Этиология повреждений клетки. Повреждение клетки Физико химические показатели повреждения клетки

ПОВРЕЖДЕНИЕ КЛЕТКИ – нарушение ее жизнедеятельности в результате влияния патогенного агента. Главные причины клеточных повреждений: - гипоксия, - ацидоз, - активация АФК, - денатурация белка, - повышение проницаемости клеточных мембран, - дисбаланс ионов и воды.

В основе повреждения лежит разрушение части структурных элементов клетки, вследствие чего клетка в целом хуже выполняет свои функции. Повреждение клетки может быть частичным либо полным, обратимым либо необратимым. Необратимое повреждение может привести к прогрессирующей деструкции клетки и ее гибели.

Общие механизмы клеточной альтерации: - повреждение мембран с активацией свободнорадикальных процессов и активацией ферментов (гидролаз мембранных, лизосомальных, цитоплазматических), - нарушение ионных каналов и насосов ионного состава клеток и набухание клетки и митохондрий с нарушением синтеза АТФ, - нарушение мембранного потенциала клетки - все они ведут к нарушению всех специфичных функций клеток, - активации лизосомальных ферментов, ацидозу и лизису клеток.

Любая живая клетка подвержена влиянию нервных, гормональных, метаболических, энергетических и других воздействий со стороны целого организма, нарушение ее функций связано в конечном счете с изменениями химического состава раствора в ее непосредственном окружении: концентрацией ионов, метаболитов и т. д. Все эти изменения могут рассматриваться как факторы, оказывающие воздействие на функционирование клетки. Эти факторы могут в принципе либо улучшать, либо ухудшать условия жизнедеятельности клетки; в последнем случае их называют неблагоприятными. Следует различать прямое действие неблагоприятного фактора на данную клетку и косвенное его влияние, опосредованное воздействием на другие клетки, органы, ткани и организм в целом.

Прямое нарушение жизнедеятельности клетки и ее повреждение могут быть вызваны отсутствием кислорода, чрезмерно низким значением р. Н, низким осмотическим давлением в окружающей среде, недостатком ионов кальция, действием ультрафиолетовой или ионизирующей радиации и т. д. В условиях целостного организма первичное действие повреждающего фактора на клеткимишени (т. е. клетки, повреждаемые непосредственно) сопровождается изменениями и в других клетках. Эти изменения опосредованы нарушением функционирования клеток-мишеней и поэтому могут быть названы вторичными.

Всякое повреждение клетки выражается в определенном нарушении ее структуры и функций. При этом различные повреждающие факторы вызывают неодинаковые специфические первичные нарушения в клеточных структурах.

При механическом повреждении происходит нарушение целостности структуры ткани, клеток, межклеточных и субклеточных структур. Термическое повреждение связано с денатурацией белков и белково-липидных комплексов клетки, а также с изменением вторичной структуры нуклеиновых кислот. При действии ионизирующей и ультрафиолетовой радиации первичным является разрушение молекул, поглотивших энергию, с образованием свободных радикалов, что приводит к поражению многих внутриклеточных структур. При химическом (токсическом) повреждении первичным является торможение (ингибирование) отдельных клеточных ферментов или их комплексов, например подавление активности цитохромоксидазы цианидами, торможение сукцинатдегидрогеназы солями малоновой кислоты, угнетение холинэстеразы диизопропилфторфосфатом (нервный яд) или другими фосфорорганическими ингибиторами.

Первичное, специфическое воздействие повреждающего фактора направлено на совершенно конкретные молекулярные структуры клетки. Нарушение этих структур вызывает целый каскад событий, заканчивающихся общим ответом клетки как целого. При этом можно различить несколько стадий ответа клеток на внешнее неблагоприятное воздействие.

Специфические механизмы повреждения клеток (примеры): - изменение осмотического давления с гипергидратацией (осмотический гемолиз); - разобщители окисления и фосфорилирования – динитрофенол снижает синтез АТФ одновременно увеличивая дыхание клеток.

Вначале, как правило, имеет место неспецифическая реакция, характерная для всякого раздражения. В случае электровозбудимых клеток - это генерация мембранного потенциала действия, свойственная нервным клеткам и волокнам, мышечным клеткам и даже фагоцитам. Практически у всех клеток при действии повреждающих агентов наблюдается резкое увеличение проницаемости клеточных мембран для ионов, в частности для ионов кальция, с последующей активацией различных внутриклеточных систем: протеинкиназ, фосфолипаз, систем биосинтеза белков, фосфодиэстеразы циклических нуклеотидов, аденилатциклазы, сократительного аппарата клетки и т. д. Эта первая, обратимая стадия в определенной степени направлена на компенсацию нарушений, вызываемых повреждающим агентом, будь то компенсация на уровне данной клетки или на уровне целого организма.

При более сильном или более длительном воздействии повреждающего фактора имеет место также нарушение функций клеток, которое приводит к ухудшению функционирования ткани и органа в целом. Изменения, наблюдаемые при этом в клетке, напоминают изменения в погибших клетках, но они обратимы. Такое состояние клеток называется паранекрозом. Внешне паранекроз проявляется в помутнении цитоплазмы, вакуолизации, появлении грубодисперсных осадков, увеличении проникновения в клетку различных красителей.

Если часть клеток в ткани погибла окончательно, а другие продолжают функционировать, то такое состояние "между жизнью и смертью" называют некробиозом. Наконец, гибель клеток, т. е. такое их повреждение, которое в условиях организма необратимо, называют некрозом. Некроз сопровождается активацией ряда лизосомальных ферментов (например, фосфолипаз и протеаз), разрушением других клеточных структур. Этот процесс называется аутолизом. Аутолиз необходим для удаления мертвых клеток и замены их новыми клетками или элементами соединительной ткани.

Феноменологические (внешние) проявления повреждения клеток Неспецифическая реакция клеток на повреждение заключается в нарушении барьерной функции клеточной и внутриклеточных мембран, а также выключение ионных насосов. Это сопровождается нарушением распределения веществ (компартментализации) внутри клетки и между клеткой и окружающей средой, дезорганизацией внутриклеточного метаболизма и нарушением системы энергообеспечения.

В неспецифической реакции клеток на повреждение значительную роль играет необратимая инактивация (денатурация) белков, связанная с нарушением структуры (конформации) белковой молекулы. Одним из первых результатов всякого повреждения клетки является увеличение проницаемости цитоплазматической мембраны и нарушение клеточной энергетики. Ионы кальция начинают просачиваться внутрь клетки, в результате чего происходит увеличение концентрации кальция от 10 -8 -10 -7 моль/л (в норме) до 10 -6 -10 -5 моль/л. Это приводит к нарушениям в цитоскелете, активации сократительных структур, образованию нерастворимых включений кальция в матриксе митохондрий, повреждению внутриклеточных мембран и общей дезорганизации метаболизма.

В результате изменений ионного состава цитоплазмы, р. Н, концентрации субстратов, кофакторов и регуляторов нарушаются внутриклеточные барьеры, что ведет к изменению активности ферментов и к дальнейшему развитию нарушений, полной дезорганизации обмена веществ.

