядра гипоталамуса

Средняя группа ядер гипоталамуса обеспечивает главным образом регулирование метаболизма. Изучение регуляции пищевого поведения показало, что оно осуществляется в результате реципрокных взаимодействий латерального и вентромедиального гипоталамических ядер. Активация первого вызывает усиление потребления пищи, а его двустороннее разрушение сопровождается полным отказом от пищи, вплоть до истощения и гибели животного. Напротив, повышение активности вентромедиального ядра снижает уровень пищевой мотивации. При разрушении этого ядра возникает повышение потребления пищи (гиперфагия), ожирение. Эти данные позволили расценивать вентромедиальные ядра как структуры, посредством которых ограничивается прием пищи, т. е. связанные с насыщением, а латеральные ядра – как структуры, повышающие уровень пищевой мотивации, т. е. связанные с голодом. Вместе с тем пока еще не удавалось выделить функциональных или структурных накоплений нейронов, отвечающих за то или иное поведение. Следовательно, клеточные образования, обеспечивающие формирование целостного поведения из отдельных реакций, не следует рассматривать как анатомически ограниченные структуры, известные под названием центр голода и центр насыщения. Вероятно, группы клеток гипоталамуса, связанные с выполнением какой-либо функции, отличаются друг от друга характером афферентных и эфферентных связей, синаптической организацией и медиаторами. Предполагают, что в нейронных сетях гипоталамуса заложены многочисленные программы и активация их посредством сигналов из других отделов мозга или интероцепторов приводит к формированию необходимых поведенческих и нейрогуморальных реакций. Изучение роли гипоталамуса методами раздражения или разрушения его ядер привело к выводу, что области, ответственные за потребление пищи и воды, по-видимому, перекрывают друг друга. Наиболее увеличенную потребность в воде наблюдали при стимуляции паравентрикулярного ядра гипоталамуса.

Взаимодействие гипоталамуса с другими отделами головного мозга

С другими отделами подкорки и корой головного мозга гипоталамус находится в непрерывных циклических взаимодействиях. Благодаря тому что к гипоталамическим ядрам адресуется нервная и гуморальная сигнализация о различных внутренних потребностях, они и приобретают значение пускового механизма мотивационных возбуждений. Введение нейротропных веществ специфического действия может избирательно блокировать различные гипоталамические механизмы, участвующие в формировании таких состояний организма, как страх, голод, жажда и т. д. Гипоталамус находится под регулирующим влиянием коры головного мозга. Получая информацию об исходном состоянии организма и окружающей среды, нейроны коры оказывают нисходящее влияние на все подкорковые структуры, в том числе и гипоталамус, регулируя уровень их возбуждения. Корковые механизмы подавляют многие эмоции и первичные возбуждения, формирующиеся с участием гипоталамических ядер. Поэтому удаление коры нередко приводит к развитию реакций мнимой ярости, выражающейся в расширении зрачков, тахикардии, саливации, повышении внутричерепного давления и т.д. Таким образом, гипоталамус, обладая хорошо развитой и сложной системой связей, занимает ведущее место в регуляции многих функций организма и прежде всего в постоянстве внутренней среды. Под его контролем находится функция автономной нервной системы и эндокринных желез. Он участвует в регуляции пищевого и полового поведения, смены сна и бодрствования, эмоциональной деятельности, поддержания температуры тела и т.д.

Гипоталамус - важный отдел головного мозга. Высший вегетативный центр осуществляет комплексный контроль и регуляцию многих систем организма. Хорошее эмоциональное состояние, баланс между процессами возбуждения и торможения, своевременная передача нервных импульсов - следствие правильной работы важного элемента.

Поражение структуры промежуточного мозга негативно отражается на функционировании сердечно-сосудистой, дыхательной, эндокринной систем, общем состоянии человека. Интересно и полезно знать, что такое гипоталамус, и за что он отвечает. В статье есть немало информации о строении, функциях, заболеваниях важной структуры, признаках патологических изменений, современных методах лечения.

Что это за орган

Отдел промежуточного мозга влияет на стабильность внутренней среды, обеспечивает взаимодействие и оптимальное сочетание отдельных систем с целостной работой организма. Важная структура вырабатывает комплекс гормонов трех подклассов.

Нейросекреторные и нервно-проводниковые клетки - основа важного элемента промежуточного мозга. Органические патологии в сочетании с поражением функций нарушают периодичность многих процессов в организме.

Гипоталамус имеет разветвленные связи с другими структурами мозга, непрерывно взаимодействует с корой мозга и подкоркой, что обеспечивает оптимальное психоэмоциональное состояние. Декортикация провоцирует развитие синдрома «мнимой ярости».

Инфицирование, опухолевый процесс, врожденные аномалии, травмы важного отдела мозга негативно влияют на нервно-гуморальную регуляцию, мешают передаче импульсов из сердца, легких, органов пищеварения, других элементов организма. Разрушение различных долей гипоталамуса нарушает сон, обменные процессы, провоцируют развитие эпилепсии, ожирение, снижение температуры, эмоциональные расстройства.

Не все знают, где находится гипоталамус. Элемент промежуточного мозга расположен под гипоталамической бороздой, ниже таламуса. Клеточные группы структуры плавно переходят в прозрачную перегородку. Строение небольшого органа сложное, он сформирован из 32 пар ядер гипоталамуса, состоящих из нервных клеток.

Гипоталамус состоит из трех областей, между ними нет четкой границы. Веточки артериального круга обеспечивают полноценное поступление крови к важному отделу мозга. Специфическая особенность сосудов этого элемента - возможность проникновения через стенки молекул белков, даже крупного размера.

За что отвечает

Функции гипоталамуса в организме:

  • контролирует функционирование органов дыхания, пищеварения, сердце, сосуды, терморегуляцию;
  • поддерживает оптимальное состояние эндокринной и выделительной системы;
  • влияет на работу половых желез, яичников, гипофиза, надпочечников, поджелудочной и ;
  • отвечает за эмоциональное поведение человека;
  • участвует в процессе регуляции бодрствования и сна, продуцирует гормон мелатонин, при дефиците которого развивается бессонница, ухудшается качество сна;
  • обеспечивает оптимальную температуру тела. При патологических изменениях в задней части гипоталамуса, разрушении этой зоны температура снижается, развивается слабость, обменные процессы протекают медленнее. Нередко возникает внезапный подъем субфертильной температуры;
  • влияет на передачу нервных импульсов;
  • продуцирует комплекс гормонов, без достаточного количества которых невозможно правильное функционирование организма.

Гормоны гипоталамуса

Важный элемент мозга вырабатывает несколько групп регуляторов:

  • статины: пролактостатин, меланотатин, соматостатин;
  • гормоны задней доли гипофиза: вазопрессин, окситоцин;
  • рилизинг-гормоны: фоллилиберин, кортиколиберин, пролактолиберин, меланолиберин, соматолиберин, люлиберин, тиролиберин.