Большую роль в развитии повреждения играет нарушение мембранных структур клетки, ответственных за неспецифическую (т. е. характерную для всех клеток) реакцию на повреждающее воздействие.

Любое повреждение клетки сопровождается ацидозом ее цитоплазмы (р. Н падает до 6 и ниже). Первичный ацидоз повреждения клеток следует отличать от вторичного ацидоза в воспаленной ткани, который возникает значительно позднее (через несколько часов) после нанесения повреждения. Первичный ацидоз повреждения - следствие накопления недоокисленных продуктов метаболизма, в частности продуктов гликолиза в поврежденной клетке. Первичный ацидоз в поврежденной ткани возникает независимо от вида повреждающего агента - механического, химического (например, горчичное масло), бактериального (дизентерийная палочка, гемолитический стафилококк).

Увеличение объема клеток - один из наиболее ранних признаков ее повреждения, который проявляется, например, при недостатке кислорода в ткани - тканевой гипоксии. Сохранение нормальной формы и объема клеток связано с состоянием цитоскелета и поддержанием определенного соотношения между осмотическим давлением белков и электролитов внутри и вне клетки. Форма клетки определяется цитоскелетом, тогда как объем клетки - поддержанием осмотического баланса.

Набухание клеток - процесс, далеко не безразличный для функционирования клеток и ткани в целом. Первым результатом этого оказывается сдавливание кровеносных сосудов и затруднение кровообращения. Так, при ишемии происходит набухание клеток и последующее общее возобновление кровообращения не сразу и не всегда приводит к восстановлению жизнедеятельности, потому что кровь не проникает в мелкие кровеносные сосуды, сдавленные набухшими клетками.

Одним из важных показателей повреждения клеток является нарушение строения и функций эндоплазматического ретикулума, митохондрий, лизосом, рибосом. Различные болезнетворные факторы (инфекции, интоксикации) вызывают повреждения эндоплазматического ретикулума. Они выражаются в набухании ретикулума, изменении формы его мембран.

Набухание митохондрий наблюдается, например, в клетках миокарда при недостаточности сердца, а также при многих инфекционных, гипоксических, токсических и других патологических процессах. Различные повреждающие агенты, например, эндотоксины бактерий кишечно-тифозной группы, а также мелкие неорганические частицы (двуокись кремния, двуокись титана, алмазная пыль), попадая в лизосомы, разрушают их. Ферменты лизосом освобождаются в цитоплазму клетки и вызывают повреждение субклеточных структур и ферментов цитоплазмы. Повреждение лизосом может привести клетку к гибели.

Общими для всех поврежденных клеток являются увеличение внутриклеточного содержания кальция и нарушение биоэнергетических функций митохондрий. Эти два события лежат в основе нарушения функций поврежденных клеток и могут рассматриваться как главные звенья в цепи событий, приводящих к развитию неспецифической реакции клеток на повреждение.

Разобщение окислительного фосфорилирования и снижение кальцийаккумулирующей способности при повреждении митохондрий имеют самые драматические последствия для клетки. Снижение уровня АТФ в клетке в результате разобщения окисления и фосфорилирования приводит к выключению ионных насосов, входу в клетку Са 2+, Na+ и воды, выходу K+, нарушению всех биохимических процессов, требующих затраты энергии АТФ. Согласно современным представлениям, именно повреждение митохондрий является ключевым моментом, после которого изменения в клетке, вызванные повреждающим агентом, становятся необратимыми и клетка погибает.

МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ КЛЕТОК В классической морфологии нелетальное повреждение клеток называется дистрофией. В большинстве случаев дистрофия относится к обратимым повреждениям. Некроз, наряду с апоптозом, является одним из двух морфологических выражений смерти клетки. Апоптоз ответствен за многочисленные физиологические и патологические процессы, происходящие в организме.

Апоптоз является разновидностью смерти клетки, для которой характерна конденсация и фрагментация ДНК. Апоптоз обеспечивает уничтожение клеток при нормальном развитии, тканевом росте, органогенезе и в органах иммунной системы.

Главные механизмы апоптоза: активация эндонуклеаз ядра расщепляющих ДНК, снижение мембранного потенциала митохондрий, Все это ведет к энергетическому голоду клетки (один, оба механизма).

ЗАБОЛЕВАНИЯ НАРУШЕНИЯ АПОПТОЗА: СНИЖЕНИЕ АПОПТОЗА: ведет к опухолям, аутоиммунным заболеваниям, частым вирусным инфекциям, нейропролиферативным заболеваниям. ПОВЫШЕНИЕ АПОПТОЗА: нейродегенеративных заболеваниях (болезнь Альцгеймера, миотрофии); болезни крови (апластическая анемия, миелодиспластический синдром); ишемия (инфаркт, инсульт, реперфузионные поражения); токсические повреждения печени и почек, СПИД.

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТКИ К ПОВРЕЖДЕНИЮ - Компенсация энергетических повреждений: переход на гликолитический синтез АТФ, активация ферментов транспорта энергии в клетке, повышение к. п. д. АТФаз; - Снижение функциональной активности и пластических процессов клетки. - Защита мембран и ферментов: активация антиоксидантной системы, буферных систем (снижение внутриклеточного ацидоза в т. ч. транспорт Н+ в митохондрии, саркоплазматический ретикулум и из клетки); - Повышение активности ферментов микросом (окисление, восстановление, деметилирование и пр. патогенных агентов); активация репарации мембранных структур клеток (белковый синтез репарации). - Нормализация водно-ионного баланса клетки: активация ионных насосов (мембран клеток и саркоплазматического ретикулума, меньше митохондрий), активация буферный систем. - Репарация генетических дефектов - ферменты репарации ДНК. - Компенсация процессов регуляции клетки: - изменение числа рецепторов клеток, их чувствительности (аффинности), - внутриклеточных посредников (G-белки, ц. АМФ, кальмодулин, Са 2+). - Активация всех типов обратных связей ведет к аутоадаптации метаболизма.

Стереотипные приспособления клетки: - гипертрофия, - гиперплазия, - дисплазия, - метаплазия (предрак), - белки теплового шока: при гипертермии, гипоксии, интоксикациях, вирусном повреждении и пр. – защита клетки от самых различных стрессов и патогенов. Межклеточная адаптация: нервные, эндокринные, цитокинные влияния, обмен метаболитами, ионами и пр. ; изменение периферического кровообращения и лимфотока.

ТИПОВЫЕ ФОРМЫ КЛЕТОЧНОЙ ПАТОЛОГИИ: ДИСТРОФИИ (нарушения обмена) БОЛЕЗНИ НАКОПЛЕНИЯ: ферментопатии обычно аутосомно-рецессивного типа: липидозы, гликогенозы, муколипозы, мукополисахаридозы, а также лизосомные и пероксисомного болезни. ДИСПЛАЗИИ: нарушения дифференцировки клеток с изменением их структуры, метаболизма и функции, ведущие к нарушениям жизнедеятельности.

Повреждение клетки - комплекс типичных патологических процессов, в основе которых лежат нарушения внутриклеточного гомеостаза, приводящие к изменению структурной и функциональной организации клетки, межклеточных взаимодействий и организма в целом.

При различных воздействиях отдельные клетки и целые многоклеточные организмы подвергаются структурно-функциональным изменениям, часть из которых может носить патологический характер. В многоклеточных организмах, повреждение одной или группы клеток не всегда приводит к существенным патологическим изменениям в организме. Но в случае, когда число поврежденных клеток и степень нарушений в них бывает значительной, превосходящей обычные резервно-компенсаторные возможности организма, возникают патологии.

Общая характеристика повреждений . Повреждения клетки могут быть острыми или хроническими. Для организма в целом течение нарушений может быть острейшим и длиться от нескольких секунд до 1…2 сут, острым - от нескольких дней до 3 нед, подострым - течение патологического процесса охватывает несколько месяцев и хроническим.

Среди повреждений структуры и функции клетки выделяют обратимые и необратимые. Необратимыми могут быть нарушения специализации клетки в ходе развития организма, генетические мутации, в том числе ведущие к злокачественному опухолевому росту, цитолиз (аутолиз клетки), цитонекроз, дистрофия. Обратимо большое число патологических изменений в клетке, и после восстановления нормального течения биологических процессов структура и функция поврежденной клетки могут вернуться к исходным показателям.

Действие на клетку патологического фактора может быть прямым или опосредованным через нарушения жизнедеятельности соседних клеток и/или целого организма. При прямом повреждении клетки патологический фактор (причина) непосредственно влияет на клетку.

При опосредованном повреждении клетка не сталкивается с этими факторами напрямую, а патологические воздействия связаны с продуктами метаболизма, дисгормонозами, нарушениями нервного контроля и др. Например, механическое повреждение получила другая группа клеток, а соседние с ними подверглись влиянию продуктов разрушения этих клеток, нарушения кровотока и т. д.

Выделяют два патогенетических варианта повреждения.

Насильственный вариант развивается в случае действия на исходно здоровую клетку чрезвычайных патологических факторов любой природы. Особенностью таких повреждений на клетку является чрезмерная интенсивность и/или длительность повреждающего воздействия, необычный характер повреждающего фактора. Фактор должен превышать нормальные физиологические компенсаторные возможности клетки.

Цитопатический вариант возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов. В этом случае физиологичные для здоровых клеток стимулы становятся для такой клетки повреждающими. Подобные нарушения могут быть связаны с изменениями генома или его транскрипции. Например, отсутствие одного из ферментов (ферментопатия) может сопровождаться накоплением и токсическим действием продуктов метаболизма.

Этиология повреждений клетки . Основные причины повреждений клетки подразделяют на эндогенные и экзогенные. По природе воздействия их классифицируют на физические (в том числе механические), химические и биологические.

К этиологическим факторам физической природы относят механическое разрушение клетки, чрезмерно высокую или низкую температуру, значительное изменение осмотического давления, электрический ток, различные виды излучения (ультрафиолетовое, электромагнитное) и ионизирующую радиацию.

Физические факторы воздействуют на клетки посредством специфических механизмов, например, высокая температура обусловливает коагуляцию высокомолекулярных белковых комплексов, ионизирующая радиация стимулирует образование свободных радикалов, активирующих перекисные процессы, и т. д. Таким образом, повреждения клеток могут проявляться на разных уровнях, даже если они близки по степени тяжести.

К этиологическим факторам химической природы относят органические и неорганические вещества,

которые имеют как естественное небиологическое происхождение, так и искусственно создаваемые вещества (продукты бытовой химии, промышленного производства, лекарственные препараты и т. д.). Это разнообразные токсичные органические и неорганические вещества (соли тяжелых металлов, гербициды, циклические и полициклические канцерогены, промышленные яды и др.).

Причиной повреждения может быть не только избыток, но и недостаток необходимых для нормальной жизнедеятельности веществ (ионов натрия, калия, хлора, йода и др.). Так, избыточное поступление ионов меди оказывает выраженное цитотоксическое действие. Недостаток меди также вызывает значительные повреждающие эффекты на многие клетки и организм в целом.

Причиной повреждения может стать относительный или абсолютный недостаток или избыток такого вещества. Под абсолютным избытком или недостатком понимают значительное превышение или недостаточность содержания рассматриваемого вещества по сравнению с нормальным его содержанием в организме. При относительной недостаточности содержание вещества в организме остается в пределах нормы, но оно может находиться в биологически малодоступном виде, концентрироваться не в тех участках клетки или организма, либо это вещество не удовлетворяет повышенную потребность в нем организма.

Этиологические факторы биологической природы - эго продукты жизнедеятельности организмов либо сами биологические объекты. Факторы биологической природы могут иметь экзогенное и эндогенное происхождение. Эндогенное происхождение имеют продукты жизнедеятельности самого животного, в том числе токсические (летучие жирные кислоты, нашатырный спирт, билирубины и т. д.), гормоны (недостаток и избыток), избыточное накопление жиров, мукополисахаридов. Повреждающим влиянием обладают продукты распада опухолей и зон некроза при инфаркте миокарда, синдроме длительного раздавливания, ожогах, отморожениях, антитела, система комплемента, катионные белки и т. д.

Экзогенные биологические факторы подразделяют на инфекционные и неинфекционные. Инфекционные - это патогенные бактерии, вирусы, простейшие, грибы. Неинфекционные биологические факторы - яды животного и растительного происхождения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Этот файл взят из коллекции Medinfo http://www.doktor.ru/medinfo http://medinfo.home.ml.org E-mail: [email protected] or [email protected] or [email protected] FidoNet 2:5030/434 Andrey Novicov Пишем ы на заказ - e-mail: [email protected]


В Medinfo для вас самая большая русская коллекция медицинских ов, историй болезни, литературы, обучающих программ, тестов.


Заходите на http://www.doktor.ru - Русский медицинский сервер для всех!


2"Повреждение клетки"


Составил: ст.препод.,

к.м.н. А.Р.Антонов


Учебные вопросы


Вводное слово


1. Понятие о повреждении клетки:

а) характеристика

б) виды и особенности

в) причины

г) значение митоза в повреждении клетки.

2. Общие механизмы повреждения клетки:

а) специфические и неспецифические компоненты п 2о 0в-

реждения;

б) нарушение структуры и функции отдельных органелл.

3. Механизмы защиты и адаптации клетки к повреждению.

4. Заключение.

2В В Е Д Е Н И Е

Живая клетка - это тот универсальный уровень биосистем, на котором все разнообразие функций, присущих организмам любой сложности, проявляется в минимальном количестве связей и отклонений. Клетка как целостная система осуществляет свою деятельность в среде,обеспечивающей ее существование и функционирование, перестраивая, организовывая свои элементы - субклеточные единицы различного уровня - в зависимости от характеристик среды. Важно подчеркнуть, что функции субклеточных органелл не строго детерминированы,поэтому они могут участвовать в различных внутриклеточных процессах. Главной функцией клетки является осуществление обмена со средой веществом, энергией и информацией, что подчинено в конечном счете задаче сохранения клетки как целого при изменении условий существования.

От нарушения элементарных структур клетки и их функций к патологии клетки как элементарной саморегулирующейся живой системе и к патологии клеточных образований, объединенных конечной функцией - таков путь познания структурной основы патологии человека.