Причины проблем

Поражение структурных элементов гипоталамуса - следствие влияния нескольких факторов:

  • черепно-мозговые травмы;
  • бактериальные, вирусные инфекции: лимфогранулематоз, сифилис, базальный менингит, лейкоз, саркоидоз;
  • опухолевый процесс;
  • нарушение функционирования желез внутренней секреции;
  • интоксикация организма;
  • воспалительные процессы различного рода;
  • сосудистые патологии, влияющие на объем и скорость поступления питательных веществ, кислорода к клеткам гипоталамуса;
  • нарушение течения физиологических процессов;
  • нарушение проницаемости сосудистой стенки на фоне проникновения инфекционных агентов.

Заболевания

Негативные процессы протекают на фоне непосредственных нарушений функций важной структуры. Опухолевый процесс в большинстве случаев имеет доброкачественный характер, но под влиянием негативных факторов нередко происходит малигнизация клеток.

Обратите внимание! Лечение поражений гипоталамуса требует комплексного подхода, терапия связана со многими рисками и сложностями. При выявлении онкопатологий нейрохирург удаляет новообразование, далее пациент проходит сеансы химио- и лучевой терапии. Для стабилизации работы проблемного отдела назначают комплекс лекарственных средств.

Основные виды опухоли гипоталамуса:

  • тератомы;
  • менингиомы;
  • краниофарингиомы;
  • глиомы;
  • аденомы (прорастают из гипофиза);
  • пинеаломы.

Симптомы

Нарушение функционирования гипоталамуса провоцирует комплекс отрицательных признаков:

  • нарушение пищевого поведения, неконтролируемый аппетит, резкое похудение или тяжелая степень ожирения;
  • тахикардия, колебания артериального давления, боль в области грудины, аритмия;
  • снижение либидо, отсутствие менструаций;
  • ранее половое созревание на фоне опасной опухоли - гамартомы;
  • головные боли, выраженная агрессия, неконтролируемый плач либо приступы смеха, судорожный синдром;
  • ярко выраженная беспричинная агрессия, припадки ярости;
  • гипоталамическая эпилепсия с высокой частотой припадков на протяжении дня;
  • отрыжка, диарея, болезненность в подложечной области и животе;
  • мышечная слабость, пациенту сложно стоять и ходить;
  • нервно-психические нарушения: галлюцинации, психозы, тревожность, депрессия, ипохондрия, перепады настроения;
  • сильные головные боли на фоне повышения внутричерепного давления;
  • нарушение сна, пробуждение несколько раз за ночь, разбитость, слабость, головные боли утром. Причина - нехватка важного гормона мелатонина. Для устранения нарушений нужно скорректировать режим бодрствования и ночного сна, пропить курс препаратов для восстановления объема важного регулятора. Хороший терапевтический эффект дает - препарат нового поколения с минимумом побочных эффектов, без синдрома привыкания;
  • ухудшение зрения, плохое запоминание новой информации;
  • резкий подъем температуры либо снижение показателей. При повышении температуры часто сложно понять, в чем причина негативных изменений. Поражение гипоталамуса можно заподозрить по комплексу признаков, указывающих на поражение эндокринной системы: неконтролируемый голод, жажда, ожирение, усиленное выведение мочи.

Перейдите по адресу и ознакомьтесь с информацией о правилах соблюдения диеты и лечении сахарного диабета 2 типа.

Диагностика

Симптомы при поражении гипоталамуса настолько разнообразны, что нужно провести несколько диагностических процедур. Высокоинформативные методы: УЗИ, ЭКГ, МРТ. Обязательно обследовать надпочечники, щитовидную железу, органы в брюшной полости, яичники, головной мозг, сосудистую сеть.

Важно сдать анализы крови и мочи, уточнить уровень глюкозы, СОЭ, мочевины, лейкоцитов, показатели гормонов. Пациент посещает эндокринолога, уролога, гинеколога, офтальмолога, эндокринолога, невролога. При выявлении опухоли понадобится консультация специалиста отделения нейрохирургии.

Лечение

Схема терапии при поражении гипоталамуса включает несколько направлений:

  • коррекция режима дня для стабилизации выработки мелатонина, устранение причин для излишнего возбуждения, нервного перенапряжения либо апатии;
  • изменение рациона для поступления оптимального количества витаминов, минералов, нормализующих состояние нервной системы и сосудов;
  • проведение медикаментозного лечения при выявлении воспалительных процессов с инфицированием с поражением отделов мозга (антибиотики, глюкокортикостероиды, противовирусные препараты, общеукрепляющие составы, витамины, НПВС);
  • получение седативных препаратов, транквилизаторов;
  • хирургическое лечение для удаления новообразований злокачественного и доброкачественного характера. При онкопатологиях мозга проводят облучение, назначают химиотерапию, иммуномодуляторы;
  • хороший эффект при лечении нарушений пищевого поведения дает диета, инъекции витаминов, регулирующих нервную деятельность (В1и В12), препараты, подавляющие неконтролируемый аппетит.

Важно знать, почему поражение гипоталамуса может привести к быстрой разбалансированности физиологических процессов в организме. При выявлении патологий этого отдела мозга нужно пройти комплексное обследование, получить консультации нескольких врачей. При своевременном начале терапии прогноз благоприятный. Особая ответственность нужна при подтверждении развития опухолевого процесса: отдельные виды новообразований состоят из атипичных клеток.

Более подробно о том, что такое гипоталамус и за что отвечает важный орган узнайте после просмотра видеоролика:

Гипоталамус - высший центр, регулирующий функцию вегетативной нервной и эндокринной систем. Он принимает участие в координации работы всех органов, способствует поддержанию постоянства внутренней среды организма.

Гипоталамус располагается в основании мозга и имеет большое количество двухсторонних связей с другими структурами нервной системы. Его клетки вырабатывают биологически активные вещества, способные влиять на работу эндокринных желез, внутренних органов и поведение человека.

Расположение и строение органа

Анатомия гипоталамуса

Гипоталамус находится в области промежуточного мозга. Здесь же расположены таламус и третий желудочек. Орган имеет сложное строение и состоит из нескольких частей:

  • зрительный тракт;
  • зрительный перекрест - хиазма;
  • серый бугор с воронкой;
  • сосцевидные тела.

Зрительный перекрест образуется волокнами зрительных нервов. В этом месте нервные пучки частично переходят на противоположную сторону. Он имеет форму поперечно расположенного валика, который продолжается в зрительный тракт и заканчивается в подкорковых нервных центрах. Кзади от хиазмы лежит серый бугор. Его нижняя часть образует воронку, которая соединяется с гипофизом. За бугром находятся сосцевидные тела, имеющие вид сфер с диаметром около 5 мм. Снаружи они покрыты белым веществом, а внутри содержат серое, в котором выделяют медиальные и латеральные ядра.

Клетки гипоталамуса образуют более 30 ядер, связанных друг с другом нервными путями. Различают три основные гипоталамические области, которые, согласно анатомии органа, представляют собой скопления различных по форме и размеру клеток:

  1. 1. Передняя.
  2. 2. Промежуточная.
  3. 3. Задняя.