ПОНЯТИЕ О ПОВРЕЖДЕНИИ КЛЕТКИ

Проблема повреждения клеток и организма в целом занимает важное место в современной общей патологии. Сам термин "повреждение" встречается уже в древнегреческих и древнеримской медицине, хотя до сих пор единой интерпретации этого понятия нет.

В наиболее общем смысле, _повреждение организма. на любом уровне (молекулярном, клеточном, органном) представляет собой такое изменение его структуры и функции, которое не способствует, а мешает жизни и существованию организма в окружающей среде. Авцин А.П. и Шахламов В.А. (1979) определяют повреждение как нарушение структурной и функциональной организации живой системы, вызванное различными причинами.

С точки зрения развития процессов в самой общей форме - это нарушение клеточного обмена веществ, появление дистрофии, паранекроза, некробиоза и, наконец, некроза, если клетка погибает.

Некоторые физиологи и патологи ставят вопрос о "физиологическом повреждении" при процессах естественного распада и регенерации клеток, которые обусловлены, например, возрастными изменениями в организме, либо длительным бездействием клеток, что приводит к их атрофии. Изучение проблемы повреждения клетки тесно связано с выяснением взаимоотношений структурных и функциональных изменений, которые встречаются, как правило, в трех вариантах:

1) морфологические изменения тканей по своему характеру и степени выраженности вполне соответствуют функциональным нарушениям;

2) структурные изменения значительно более выражены, чем функциональные;

3) структурные изменения незначительны по сравнению с тяжелыми функциональными расстройствами.

В этих вариантах нет кажущегося противоречия с принципом единства структуры и функции, напротив, выявляется полная его справедливость, о чем мы поговорим позднее.

Причиной повреждения клетки может стать фактор как экзо-, так и эндогенной природы. С классификацией этиологических факторов вы уже знакомы, поэтому повторятся не буду.

Следует отметить, что повреждения бывают _обратимые. и _необратимые.. Например, обратимым повреждением лизосом в клетках эпителия кишечника является их разрушение под влиянием эндотоксинов микробов кишечной группы. После прекращения интоксикации лизосомы в цитоплазме поврежденной клетки восстанавливаются. В случае сильной или длительной интоксикации и гибели клеток, говорить о восстановлении лизосом, конечно, не приходится. Необратимые повреждения клеток может вызвать, к примеру, любая вирусная инфекция.

Повреждение клетки может быть _острым. и _хроническим..

Функциональные проявления острого повреждения клетки делятся на преддепрессионную гиперактивность, парциальный некроз и тотальное повреждение. Эти проявления составляют сущность острого повреждения клетки в зависимости от ее строения, исходного функционального состояния, вида этиологического фактора и механизма его действия.

Преддепрессионная гиперактивность. возникает вследствие обратимого повреждения клетки умеренными действиями патогенных факторов. В результате этого в мембране клетки происходит неспецифическое возбуждение аденилатциклазной системы и активация образования вторичных мессенджеров (посредников) и усиление деятельности органелл, в первую очередь митохондрий. Это приводит к усилению окисления субстратов и синтеза АТФ. Одновременно с этим мобилизуются все энергозависимые процессы, направленные на повышение резистентности клетки к патологическому фактору. В результате, если воздействие этого фактора ограничено, может произойти"выздоровление" клетки с последующим восстановлением первоначальной структуры и функции. По Меерсону, после этого в генетическом аппарате клетки образуется так называемый "системный структурный след", запоминающий происшедшее воздействие и в дальнейшем при повторном воздействии этого же фактора облегчающий клетке адаптацию. Обратите на этот феномен особое внимание, поскольку он крайне важен для понимания многих адаптационных процессов в любых органах и тканях.

В случае _ парциального некроза. поврежденная часть клетки отделяется от функционирующей части вновь образующиейся компенсаторной "демаркационной" мембраной и уничтожается фагоцитами. После этого структура и функция клетки восстанавливается за счет гиперплазии субклеточных единиц.

Если же повреждающий фактор имеет выраженную интенсивность и время действия, то происходит _тотальное повреждение клетки, что приводит к депрессии функции митохондрий, снижению синтеза макроэргов, нарушению энергозависимого клеточного транспорта. Нарастает угроза дисфункции клетки, которая реализуется в случае массивной деструкции лизосом, выхода гидролитических ферментов в цитоплазму и структурной дезорганизации органелл и мембран. Эта фаза острого повреждения клетки, когда еще сохраняется небольшой градиент концентрации электролитов между цитоплазмой и внеклеточной средой, называется "агонией" клетки. Исчезновение мембранного потенциала в результате выравнивания концентраций Na+ и К+ по обе стороны мембраны характеризует смерть клетки. При этом резкое увеличение проницаемости клеточных мембран приводит к доступу в клетку из окружающей среды ферментов, которые продолжают разрушение всех ее структурных элементов.

Особенности реакции клетки на повреждающий фактор зависят как от его характеристики, так и от типа клетки по ее способности к делению, обеспечивающей возможность рекомпенсации. В настоящее время принято считать, что в организме имеются _три категории. специализированных клеток по их способности к делению.

Клетки I категории. к моменту рождения в первый период жизни достигают высокоспециализированного состояния структур за счет минимизации функций. В организме отсутствует источник возобновления этих клеток в случае их дисфункции. К таким клеткам относятся нейроны. Клетки I категории способны к внутриклеточной регенерации, в результате которой восстанавливается утраченные части клеток, если сохранены ядерный аппарат и трофическое обеспечение.

Клетки II категории. - высокоспециализированные клетки, выполняющие какие-либо определенные функции и затем либо "изнашивающиеся", либо слущивающиеся с различных поверхностей, причем иногда очень быстро. Подобно клеткам I категории, они не способны размножаться, однако в организме имеется механизм для их непрерывного воспроизводства. Такие клеточные популяции называются обновляющимися, а состояние, в котором они находятся - стационарным. К ним, например, относятся клетки, выстилающие большую часть кишечника.

Клетки III категории. отличаются большой продолжительностью жизни, их деление после полного завершения специализации в нормальных условиях онтогенеза происходит редко, но способность к этому процессу у них сохраняется. При стимуляции, возникающей, например, после травмы, они начинают интенсивно делиться, в результате чего воспроизводятся соответствующие специализированные клетки. Примером таких клеток служит гепатоцит или гормонально активная клетка.

Процессы клеточного деления (митоза) могут нарушаться при различных воздействиях: УФО, ИО, высокая температура, митотические яды, канцерогены и т.п. Как вы помните, с помощью митоза осуществляется передача наследственных свойств клетки. В процессе митотического деления выделяют 4 фазы: профазу, метафазу, анафазу и телофазу.

При патологии митоза может страдать любое из его звеньев. Руководствуясь этим, были предприняты попытки создать классификацию патологии митоза.

Наибольшую известность получила классификация, предложенная в 1972 году И.А.Аловым:

I тип.. Повреждение хромосом: задержка клеток в профазе; нарушение спирализации и деспирализации хромосом; образование мостов между хромосомами в анафазе; раннее разъединение сестринских хроматид; повреждение кинетохора.

II тип.. Повреждение митотического аппарата: задержка развития митоза в метафазе; рассредоточение хромосом в метафазе;полая метафаза; многополюсные митозы; асимметричные митозы;моноцентрические митозы; К-митозы.

III тип.. Нарушение цитотомии: преждевременная цитотомия, задержка цитотомии; отсутствие цитотомии.

Можно считать установленным, что задержка вступления клеток в митоз возникает в основном в связи с нарушением их метаболизма, в частности синтеза нуклеиновых кислот и белков, а нарушение хромосом при репродукции клетки, обнаруживаемое в условиях патологии - вследствие разрыва цепей ДНК и расстройства репродукции ДНК хромосом.


ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК


На уровне клетки повреждающие факторы "включают" несколько патогенетических звеньев:

I. 2 нарушение энергетического обеспечения процессов, 2протекающих в клетке:

1. Снижение интенсивности и(или) эффективности процессов ресинтеза АТФ.

2. Нарушение транспорта энергии АТФ.

3. Нарушение использования энергии АТФ.

II. 2 повреждение мембранного аппарата и ферментных сис2тем клетки;

III. 2 дисбаланс ионов и жидкости в клетке;

IV. 2 нарушение генетической программы клетки и(или) ме2ханизмов ее реализации:

А. Нарушение генетической программы:

1.Изменение биохимической структуры генов.

2.Дерепрессия патогенных генов.

3.Репрессия "жизненно важных" генов.

4.Внедрение в геном фрагмента чужеродной ДНК с пато-

генными свойствами.

Б. Нарушение реализации генетической программы:

1.Расстройство митоза.

2.Нарушение мейоза.

V. 2 расстройство внутриклеточных механизмов регуляции 2функции клеток:

1. Нарушение рецепции регуляторных воздействий.

2. Нарушение образования вторичных посредников.

3. Нарушение фосфорилирования протеинкиназ.

Повреждение клеток может быть специфическим и неспецифическим. По существу, каждое повреждение вызывается нарушением структуры и функции клеток тем или иным болезнетворным началом. Поэтому специфическое проявление повреждения на любом уровне прямо или косвенно связано с особенностями действия этиологического фактора, вызывающего данное повреждение.

Специфические формы повреждения можно усмотреть при анализе любого его вида. Например, при механической травме - это нарушение целостности структуры ткани,при иммунном гемолизе - изменение свойств мембраны эритроцитов под влиянием гемолизина и комплемента, радиационное повреждение - образование свободных радикалов с последующим нарушением окислительных процессов. Подобных примеров можно привести очень много.

Специфическим повреждениям клеток сопутствуют или следуют за ними и общие неспецифические проявления повреждения, на которых мы остановимся более подробно.

Первым и наиболее общим неспецифическим выражением пов_реждения клетки., вызванного любым агентом,является нарушение неравновесного состояния клетки и среды, что является общей характеристикой всего живого, независимо от уровня его организации. Организм обладает массой приспособлений, питаемых энергией пищевых веществ, с помощью которых он поддерживает состояние, препятствующее уравновешиванию диффузионных, осмотических, тепловых, электрических процессов с окружающей средой. Полное прекращение жизни - смерть характеризуется, как известно, постепенным прекращением неравновесного состояния и переходом его в состояние полного равновесия с окружающей средой.

С энергетической точки зрения, повреждение как нарушение неравновесного состояния живой системы сопровождается высвобождения дополнительной энергии в виде тепловой, электрической (потенциал повреждения), химической (снижение редокс-потенциала) и так называемой структурной энергии клеток и тканей.

Структурная энергия освобождается при _денатурации структур цитоплазмы и клеточных органоидов. Денатурация - повреждение молекул белка, имеет много показателей, такие, как величина энтропии, степень упорядоченности молекул.

Этот процесс в химическом смысле сопровождается сглаживанием, исчезновением третичной и четвертичной структур белка, расплавлением полипептидных цепей, изменением активности сульфгидрильных групп и т.д.

Повреждение клеток выражается еще и _нарушением структу_ры и функции мембран.. Вообще способность формировать мембраны является решающей в образовании клетки и ее субклеточных органелл. Любое нарушение сопровождается изменением проницаемости клеточных мембран и состояния цитоплазмы поврежденной клетки. Повреждение клеточных мембран, согласно модели Сингера, может быть обусловлено деструкцией их липидных или белковых (ферментных) компонентов.

Повреждение липидных компонентов клеточных и субклеточных мембран возникает несколькими путями. Важнейшими из них являются перекисное окисление липидов (ПОЛ), активация мембранных фосфолипаз, осмотическое растяжение пептидной основы мембран, повреждающееся воздействие иммунных комплексов.

Суммарным выражением патологии клеточной мембраны может служить нарушение ее основных функций:

1) мембранного транспорта;

2) изменение проницаемости мембраны;

3) изменение коммуникации клеток и их "узнавания";

4) изменение подвижности мембран и формы клеток;

5) изменение синтеза и обмена мембран.

Мембранный транспорт. предполагает перенос ионов и других субстратов против градиента концентрации. При этом нарушается функция клеточных насосов и ингибируются процессы регуляции обмена веществ между клеткой и окружающей ее средой. Молекулярный механизм работы клеточных насосов до конца не расшифрован и в настоящее время. Энергетической основой их работы являются процессы фосфорилирования и дефосфорилирования ферментов - аденозинфосфатаз за счет энергии АТФ. Эти ферменты "вмонтированы" в белковую часть клеточных мембран. Там же работают ионные каналы, через которые проходят в клетку и из клетки ионы, вода и другие вещества (например, аминокислоты). В зависимости от вида проходящих по каналу ионов различают Na-K-АТФазу, Ca-Mg-АТФазу, Н-АТФазу. Особое значение имеет работа Na-K-насоса, результатом которой является превышение концентрации ионов К+ внутри клетки приблизительно в 20-30 раз по сравнению с внеклеточной. Соответственно этому, концентрация ионов Na+ внутри клетки приблизительно в 10 раз меньше, чем снаружи.

Повреждение Na-K-насоса вызывает освобождение ионов К из клетки и накопление в ней ионов Na, что характерно для гипоксических состояний, токсических повреждений клетки (яд кобры, каракурта), инфекционных поражений, аллергии, снижения температуры внешней среды. С транспортом ионов Na и К тесно связан транспорт ионов Са. Интегральное выражение этих нарушений хорошо иллюстрируется на примере гипоксии миокарда, которая прежде всего проявляется патологией митохондрий.

Следует отметить, что повреждение мембран митохондрий являлется ключом клеточного повреждения. В его прогрессировании большая роль принадлежит нарушению контроля уровня кальция в цитоплазме. Ишемическое повреждение митохондрий приводит к нарушению функции Na-К-АТФазного насоса, постепенному накоплению в клетке Na и потере ею калия, что в совокупности ведет к вытеснению Са из митохондрий. В результате повышается уровень ионизированного кальция в цитоплазме и увеличивается его связь с кальмодулином, что, в свою очередь, приводит к расхождению клеточных стыков, активации фосфолипаз. Эндоплазматическая сеть накапливает воду и ионы, следствием чего является развитие гидропической дистрофии. Усиление гликолиза сопровождается истощением гликогена, накоплением лактата и снижением рН. Таким образом, накопление Са в клетке можно считать универсальным механизмом клеточной деструкции.