В переднем участке находятся нейросекреторные ядра - паравентрикулярные и супраоптическое. В них вырабатывается нейросекрет, который по отросткам клеток, формирующих гипоталамо-гипофизарный пучок, поступает в заднюю долю гипофиза. К промежуточной зоне относятся нижнемедиальное, верхнемедиальное, дорсальное, серобугорные и другие ядра. Наиболее крупными образованиями задней части являются заднее гипоталамическое ядро, медиальное и латеральное ядра сосцевидного тела.

Основные функции гипоталамуса

Схема влияния рилизинг-факторов на работу гипофиза и желез внутренней секреции

Гипоталамус отвечает за многочисленные вегетативные и эндокринные функции. Его роль в организме человека заключается в следующем:

  • регуляция углеводного обмена;
  • поддержание водно-солевого баланса;
  • формирование пищевого и полового поведения;
  • координация биологических ритмов;
  • контроль постоянства температуры тела.

В клетках гипоталамуса вырабатываются вещества, которые оказывают влияние на работу гипофиза. К ним относятся рилизинг-факторы - статины и либерины. Первые способствуют уменьшению продукции тропных гормонов, а вторые - увеличению. Таким образом (через гипофиз) гипоталамус регулирует функцию других желез внутренней секреции. Поступление рилизинг-факторов в кровь имеет определенный суточный ритм.

Регуляция работы гипоталамуса осуществляется нейропептидами, вырабатывающимися в выше расположенных структурах. Их продукция меняется под действием факторов внешней среды и импульсов, поступающих из отделов коры головного мозга. Существуют обратные связи между гипоталамусом, гипофизом и другими железами эндокринной системы. При увеличении концентрации тропных и других гормонов в крови производство либеринов снижается, а выработка статинов - повышается.

Основные виды и сферы влияния рилизинг-факторов представлены в таблице:

Рилизинг-фактор Влияние на тропные гормоны гипофиза Влияние на работу эндокринных желез
Гонадотропный рилизинг-гормон Стимулирует секрецию лютеинизирующего гормона (ЛГ) и фолликулостимулирующего гормона (ФСГ) Стимулирует синтез половых гормонов. Участвует в регуляции процессов сперматогенеза у мужчин и фолликулогенеза у женщин
Дофамин Подавляет секрецию пролактина Снижение синтеза прогестерона
Соматолиберин Стимулирует секрецию соматотропного гормона (гормона роста) Стимулирует образование инсулиноподобного фактора роста-1 (ИФР-1) в периферических клетках-мишенях
Соматостатин Подавляет секрецию гормона роста Уменьшает образование инсулиноподобного фактора роста-1 (ИФР-1) в периферических клетках-мишенях
Тиреолиберин Стимулирует секрецию тиреотропного гормона (ТТГ) Стимулирует синтез тироксина и трийодтиронина
Кортиколиберин Стимулирует секрецию кортикотропина Стимулирует производство глюкокортикоидов, минералокортикоидов и половых гормонов надпочечников

В нейросекреторных ядрах в виде предшественников синтезируются антидиуретический гормон (АДГ), или вазопрессин, и окситоцин. По отросткам нервных клеток (нейрогипофизарному тракту) они поступают в заднюю долю гипофиза. Во время перемещения веществ образуются их активные формы. Также АДГ частично попадает в аденогипофиз, где регулирует секрецию кортиколиберина.

Основная роль вазопрессина - контроль выделения и задержки воды и натрия почками. Гормон взаимодействует с разными типами рецепторов, которые расположены в мышечной стенке сосудов, печени, почках, надпочечниках, матке, гипофизе. В гипоталамусе находятся осморецепторы, которые реагируют на изменение осмолярности и объема циркулирующей жидкости путем повышения или снижения секреции АДГ. Также существует связь между синтезом вазопрессина и активностью центра жажды.

Окситоцин инициирует и усиливает родовую деятельность, способствует выделению молока у кормящих женщин. В послеродовом периоде под его действием происходит сокращение матки. Гормон оказывает большое влияние на эмоциональную сферу, с ним связывают формирование чувства привязанности, симпатии, доверия и покоя.

Заболевания органа

К дисфункции органа могут приводить различные факторы:

  • травмы головы;
  • токсические воздействия - наркотические вещества, алкоголь, вредные условия труда;
  • инфекции - грипп, вирусный паротит, менингит, ветряная оспа, очаговое поражение носоглотки;
  • опухоли - краниофарингиома, гамартома, менингиома;
  • сосудистые патологии;
  • аутоиммунные процессы;
  • оперативные вмешательства или облучение в гипоталамо-гипофизарной зоне;
  • системные инфильтративные заболевания - гистиоцитоз, туберкулез, саркоидоз.

В зависимости от локализации повреждения возможно нарушение производства тех или иных рилизинг-факторов, вазопрессина, окситоцина. При патологии органа часто страдают углеводный и водно-солевой обмены, меняется пищевое и половое поведение, возникают расстройства терморегуляции. При наличии объемного образования пациентов беспокоят головные боли, а при обследовании выявляются симптомы сдавления хиазмы - атрофия зрительных нервов, снижение остроты и сужение полей зрения.

Нарушение синтеза рилизинг-факторов

К нарушению продукции тропных гормонов чаще всего приводят опухоли, хирургические вмешательства и системные процессы. В зависимости от вида рилизинг-фактора, синтез которого страдает, развивается недостаточность секреции определенного вещества - гипопитуитаризм.

Гормональный фон при различных нарушениях производства рилизинг-факторов:

Название синдрома Гормоны гипоталамуса Гормоны гипофиза Периферические железы
Центральный гипотиреоз Снижение продукции тиреолиберина Снижение ТТГ Уменьшение продукции тироксина и трийодтиронина в щитовидной железе
Гипогонадотропный гипогонадизм Снижение продукции гонадотропного рилизинг-гормона Снижение ЛГ и ФСГ Уменьшение продукции половых гормонов
Третичная надпочечниковая недостаточность Снижение продукции кортиколиберина Снижение кортикотропина Уменьшение продукции надпочечниковых гормонов
Гиперпролактинемия Снижение продукции дофамина Повышение пролактина Нарушение репродуктивной функции
Гигантизм (у детей и подростков), акромегалия (у взрослых) Снижение продукции соматостатина Повышение гормона роста Увеличение продукции ИФР-1 в тканях-мишенях
Пангипопитуитаризм Снижение продукции всех рилизинг-факторов Снижение всех тропных гормонов Недостаточность работы всех эндокринных желез

Некоторые опухоли способны синтезировать избыточное количество гонадотропин-рилизинг-фактора, что проявляется преждевременным половым созреванием. В редких случаях возможна гиперпродукция соматолиберина, которая приводит к гигантизму у детей и развитию акромегалии у взрослых.

Тактика лечения гормональных нарушений зависит от причины. Для удаления опухолей применяют хирургические и лучевые методы, иногда - медикаментозные препараты. При гипопитуитаризме показана заместительная терапия. С целью нормализации уровня пролактина назначают агонисты дофамина - каберголин, бромокриптин.