Кроме того, хорошо известно участие Са в освобождении медиаторов аллергии из тучных клеток. По современным данным, их аллергическая травма сопровождается разжижением мембраны, разрыхлением и увеличением проводимости кальциевых каналов. Са, проникая в большом количестве внутрь клетки, способствует освобождению гистамина и других медиаторов из гранул.

Проницаемость мембран. - качество мембраны, позволяющее поддерживать обмен клетки со средой и осуществлять контроль "перекрытых каналов", связанный с метаболизмом энергии и конформацией белка. Проницаемость мембраны позволяет поддерживать не только постоянство электролитного состава клетки - ионный гомеостаз, но и ионный гетерогенитет, т.е. вполне определенные, резко выраженные различия ионного состава внутриклеточной м внешней среды. Donnan (1911) предложил уравнение равновесия концентрации анионов и катионов по обе стороны полунепроницаемой мембраны, согласно которому произведения концентрации противоположно заряженных ионов по обе стороны мембраны равны между собой.

В качестве примера изменения проницаемости для ионов мембраны эритроцитов при иммунной травме следует указать на специфический гемолиз. Процесс гемолиза начинается с увеличения проницаемости мембраны эритроцитов для ионов К, Na, Ca. Нарушается функция Na-К-насоса, из эритроцитов выходит К, а входит Na. Увеличивается проницаемость мембран для молекул глюкозы, аминокислот и ряда других метаболитов. Тормозится обмен Cl- и HCO3- (феномен Гамбургера) и Cl- и SO4-за счет фиксации на эритроците гемолизина и комплемента.

Коммуникация клеток и их "узнавание" ..

Клеточное "общение" и "узнавание" подразумевают прежде всего различия во внешних поверхностях плазматических мембран и мембран внутриклеточных органелл. В этом отношении особый интерес представляет гликокаликс мембраны с поверхностными антигенами-маркерами определенного типа клеток.

При различных патологических процессах (воспаление, регенерация, опухолевый рост) поверхностные антигены могут изменяться, причем различия могут касаться как типа антигена, так и его доступности со стороны внеклеточного пространства. Например, изменения гликолипидов мембраны делают ее более доступной воздействию антител. Известно также, что изменения с поверхностью мембраны протеиназ могут влиять на прочность связей мембранных компонентов с цитоскелетом и тем самым на подвижность клеток.

Коммуникабельность клеток определяется и состоянием клеточных стыков, которые могут повреждаться при различных патологических состояниях и болезнях.

Межклеточное взаимодействие и кооперация клеток связаны с клеточной рецепцией и медиацией, нарушение которой ведет к разнообразной патологии клеток.

Подвижность мембран и форма клеток.. Различают два типа изменений; выпячивание мембраны наружу - экзотропия, и выпячивание мембраны внутрь цитоплазмы - эзотропия. Изменения формы клеток связаны не только с этими двумя типами изменений, нередко речь идет об упрощении клеточной поверхности, т.е. потере специфических образований, без которых невозможно нормальное функционирование клетки (например, потеря микроворсинок энтероцитами).

Синтез мембран. может усиливаться либо снижаться, также как и обмен мембран при некоторых заболеваниях.

Следующим неспецифическим проявлением повреждения клетки можно считать _ потенциал повреждения. (или так называемый мембранный потенциал), который представляет собой разность потенциалов между неповрежденной и поврежденной ее поверхностями. Поврежденная ткань (или клетка) становится электроотрицательной по отношению к своим неповрежденным участкам. Разность потенциалов обусловлена уменьшением количества ионов К на поврежденной поверхности. Мембранный потенциал клеток печени крысы при гипоксии снижается с -60 до -80 mВ.

Одним из важнейших неспецифических выражений повреждения тканей и клеток является _ нарушение обмена воды. в тканях и клетках. Оно заключается в том, что в поврежденной клетке вода освобождается из цитоплазмы и выходит в окружающюю среду. Соответственно увеличивается содержание экстрацеллюлярной воды и возникает травматический отек. Примером может служить отек мозга и т.д. Чем сильнее повреждение, тем больше поврежденная ткань отдает воды в межклеточную жидкость, кровь и лимфу. Например, при переломе бедра из поврежденных тканей за 5 суток переходит в кровь и лимфу до 8 л воды.

Изменение электропроводности. как показатель повреждения клеток и тканей выражает прежде всего изменение емкостных свойств не только поверхностных цитоплазматических, но и внутренних мембран эндоплазматической сети и клеточных органоидов, которые выполняют роль конденсаторов, а содержимое клеток - роль раствора, содержащего коллоиды и кристаллоиды. Как известно, клетки обладают не только омическим, но и емкостным сопротивлением, суммарная величина которых называется _импеданс.. Применение этого показателя в качестве диагностического метода разрабатывается на кафедре физики нашего института.

Распространение повреждения вглубь клетки травмирует ее органоиды и нарушает активность связанных с ними _ ферментных _систем.. В митохондриях поврежденной клетки происходят различные нарушения активности окислительных ферментов (цитохромоксидазы и др.). Вследствие этого интенсивность клеточного дыхания снижается, активируются внутриклеточные протеазы, что приводит к накоплению кислых продуктов протеолиза и снижению рН клеточной среды. Эти процессы лежат в основе _ауто_лиза. поврежденных клеток.

Уменьшение окислительного фосфорилирования., оценивающееся отношением убыли неорганического Р к количеству поглощаемого кислорода, так же может служить признаком повреждения клетки.

Заслуживает внимания и изменение _ редокс-потенциала. тканей при различных повреждениях. Простота метода его определения и быстрота получения ответа позволяют использовать этот метод для выявления повреждения тканей при их консервации и пересадке.

Любое повреждение тканей сопровождается _ ацидозом. клеток (рН падает до 6 и ниже). Ацидоз - один из наиболее важных и легко измеряемых показателей повреждения клетки. Различают _ацидоз первичный. - вследствие активации протеолиза, гликогенолиза и гликолиза в поврежденной клетке (большое значение при этом имеет повреждение лизосом); и _ ацидоз. вторичный - возникающий в воспаленной ткани значительно познее (через несколько часов после повреждения). Первичный ацидоз возникает независимо от вида повреждающего агента. При повреждении клеток меняются их _ сорбционные. свойства, что проявляется в усилении интенсивности окрашивания клеток различными красителями. По этому показателю можно судить в обратимости повреждения - если клетки восстанавливают первоначальные сорбционные свойства.

Нельзя не сказать о том, что при повреждении клеток существенно меняются структурно-функциональные характеристики органелл. Более подробно мы остановимся на некоторых из них.

Изменения _ эндоплазматической сети. могут быть представлены гиперплазией и атрофией, дезагрегацией рибосом и полисом, разрывом трубок и пузырьков ЭПР (рис.1). Известно, что важнейшей функцией ЭПР является обезвреживание различных токсических веществ. Катализаторами таких процессов являются монооксигеназы или оксигеназы со смешанной функцией (ОСФ), конечной оксигеназной этой цепочки является цитохром Р-450. Следует помнить, что далеко не всегда эта система может обезвредить поступающие вещества, напротив, возможно образование реакционноспособных оксигенированных продуктов, которые, взаимодействуя с нуклеиновыми кислотами и белками клетки, ведут к ее повреждению.