Несахарный диабет

Наиболее частыми причинами развития заболевания у детей служат инфекции, а у взрослых - опухоли и метастатические поражения гипоталамуса, хирургические вмешательства, аутоиммунный процесс - образование антител к клеткам органа, травмы и прием лекарственных веществ - Винбластина, Фенитоина, антагонистов наркотиков. Под действием повреждающих факторов происходит подавление синтеза вазопрессина, которое может носить временный или постоянный характер.

Патология проявляется выраженной жаждой и увеличением объема мочи до 5–6 л в сутки и более. Наблюдается уменьшение потоотделения и выделения слюны, ночное недержание мочи, неустойчивость пульса с тенденцией к его учащению, эмоциональная неуравновешенность, бессонница. При выраженном обезвоживании происходит сгущение крови, падение давления, снижение массы тела, развиваются психические нарушения, повышается температура.

Для диагностики заболевания смотрят общий анализ мочи, определяют электролитный состав крови, проводят пробу Зимницкого, тесты с сухоедением и назначением десмопрессина - аналога АДГ, выполняют МРТ головного мозга. Лечение заключается в устранении причины патологии, применении заместительных доз препаратов десмопрессина - Натива, Минирин, Вазомирин.

Гипоталамический синдром

Гипоталамический синдром – это совокупность вегетативных, эндокринных и обменных расстройств, возникших вследствие поражения органа. Чаще всего развитию патологии способствуют нейроинфекции и травмы. Возможно возникновение синдрома вследствие конституциональной недостаточности гипоталамуса на фоне ожирения.

Болезнь проявляется вегетативно-сосудистыми, эндокринно-обменными симптомами, а также нарушением терморегуляции. Характерны слабость, утомляемость, увеличение веса, головные боли, излишняя тревожность и перепады настроения. У ряда пациентов выявляются повышенное артериальное давление, признаки функционального гиперкортицизма (усиление продукции гормонов надпочечников), нарушение толерантности к глюкозе. У женщин синдром приводит к дисменорее, поликистозу яичников, раннему климаксу.

Патология часто протекает в виде приступов, которые могут носить разный характер:

  • Симпатоадреналовые кризы - возникают внезапно, проявляются учащением работы сердца, похолоданием конечностей, дрожью в теле, расширением зрачков, страхом смерти. Возможно повышение температуры.
  • Вагоинсулярные кризы - начинаются с ощущения жара и прилива крови к голове. Беспокоит тошнота, рвота, чувство нехватки воздуха. Пульс урежается, возможно падения давления. Часто состоянию сопутствуют учащенное и обильное мочеиспускание, диарея.

Диагностика синдрома основывается на выяснении истории жизни пациента, его жалоб и внешнем осмотре. Проводят общеклиническое и биохимические исследования крови, оценку гормонального профиля, ряд инструментальных обследований - ЭКГ, МРТ головного мозга, ЭЭГ, УЗИ щитовидной железы и другие (по показаниям). Лечение патологии комплексное. Необходима коррекция всех выявленных нарушений, нормализация режима труда и отдыха, лечебная физкультура.

Гипоталамус (hypothalamus) - центральный нейроэндокринный орган, который совмещает нервную и гуморальную (гормональную) регуляции деятельности основных висцеральных систем организма. Включает около 30 пар ядер (скоплений нервных клеток), размещенных возле основы головного мозга (в участке дна третьего желудочка). Условно различают передний, средний и задний гипоталамус. Эндокринная функция связана с деятельностью особенных нейросекреторных клеток переднего и среднего гипоталамуса. Нейроциты заднего, в меньшей степени среднего и переднего гипоталамуса, посылают свои отростки в составе симпатичных и парасимпатических нервных стволов к соответствующим органам-целей, чем обеспечивают нервную регуляцию их деятельности.

Гипоталамо-гипофизарная система . В совокупности передняя доля гипофиза (имеющая эпителиальный генез и синтезирующая тропные гормоны), перикарионы нейросекреторных нейронов гипоталамуса (синтез рилизинг-гормонов, вазопрессина, окситоцина, нейрофизинов, орексинов), гипоталамо-гипофизарный тракт (транспорт гормонов по аксонам нейросекреторных нейронов), аксо-вазальные синапсы (секреция вазопрессина и окситоцина в капилляры задней доли гипофиза, секреция рилизинг-гормонов в капилляры срединного возвышения), портальная система кровотока между срединным возвышением и передней долей гипофиза вместе формируют гипоталамо-гипофизарную систему.

В переднем гипоталамусе есть две пары ядер, построенных из больших пептидохолинергических нейросекреторных клеток: супраоптичные и паравентрикулярные. Клетки супраоптических, в меньшей степени паравентрикулярных ядер, производят гормон вазопресин, который приводит к сокращению гладких миоцитов сосудистой стенки, предопределяя этим повышение давления крови. Второй эффект вазопресина заключается в уменьшении мочеотделения благодаря усилению реабсорбции воды в почках. С учетом этого эффекта вазопресин называют еще антидиуретическим гормоном. В последние годы показанная также важна роль вазопресина в регуляции температуры тела, деятельности сердечно-сосудистой системы; этот гормон необходим для нормального развития головного мозга. Клетки паравентрикулярных ядер синтезируют окситоцин, который вызывает сокращение гладких миоцитов матки и молочной железы. Гормоны супраоптических и паравентрикулярных ядер по аксонам нейросекреторных клеток опускаются в заднюю частицу гипофизу, где выводятся в кровообращение через аксовазальные синапсы.

К среднему гипоталамусу принадлежат аркуатное, дорсомедиальное, вентромедиальное, супрахоазматическое ядра, а также преоптическая зона. Мелкие адренохолинергические нейросекреторные клетки ядер среднего гипоталамуса производят две группы биологически активных веществ - либерины и статины, которые влияют на клетки передней доли гипофиза. Либерины и статины объединяют под общим названием релизинг-факторов (от анг. to release- освобождать, выпускать). Либерины и статины физиологичные антагонисты: первые стимулируют, а последние подавляют продукцию и выведение в кровь гормонов гипофиза.

Либерины и статины доносятся к гипофизу системой его вены ворот. Известны следующие виды либеринов: фоллиберин, люлиберин, соматолиберин, пролактолиберин, тиролиберин, меланолиберин, кортиколиберин; группа статинов включает соматостатин, пролактостатин и меланостатин. Названия гормонов средней группы ядер гипоталамуса образованы из двух частей: первая часть отвечает названию гормона гипофиза, который продуцирует клетка-цель (например, фолитропин, лютропин, соматотропин), вторая часть включает слово либерин или статин - в зависимости от физиологичного действия гормона. При открытии в гипоталамусе либеринов и статинов американские ученые Р. Тиймен и Е. Шелли в 1977 г. награждены Нобелевской премией.