Выделяют два основных пути повреждения клетки от воздействия системы ОСФ-цитохром Р-450:

1) Образование активированных продуктов, вызывающих разрушение жизненноважных клеточных компонентов (ДНК, РНК, белков, кофакторов), что приводит к острому или хроническому токсическому повреждению клетки.

2) Генерация супероксидных радикалов кислорода и перекиси водорода, индуцирующих ПОЛ.

Исследования последних лет показали, что именно интенсификация процессов ПОЛ является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы: 1) изменение физико-химических свойств липидов мембран, уменьшение содержания в них фосфолипидов, холестерина и жирных кислот. Это обусловливает нарушение конформации их липопротеидных комплексов и связанное с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментную функции в клетке; 3) образование структурных дефектов в мембране - т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Увеличение образования продуктов ПОЛ и параллельно с этим кластеров может привести к фрагментации мембран (этот процесс получил название детергентного действия продуктов ПОЛ) и к гибели клетки.

Важно отметить, что в клетке существуют _ защитные систе_мы., которые могут ингибировать эти повреждения (восстановленный глютатион, превращение эпоксидов в транс-дигидродиолы, естественные структурные антиоксиданты - vit. Е и холестерин).

Таким образом, повреждение клетки в этом случае реализуется лишь после истощения систем. О повреждении _ митохонд_рий. мы уже говорили, поэтому кратко суммируем ранее сказанное. Морфологически это проявляется набуханием митохондрий, изменением их размеров (рис.2), структуры и числа крист, а функционально - в нарушении транспорта Са и выработки энергии.

Весьма значительную роль в повреждении клетки отводят лизосомам - "органам" внутриклеточного пищеварения, которые известны еще и как "убийцы" клетки. Физиологическая патологическая активность лизосом зависит в основном от двух факторов: состояния (стабилизации) мембран лизосом и активности их ферментов. Дестабилизации лизосомальных мембран способствуют микотоксины и эндотоксины бактерий, канцерогены, фосфолипазы, активаторы ПОЛ, гипоксия, голодание, нарушение КЩР, эндокринопатии, шок, травмы. Эти факторы объединяются под названием лабилизаторов мембран. Антагонистами их являются стабилизаторы (противовоспалительные гормоны, хлороксин, холестерол и др.).

В патологических условиях возникают конкурентные взаимоотношения между лабилизаторами и стабилизаторами лизосомных мембран, если они в пользу первых, проницаемость мембран становится достаточной для выхода гидролаз в цитоплазму. В этом случае часть клетки или вся клетка гибнет (рис.3).

Нарушение функции лизосом может носить наследственный характер (т.н. лизосомные болезни), что проявляется дефектом (отсутствием) одного или нескольких лизосомных ферментов, что ведет к накоплению в клетке веществ, которые в норме метаболизируются этим ферментом. Примерами таких болезней являются гликогенозы, гепатозы и т.д. Синонимами их служат "болезни накопления" или тезаурисмозы.


Механизмы защиты

И адаптации клеток к повреждению..


Наряду с ранее описанными механизмами повреждения, в клетке существуют и параллельно протекают защитные и адаптивные процессы, без которых полноценное функционирование клеток просто невозможно.

В основе этих процессов лежат такие основополагающие свойства клеток как биосистем:

1) отграниченность от среды за счет биологического барьера - мембраны, позволяющей осуществлять обмен со средой без нарушения целостности системы;

2) открытость системы, заключающаяся в возможности обмена со средой веществом, энергией и информацией, что позволяет поддерживать функциональный гомеостаз;

3) избирательность обмена со средой;

4) способность в процессе обмена создавать функциональные резервы вещества и энергии, необходимой для экстремальных ситуаций;

5) способность изменять свою структуру в зависимости от требований среды.

Весь комплекс адаптивных реакций условно можно разделить на две группы: внутриклеточные и межклеточные.

2Внутриклеточные механизмы адаптации клеток:

1. Компенсация нарушений энергетического обеспечения клеток.

2. Защита мембран и ферментов клеток.

3. Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках.

4. Устранение нарушений генетической программы клеток.

5. Компенсация расстройств механизмов регуляции внутриклеточных процессов.

6. Снижение функциональной активности клеток.

7. Регенерация.

8. Гипертрофия.

9. Гиперплазия.

В процессе эволюции по мере усложнения своей организации клетки приобрели способность противостоять патогенным воздействиям извне. Решающую роль для такого саморегулирования играет принцип перемещающейся активности функциональных структур. Этот принцип заключается в том, что в нормальных условиях функциональные элементы системы "задействованы" не полностью: из общего числа структур, выполняющих одинаковую функцию активно действуют только часть их, обеспечивающая физическую нагрузку. При увеличении нагрузки повышается число функционирующих структур, при уменьшении снижается. Этот принцип распространяется на все уровни системы: от молекулярного до организменного. Таким образом, на уровне тканей имеются резервные клетки, а на уровне клетки - резервные органеллы и молекулы, которые в нормальных условиях в

ПОВРЕЖДЕНИЯ. НЕКРОЗ. АПОПТОЗ
Под воздействием избыточных физиологических, а также пато-логических стимулов в клетках развивается процесс адаптации ,


в результате которого они достигают устойчивого состояния, позво-ляющего приспособиться к новым условиям. Если лимиты адапта-ционного ответа клетки исчерпаны, а адаптация невозможна, насту-пает повреждение клетки . До определенного предела повреждение клетки обратимо. Однако, если неблагоприятный фактор действует постоянно или его интенсивность очень велика, наступает необра-тимое повреждение клетки и ее смерть (схема 2.1).
Смерть клетки -конечный результат ее повреждения, наиболее распространенное событие в патологии, сопровождающее существо-вание любого типа клетки, главное следствие ишемии (местного малокровия ткани), инфекции, интоксикации, иммунных реакций. Это естественное событие в процессе нормального эмбриогенеза, развития лимфоидной ткани, инволюции органа под действием гор-монов , а также желанный результат при радиотерапии и химиоте-рапии рака.

Повреждение и гибель клетки

Схема 2.1.