Ядра гипоталамуса сщстоят из мелких или крупных мультиполярных нейросекреторных клуток с развитыми элементами комплекса Гольджи и гранулярной эндоплазматической сетки. Последние в составе нейросекреторных клеток обеспечивают синтез и выделение гормонов, которые за своей химической природой есть олигопептидами. В цитоплазме всех нейросекреторных клеток можно обнаружить специфические гранулы, которые содержат подготовленные к выведению биологически активные вещества. Особенностью нейросекреторных клеток супраоптического и паравентрикулярного ядер есть свойство накапливать секреторные гранулы в характерных расширениях аксонов (тельцах Херинга), локализованных в нейрогипофизе. На современном уровне развития науки сугубо выборочное выявление тех или других нейросекреторних клеток гипоталамуса достигают с использованием методов имуногистохимии (антител против продуцируемых ими гормонов), поскольку четких морфологических критериев для дифференциации этих клеток не существует.

Гипоталамус начинает формироваться на четвертой-пятой неделе эмбриогенеза в базальной части промежуточного пузыря головного мозга.

Гипофиз (hypophysis cerebri, glandula pituitaria) - центральный эндокринный орган, функция которого заключается в регуляции деятельности ряда периферических звеньев эндокринной системы (так называемых гипофизозависимых органов), а также в осуществлении непосредственного влияния на ряд клеток организма неэндокринной природы. Гипофизозависимыми элементами эндокринной системы является щитовидная железа, корковое вещество надпочечников, эндокриноциты половых желез. Из неэндокринных клеток гипофиз осуществляет влияние на лактоциты молочной железы, меланоциты, адипоциты, хондроциты, сперматогонии яички и тому подобное. В гипофизе депонируются окситоцин и вазопресин - гормоны, которые вызывают сокращение гладких миоцитов матки и сосудистой стенки.

Гипофиз размещен возле основы среднего мозга, в гипофизарной ямке турецкого седла основания черепа. Это орган шаровидной формы, размером с горошину, массой 500–600 мг. Он состоит из четырех долей: дистальной (передней), промежуточной (средней), туберальной и задней. Последняя формирует так называемую гипофизарную ножку, которая связывает гипофиз с тканями головного мозга. Передняя, промежуточная и туберальная доли вместе называются аденогипофизом, поскольку построенны из клеток, которые обеспечивают синтез и выделение в кровь биологически активных веществ. Задняя доля имеет название нейрогипофиза - в ней накапливаются и выводятся в кровь синтезированные нейросекреторними клетками переднего гипоталамуса окситоцин и вазопресин.

Передняя доля - эпителиальная эндокринная железа, её клетки синтезируют и секретируют различные гормоны (тропные и продукты экспрессии гена проопиомеланокортина). Синтез и секреция тропных гормонов находятся под контролем гипоталамических рилизинг-гормонов, поступающих в капилляры передней доли гипофиза (вторичная капиллярная сеть. Разные эндокринные клетки передней доли синтезируют различные пептидные гормоны.

Аденогипофиз покрыт фиброзной капсулой; представлен тяжами эндокринных клеток (аденоцитов), окружённых сетью ретикулиновых волокон; ретикулиновые волокна также окружают капилляры с фенестрированным эндотелием и широким просветом (синусоиды) вторичной капиллярной сети.

Среди эндокриноцитов дистальной доли гипофиза различают две группы клеток - хромофильные и хромофобные. Хромофильные клетки содержат в цитоплазме гранулы, которые интенсивно связывают гистологические красители. Они составляют около 40% клеточной массы дистальной доли гипофиза. Хромофобних клеток больше - около 60%. В их цитоплазме отсутствуют гранулы, эти клетки слабо окрашиваются на гистологических препаратах. Хромофобные и хромофильные эндокриноциты образуют в дистальной частке гипофиза многоклеточные скопления вытянутой формы - трабекулы (перекладки). Поэтому хромофобные клетки занимают центральное положение, а хромофильные - периферию трабекул.

Хромофобные эндокриноциты дистальной доли гипофиза представляют собой достаточно гетерогенную популяцию клеток.

К ним относятся: 1) малодифференцированные камбиальные клетки, которые являются резервом для замещения эндокриноцитов, окончивших свой жизненный цикл;

2) клетки, вступивших в стадию дифференциации, однако еще не успели накопить в цитоплазме специальных гормономистких гранул;

3) клетки, которые в момент взятия гипофиза для гистологического исследования выбросили свои секреторные гранулы за пределы цитоплазмы;

4) фолликулярно - звездчатые клетки, функция которых до сих пор не выяснена. Скопление фолликулярно - звездчатых клеток могут формировать микрофоликулярни структуры с откладыванием секреторных продуктов в просвете фолликулов.

Группа хромофильных эндокриноцитов содержит три разновидности клеток: базофильные, ацидофильные и клетки, которые занимают промежуточное положение между базофилами и ацидофилами. Базофильные эндокриноциты гипофиза содержат гранулы, которые окрашиваются основными красителями. Среди них различают гонадотропные и тиротропные клетки. Гонадотропоциты продуцируют фоликулостимулирующий гормон (ФСГ, или фолитропин), который влияет на пролиферацию сперматогоний яичка и фолликулярных клеток яичника, а также лютеинизурующий гормон (ЛГ, или лютропин), функция которого заключается в стимуляции желтого тела яичника и стимуляции продукции мужских половых гормонов интерстициальными эндокриноцитами яичка. Тиротропные эндокриноциты продуцируют тиротропный гормон (ТТГ), который регулирует функцию щитовидной железы. В цитоплазме гонадотропоцитов оказываются секреторные гранулы диаметром 200–250 нм; размеры гранул тиротропных клеток - 140–200 нм.

Ацидофильные эндокриноциты гипофиза содержат в цитоплазме большие плотные гранулы, которые окрашиваются кислыми красителями. Среди ацидофильных аденоцитов различают мамотропные и соматотропные клетки. Мамотропные эндокриноциты продуцируют лактотропный гормон (ЛТГ, пролактин), который вызывает дозревание лактоцитов молочной железы и стимулирует выработку ими компонентов молока; ЛТГ также продолжает функционирование желтого тела яичника. Размер гранул мамотропоцитов - 400–700 нм. Соматотропные клетки продуцируют соматотропный гормон (СТГ), который влияет на белковый обмен и, таким образом, обеспечивает рост тела. Цитоплазматичные зерна соматотропных клеток имеют диаметр 300–400 нм.

Третья группа хромофильных аденоцитов, что не относится ни к базофилам, ни к ацидофила, имеет название кортикотропоцитов. Они выделяют в кровь адренокортикотропный гормон (АКТГ, кортикотропин), который стимулирует эндокринную функцию клеток корковой частики надпочечной железы. Кортикотропоциты имеют неправильную многоугольную форму, хорошо развитой митохондриальный аппарат и эндоплазматическую сетку, ядра их состоят из отдельных частиц. Секреторные гранулы этих клеток имеют вид мембранных пузерьков с плотной сердцевиной, диаметр их 100–200 нм.

Все гормоны дистальной доли гипофиза за своей химической природой являются белками. Общепринято различать среди гормонов аденогипофиза гликопротеиновые гормоны, которые продуцируются базофилоцитами, и полипептидные, продуцируемые ацидофильными эндокриноцитами.

Для синтеза и выведения за пределы клеток биологически активных веществ в цитоплазме эндокриноцитов гипофиза содержатся хорошо развитые гранулярная эндоплазматическая сетка и элементы комплекса Гольджи. Хоть существуют способы идентификации тех или других разновидностей гормонопродуцирующих клеток гипофиза с учетом формы, размера, тинкториальных свойств гранул, особенностей строения и локализации органел, формы и размера клеток и ядер, наиболее определенными для достижения данной цели считаются методы имуногистохимии (использование специфических антител против конкретных гормонов) . Потому нецелесообразно давать здесь более детальную характеристику формы и размера секреторных гранул, тонких особенностей строения митохондрий или комплекса Гольджи хромофильных клеток гипофиза: при необходимости эти параметры можно найти в специальных пособиях.

Хромофобные эндокриноциты дистальной доли гипофиза являют собой достаточно гетерогенную популяцию клеток. Это и малодифференцированные камбиальные клетки, которые являются резервом для замещения эндокриноцитов, что закончили свой жизненный цикл. Значительная часть хромофобных эндокриноцитов образована клетками, которые вступили в стадию дифференциации, однако еще не успели накопить в цитоплазме специальных гормонсодержащие гранулы. К хромофобным эндокриноцитам могут принадлежать и клетки, которые в момент взятия гипофиза для гистологического исследования выбросили свои секреторные гранулы за пределы цитоплазмы. К хромофобам принадлежат также фолликулярно-звездчатые клетки, функция которых до этого времени не выяснена. Скопления фолликулярно-звездчатых клеток могут формировать микрофолликулярные структуры с откладыванием секреторных продуктов в просветительстве фолликулов.

Промежуточная доля гипофиза отграничена от дистальной прослойкой рыхлой соединительной ткани. Средняя (промежуточная) доля гипофиза у человека выражена слабо. Промежуточная доля характеризуется присутствием многих кист, выстланных кубическими клетками и содержащими коллоид (кисты Ратке). Эти кисты являются остатками эктодермы после впячивания кармана Ратке. Между кистами вдоль кровеносных капилляров расположены тяжи базофильных аденоцитов, участвующих в посттрансляционном расщеплении проопиомеланокортина.

Она состоит из двух разновидностей клеток: меланотропных и липотропных. Меланотропоциты выделяют в кровь меланотропный гормон, который влияет на пигментный обмен. Липотропные эндокриноцити с помощью липотропина стимулируют обмен липидов в организме. Существуют доказательства того, что меланотропный, липотропный, а также адренокортикотропный гормоны образуются в головном мозге путем расщепления большой молекулы церебрального пептида, а соответствующие клетки аденогипофиза лишь накапливают молекулы этих биологически активных веществ и выделяют их в кровь.

Туберальна доля аденогипофиза размещена между гипофизарной ножкой и медиальным позвышением гипоталамуса. Образованная тяжами эпителиоцитов кубической формы из умеренно базофильной цитоплазмой. Отдельные клетки туберальных тяжей содержат в цитоплазме базофильные гранулы. Функция клеток туберальной частки гипофиза не определена. Аденогипофиз связан с гипоталамусом портального (воротами) сосудистой системой. Приносные гипофизарные артерии распадаются в медиальном позвышении гипоталамуса на первичную капиллярную сетку, в которую поступают гормоны (либерины и статины) из нейросекреторных клеток среднего гипоталамуса. Капилляры этого первичного сплетения сливаются в портальные вены, которые идут вдоль гипофизарной ножки аденогипофиза, где распадаются на вторичную капиллярную сетку синусоидного типа. В последней кровь отдает эндокриноцитам гипофиза соответствующие либерины или статины и накопливает гипофизарные гормоны. Недавно обнаружено, что в гипофизе также производятся биологически активные вещества: тиролиберин, гонадолиберин, нейротензин, ангиотензин, гастрин, секретин. Очевидно, сегодня мы знаем еще далеко не все гормоны, и, соответственно, функции аденогипофиза.

Задняя доля гипофиза (нейрогипофиз). Нейрогипофиз включает заднюю долю гипофиза и нейрогипофизарную часть ножки гипофиза. Нейрогипофиз состоит из клеток нейроглии - питуицитов, кровеносных сосудов, аксонов гипоталамо-гипофизарного тракта и их окончаний на кровеносных капиллярах (аксо-вазальные синапсы). Опорно-трофический аппарат нейрогипофиза образован питуицитами - клетками эпендимной глии веретенообразной или неправильной звездчатой формы. Собственная эндокринная функция питуицитов неизвестна, они содержат многочисленные промежуточные филаменты, пигментные гранулы и липидные включения. В отличие от передней доли гипофиза, задняя доля (нейрогипофиз) - часть мозга. Нейрогипофиз содержит аксоны и их окончания, принадлежащие нейронам с большим перикарионом. Подобные нейроны расположены в паравентрикулярном и супраоптическом ядрах гипоталамуса. Перикарионы нейронов, вырабатывающих рилизинг-факторы для клеток-мишеней в передней доле гипофиза, имеют меньшие размеры. Большие нейроны гипоталамуса продуцируют вазопрессин и окситоцин, которые по аксонам транспортируются в заднюю долю, где и происходит их высвобождение из нейросекреторных клеток. Следовательно, задняя доля, как и передняя, служит местом выделения пептидных гормонов из гипоталамуса. В переднюю долю гипофиза гормоны гипоталамуса поступают по кровеносным сосудам портальной системы, а в случае задней доли - по аксонам тех же нейронов, в которых они продуцируются.

Аксо -вазальные синапсы образованы терминальными расширениями аксонов нейросекреторных нейронов гипоталамуса, контактирующими со стенкой кровеносных капилляров срединного возвышения и задней доли гипофиза. Аксоны имеют локальные утолщения (нейросекреторные тельца Херинга), заполненные пузырьками и гранулами с гормонами окситоцином и вазопресином.

Следовательно, гормоны в задней доле не синтезируются, но через стенку кровеносных капилляров в кровь секретируются АДГ, окситоцин и нейрофизины, поступающие по аксонам гипоталамо-гипофизарного тракта.

Два бледнорозовых тельца Херинга видно в препарате, они заполнены нейросекретом, который вырабатывают клетки расположеныв в гипоталамусе.

Гипофиз начинает развиваться на четвертой неделе эмбриогенеза из эпителиальных и нейральных зачатков. Эпителий верхней части ротовой ямки формирует гипофизарный карман, который углубляется в направлении закладки головного мозга и дает начало структурам аденогипофиза. Дистальная доля последнего формируется в результате разрастания эпителия передней стенки гипофизарного кармана, промежуточная доля - из ее задней стенки. Навстречу гипофизарному карману со стороны промежуточного пузыря к зачатку головного мозга двигается вирост, который в будущем превращается в лейку третьего желудочка мозга. Нейроглия дистального конца лейки, разрастаясь, формирует нейрогипофиз, проксимальна часть лейки превращается в гипофизарную ножку. Адренокортикотропоциты в гипофизе человека выявляются впервые на пятой неделе эмбриогенеза, клетки-продуценты других гипофизарных гормонов оказываются на 13 неделе. К моменту рождения ребенка дифференциация гипофиза в целом завершается. В постнатальном периоде наблюдается фазность активации эндокриноцитов аденогиофиа: в раннем постнатальном периоде активируются преимущественно соматотропные и тиротропные клетки, в пубертатном периоде преобладает активация гонадотропних аденоцитов.

Гипофиз образуется из двух зачатков - эктодермального (карман Ратке) и нейрогенного (processus infundibularis ).

Карман Ратке . На 4–5-й неделе эктодермальный эпителий крыши ротовой бухты образует карман Ратке - вырост, направляющийся к мозгу. Из этого гипофизарного кармана развивается аденогипофиз (передняя, промежуточная и входящая в состав ножки гипофиза туберальная доли).

Processus infundibularis . Навстречу карману Ратке растёт выпячивание промежуточного мозга, дающее начало нейрогипофизу (задняя доля гипофиза, нейрогипофизарная часть ножки гипофиза и отчасти срединное возвышение).

Недостаточность функции гипофиза в раннем детском возрасте предопределяет карликовость - так называемый гипофизарный нанизм. Гипофизарный карлики не умственно отсталыми, однако у них отстает развитие половой системы, они не способны к репродукции. Гиперфункция гипофиза у детей предопределяет развитие гигантизма. У взрослых при гиперпродукции соматотропного гормона развивается акромегалия: непропорционально разрастаются конечности, язык, надбровные дуги, нижняя челюсть и тому подобное.

Краниофарингиома - врождённая доброкачественная дисэмбриональная опухоль, развивающаяся из эпителия гипофизарного кармана Ратке. Интракраниальная часть опухоли нередко достигает гигантских размеров. Опухоль содержит кисты и петрификаты.

Шишковидная железа - небольшой (5–8 мм) конической формы вырост промежуточного мозга, соединённый ножкой со стенкой третьего желудочка. Масса его у взрослого человека 120-180 мг, по форме он напоминает шишку ели.

Эпифиз размещен возле основания промежуточного мозга, в дорсальной части крыши третьего желудочка. Внешне покрыт соединительтканной капсулой, от которой внутрь органа отходят перегородки, которые делят его на часточки. Капсула образована соединительной тканью мягкой мозговой оболочки. От капсулы отходят перегородки, содержащие кровеносные сосуды и сплетения симпатических нервных волокон. Эти перегородки не полностью разделяют тело железы на дольки.

Каждая долька эпифиза состоит из двух видов клеток - нейросекреторных пинеалоцитов и глиоцитов (астроцитарной глии). Пинеалоциты расположены преимущественно в центральных частях, астроциты - на периферии дольки эпифиза. Пинеалоциты содержат крупное ядро, хорошо развитую гладкую эндоплазматическую сеть, элементы гранулярной эндоплазматической сети, свободные рибосомы, комплекс Гольджи, множество секреторных гранул, микротрубочки и микрофиламенты.

Интерстициальные клетки напоминают астроциты, имеют многочисленные ветвящиеся отростки, округлое плотное ядро, элементы гранулярной эндоплазматической сети и структуры цитоскелета: микротрубочки, промежуточные филаменты и множество микрофиламентов.

Контакты пинеалоцитов . Многочисленные длинные отростки пинеалоцитов заканчиваются расширениями на капиллярах и среди клеток эпендимы. В концевых отделах части отростков присутствуют непонятного назначения структуры - плотные трубчатые элементы, окружённые т.н. синаптическими сфероидами.

Циркадианный ритм - один из биологических ритмов (суточная, помесячная, сезонная и годовая ритмика), скоординированный с суточной цикличностью вращения Земли; несколько не соответствует 24 часам. Многие процессы, в т.ч. гипоталамическая нейросекреция, подчиняются околосуточному ритму.

Механизмы околосуточного ритма. Изменения освещённости через зрительный тракт оказывают влияние на разряды нейронов надперекрёстного ядра (nucleus suprachiasmaticus ) ростро-вентральной части гипоталамуса. Надзрительное ядро содержит т.н. эндогенные часы - неизвестной природы генератор биологических ритмов (включая околосуточный), контролирующий продолжительность сна и бодрствования, пищевое поведение, секрецию гормонов и т.д. Сигнал генератора - гуморальный фактор, секретируемый из надзрительного ядра (в т.ч. в цереброспинальную жидкость). Сигналы от надзрительного ядра через нейроны околожелудочкового ядра (n. paraventricularis ) активируют преганглионарные симпатические нейроны боковых столбов спинного мозга (columna lateralis ). Симпатические преганглионары активируют нейроны верхнего шейного узла. Постганглионарные симпатические волокна от верхнего шейного узла секретируют норадреналин, взаимодействующий с - и -адренорецепторами плазмолеммы пинеалоцитов. Активация адренорецепторов приводит к увеличению внутриклеточного содержания цАМФ и экспрессии гена CREM , а также к транскрипции арилалкиламин-N–ацетилтрансферазы, фермента синтеза мелатонина.

Суточная периодичность содержания цАМФ, изоформ CREM, активности арилалкиламин-N–ацетилтрансферазы - результат функционирования эндогенных часов и их модуляции освещённостью.

Гормон мелатонин (N–ацетил-5-метокситриптамин, рис. 9-15) синтезируется и секретируется в цереброспинальную жидкость и в кровь преимущественно в ночные часы.

Серотонин (5-гидрокситриптамин) синтезируется преимущественно в дневные часы (рис. 9-15).

В интерстиции присутствуют отложения солей кальция, известные как «мозговой песок» (corpora arenacea ).

Иннервация: орган снабжён многочисленными постганглионарными нервными волокнами от верхнего шейного симпатического узла.

Функция органа у человека изучена слабо, хотя железа у ряда позвоночных выполняет различные функции [например, у некоторых амфибий и рептилий эпифиз содержит фоторецепторные элементы (т.н. теменной глаз)], иногда бездоказательно переносимые на человека. Эпифиз у человека, скорее всего, - звено реализации биологических ритмов, в т.ч. околосуточных.

Механизм реагирования эпифиза на смены освещенности связан с восприятием им раздражений от сетчатки глаза по симпатичным нервным стволам.

Функция глиоцитов эпифиза преимущественно опорно-механическая: их отростки вплетаются в соединительнотканную строму органа. Пинеалоциты являют собой большие клетки полигональной формы с разветвленными отростками. В их цитоплазме хорошо развитые гладкая и гранулярная эндоплазматической сетки, элементы комплекса Гольджи, митохондрии и лизосомы. Окончания отростков образуют возле гемокапилляров булавовидные расширения, в составе которых оказываются секреторные гранулы и митохондрии. В зависимости от функционального состояния этих клеток различают их разновидность, бедную на секреторные включения (так называемые светлые клетки), а также темные пинеалоциты, в цитоплазме которых накапливаются ацидофильные или базофильные гранулы. За составом секреторных продуктов пинеалоциты являют собой достаточно гетерогенную популяцию клеток: ими синтезируется около 40 разновидностей регуляторных пептидов, а также биологически активные амины - серотонин и мелатонин. Синтез и выделения последнего зависит от уровня освещенности: усиливается в темноте и тормозится на свете. Выделение серотонина, который является метаболическим предшественником мелатонина, напротив, происходит интенсивно в дневные часы и замедляется, когда света недостает. Мелатонин должен способность подавлять секрецию гонадолиберина гипоталамусом, чем замедляет половое дозревание в" онтогенезе. У взрослого человека мелатонін контролирует пигментный обмен, половые функции, суточные и сезонные ритмы, процессы деления и дифференциации клеток, проявляет противоопухолевую активность. Нехватка серотонину в ткани мозга являются патогенетическим фактором возникновения депрессии, повышения концентрации серотонину, напротив, предопределяет эмоциональный подъем. Среди регуляторных пептидов эпифиза различают такие: люлиберин И тиролиберин (этими гормонами эпифиз дополняет гипоталамус); тиротропний гормон (аналогичный гіпофізар-ному ТТГ); гормоны-регуляторы минерального обмена, в частности обмену калию в организме.

Эпифиз начинает развиваться на пятой неделе эмбриогенеза из нейроектодермы в виде вироста (карманы) в участке будущего промежуточного мозга (крыше третьего желудочка). После рождения эпифиз теряет аферентные и эферентные связки с мозгом. Максимального развития он достигает на седьмом году жизни, после чего наблюдается его возростная инволюция. Часть пинеалоцитов при этом атрофируется, стромальные компоненты разрастаются. В последних накапливаются шаровидной формы микроскопические наслоения карбонатных и фосфатных солей, которые имеют название мозгового песка.

Щитовидная железа

Щитовидная железа (glandula thyroidea) - периферический орган эндокринной системы, который регулирует основной обмен организма, а также обеспечивает кальциевый гомеостаз крови. Размещена на передней поверхности щитообразного и перстневидного хрящей гортани, а также второго и третьего колец трахеи. Масса железы 20-30 г, она состоит из двух частиц полигональной формы, соединенных перешейком. Размеры каждой доли 7X3X2 см.

Щитовидная железа покрыта соединительтканной капсулой, от которой внутрь органа отходят перегородки. Структурной и функциональной единицей щитовидной железы является фолликул - микроскопический пузырек, стенка которого образована одним слоем клеток-тироцитов. Внутри фолликула накапливается коллоид - топкое вещество, которое состоит из белка тироглобулина. В молекуле последнего тироксин (гормон щитовидной железы) связанный с полипептидной цепью (глобулином).

Внешне каждый фолликул окружен базальной мембраной, которая является основой для тироцитов. Кроме фолликулов, в гистологических препаратах щитовидной железы можно увидеть скопление тироцитов без полостей внутри, так называемые межфолликулярные островки. Их присутствие предопределено возможностью почкования - отщепление малодифференцированных клеток и новообразование фолликулов. Возможно, выявление части межфолликулярных островков предопределено прохождением плоскости среза при изготовлении гистологического препарата краем зрелых фолликулов без увлечения коллоида последних.

Щитовидная железа . Стенка фолликулов (1) состоит из одного слоя тиреоцитов (2). В полости фолликула находится коллоид (3). От соединительнотканной капсулы внутрь органа отходят септы (4), содержащие кровеносные сосуды. Окраска гематоксилином и эозином.

Тироциты фолликулов - основной клеточный компонент щитовидной железы. Форма этих клеток связана с их функциональной активностью: в норме у взрослых людей они кубические, при гиперфункции и у детей приобретают призматическую форму, при гипофункции и в старческом возрасте становятся плоскими. На апикальной (обращению в просвет фолликула) поверхности тироцита есть микроворсинки, которые принимают участие в выведении секреторных продуктов в просвет фоликула. Боковые поверхности соседних клеток формируют десмосомные контакты. Плазмолема базальной поверхности тироцита образует многочисленные инвагинации. Усиление функциональной активности тироцитов сопровождается ростом количества и высоты микроворсинок, увеличением количества инвагинаций.

В цитоплазме тироцитов хорошо развитая гранулярная эндоплазматическая сетка и элементы комплекса Гольджи. Тироциты должны способность поглощать из кровообращения ионы иода и аминокислоту тирозин. При йодировании тирозина, которое происходит, в основном, внутри тироцита при участии его ферментных систем, образуется гормон тироксин (тетрайодтиронин). Последний являет собой димер тирозина, в составе которого есть четыре атома иода. Одновременно в клетке синтезируется полипептидный компонент тироглобулина. Завершается процесс формирования молекулы тироглобулина в апикальной части тироцита, откуда этот белок путем экзоцитоза попадает внутрь фолликула, где накапливается в виде коллоида. При потребности организма в тироксине доли коллоида фагоцитуються, и процесс идет в обратном направлении: полипептидная цепь гидролизуется лизосомными ферментами тироцита, высвобожденный тироксин через базальную поверхность клетки выводится в капиллярную сетку, какая с внешней стороны окружает фолликул. Влияя на скорость использования кислорода и общий уровень метаболических процессов в клетке, тироксин регулирует основной обмен организма.

Второй тип клеток щитовидной железы - так называемые парафолликулярные клетки. Они расположены поодиночке в фолликулах - между базальной основой тироцитов и базальной мембраной, а также в межфолликулярной соединительной ткани. Это большие клетки неправильной округлой или полигональной формы, в цитоплазме которых содержится большое количество секреторных гранул. Характерной особенностью парафолликулярных клеток является их способность восстанавливать окиси тяжелых металлов, что придает им свойство так называемой аргирофилии, или осмиофилии. В цитоплазме хорошо развита гранулярная эндоплазматическая сетка, элементы комплекса Гольджи. Существуют дна разновидности парафолликулярных клеток: первая синтезирует гормон кальцитонин, вторая - соматостатин. Кальцитонин уменьшает уровень кальция в крови путем депонирования его в костной ткани, соматостатин подавляет белковый синтез и является антагонистом соматотропина. Парафоликулярные клетки могут совмещать синтез регуляторных пептидов с образованием нейроаминов серотонина и норадреналина, они принадлежат к APUD-системе.

Закладка щитовидной железы осуществляется на четвертой неделе эмбрионного развития в виде вироста эпителия стенки глотки между первой и второй парой зяберных карманов. Рост эпителиального тяжа на уровне третей-четвертой пары зяберных карманов сопровождается его раздвоением, давая начало долям щитовидной железы. На ранних этапах эмбриогенеза щитовидная железа имеет трабекулярное (тяжистое) строение, с нагромождением коллоида внутри трабекул последние превращаются в фолликулы. Заметим, что тироциты и парафолікулярные клетки разные по происхождению: первые развиваются из эпителия глоточной кишки, источником образования парафолликулярных клеток является нейробласты нервного гребня.

Гипофункция щитовидной железы в раннем детском возрасте приводит к развитию кретинизма (физической и умственной отсталости). У взрослых при недостаточной функции щитовидной железы возникает микседема: увеличивается масса тела, снижается температура, выпадают волосы, кожа становится сухой, развиваются признаки угнетения функции центральной нервной системы, апатия, брадикардия. При гиперфункции щитовидной железы развивается базедовая болезнь. Проявления последней - противоположные тем, которые возникают при микседеме.