Воздействие

Повышенная

Обратимое повреждение

клетки

Продолжающееся

воздействие

Сильное

Адаптация

Среднее

Гипертрофия

Атрофия

Необратимое

Метаплазия

повреждение

Гиперплазия

Дисплазия

клетки

Прекращение

воздействия

Нормальная

Некроз

клетка

Ге н е т и ч е с к и е п о в р е ж д е н и я клеток могут быть следст-вием, как правило, врожденных пороков развития, например, болезни Дауна. Многие врожденные нарушения метаболизма связаны с эн-зимопатиями.
Д и с б а л а н с п и т а н и я нередко является основной причи-ной повреждения клеток. Дефицит белковой пищи, специфичес-ких витаминов остаются распространенным явлением во многих странах.
Механизмы повреждения клеток. Молекулярные механизмы повреждения клеток , приводящие к их смерти, очень сложны. Так же, как существует много причин повреждения клеток, так и нет общего единого механизма их смерти.
Хотя точку приложения повреждающего агента не всегда удается определить, известны четыре наиболее чувствительные внутрикле-точные системы. Во-первых, это поддержание целостности клеточ-ных мембран, от чего зависит ионный и осмотический гомеостаз клетки и ее органелл, во-вторых, аэробное дыхание, включающее окислительное фосфорилирование и образование АТФ, в-третьих, синтез ферментов и структурных белков, в-четвертых, сохранение генетического аппарата клетки.
Структурные и биохимические элементы клетки настолько тесно связаны, что повреждение в одном месте приводит к обширным вто-ричным эффектам. Например, нарушение аэробного дыхания повреждает натриевый насос, который поддерживает ионно-жидко-стный баланс, что, в свою очередь, вызывает нарушение внутрикле-точного содержания ионов и воды.
Морфологические изменения выявляются только после того, когда нарушения биологической системы клетки проходят некий критический уровень. Причем, развитие морфологических призна-ков смертельного повреждения клетки занимает больше времени , чем появление обратимых изменений. Например, набухание клетки обратимо и может развиться в течение нескольких минут. Однако достоверные светооптические изменения, свидетельствующие о смерти клетки, обнаруживаются в миокарде лишь через 10-12 ч после тотальной ишемии, хотя и известно, что необратимые повреж-дения наступают уже через 20-60 мин. Естественно, ультраструк-турные повреждения будут видны раньше, чем светооптические.
Реакция клеток на повреждающие воздействия зависит от типа, продолжительности и тяжести последних. Так, малые дозы токсинов или непродолжительная ишемия могут вызвать обратимые измене-ния, тогда как большие дозы того же токсина и продолжительная
ишемия приводят к немедленной гибели клетки или медленному необратимому повреждению, приводящему к клеточной смерти.
Тип, состояние и приспособляемость клетки также влияют на последствия ее повреждения. Для ответа клетки на повреждение важны ее гормональный статус, характер питания и метаболические потребности. Поперечнополосатая мышца голени в покое, напри-мер, может обойтись без кровоснабжения, а сердечная мышца - нет. Одни и те же концентрации токсина , например, четыреххлористого углерода, могут быть безопасными для одного индивидуума, но при-водят к гибели клеток печени у другого, что объясняется содержанием

  • печени ферментов, расщепляющих четыреххлористый углерод до нетоксичных продуктов.

Механизмы действия многих агентов хорошо известны. Ряд токси-нов вызывает повреждение клеток, воздействуя на эндогенные субст-раты или ферменты. При этом особенно чувствительными являются гликолиз, цикл лимонной кислоты и окислительное фосфорилирова-ние на внутренних мембранах митохондрий. Цианид, например, инак-тивирует цитохромоксидазу, а флуороацетат препятствует реализации цикла лимонной кислоты, что приводит к истощению АТФ. Некото-рые анаэробные бактерии, такие как Clostridium perfringens, вырабаты-вают фосфолипазы, атакующие фосфолипиды клеточных мембран.
Наиболее важными для развития повреждения и смерти клетки считают четыре механизма. Во-первых, в основе повреждения клет-ки при ишемии лежит отсутствие кислорода. При недостаточном поступлении кислорода в ткани образуются его свободные радикалы, вызывающие перекисное окисление липидов, что оказывает разру-шительное действие на клетки.
Во-вторых, особую роль в повреждении клетки имеет нарушение гомеостаза кальция. Свободный кальций присутствует в цитозоле


  • исключительно низких концентрациях по сравнению с таковым вне клетки. Это состояние поддерживается связанными с клеточной

мембраной энергозависимыми Са 2+ и Мg 2+ - АТФазами. Ишемия и некоторые токсины вызывают увеличение концентрации кальция


В-третьих, потеря митохондриями пиридин-нуклеотидов и после-дующее истощение АТФ, а также снижение синтеза АТФ являются характерными как для ишемического, так и токсического поврежде-ния клеток. Высокоэнергетические фосфаты в форме АТФ необхо-димы для многих процессов синтеза и расщепления, происходящих в клетках. К этим процессам относятся мембранный транспорт, син-тез белка, липогенез и реакции деацилирования-реацилирования, необходимые для фосфолипидного обмена (ацилирование - введе-ние в молекулы остатка карбоновых кислот). Имеется достаточно данных о том, что истощение АТФ играет важную роль в потере целостности плазмолеммы, что характерно для смерти клетки.
В-четвертых, ранняя потеря избирательной проницаемости плазматической мембраной - постоянный признак всех видов по-вреждения клеток. Такие дефекты могут возникать из-за потери АТФ и активации фосфолипаз. Кроме того, плазматическая мембрана мо-жет быть повреждена в результате прямого действия некоторых бак-териальных токсинов, вирусных белков, компонентов комплемента, веществ из лизированных лимфоцитов (перфоринов), а также ряда физических и химических агентов.

Повреждение органов начинается на молекулярном или клеточном уровне, поэтому изучение патологии начинается с познания причин и молекулярных механизмов структурных изменений, возникающих в клетках при их повреждении.

Структура нормальной клетки генетически направлена на осуществление определенного метаболизма, дифференцировку и специализацию. В ответ на воздействие различных факторов в клетках развивается процесс адаптации. В результате этого процесса клетки могут достигать нового устойчивого состояния, позволяющего им приспособиться к подобным воздействиям. Если лимиты адаптивного ответа клетки исчерпаны, а адаптация невозможна, то возникает повреждение клетки, до определенного предела обратимое. Однако, если неблагоприятный фактор действует постоянно или его интенсивность очень велика, развивается необратимое повреждение, или смерть, клетки.

Смерть клетки - конечный результат ее повреждения, главное следствие ишемии, инфекции, интоксикации, иммунных реакций. Кроме того, это естественное событие в процессе нормального эмбриогенеза, развития лимфоидной ткани, инволюции органа под действием гормонов, а также желаемый результат радио- и химиотерапии при раке.

Существует два типа клеточной смерти - некроз и апоптоз.

Некроз - наиболее распространенный тип смерти клетки. Он проявляется ее резким набуханием и разрывом клеточной мембраны, денатурацией и коагуляцией цитоплазматических белков, разрушением клеточных органелл.

Апоптоз необходим для нормальной элиминации ненужных клеточных популяций в процессе эмбриогенеза и при различных физиологических процессах. Апоптоз встречается и при патологических процессах; в этом случае он сопровождается некрозом.

ПРИЧИНЫ ПОВРЕЖДЕНИЯ КЛЕТОК

Различают следующие причины повреждения клеток.

1. Гипоксия. Она является исключительно важной и распространенной причиной повреждения и смерти клеток. Уменьшение кровотока (ишемия), возникающее при появлении препятствий в артериях, обычно при атеросклерозе или тромбозе, является основной причиной гипоксии. Другой причиной может быть неадекватная оксигенация крови при сердечно-сосудистой недостаточности. Снижение способности крови к транспортировке кислорода, например при анемии и отравлении СО 2 - третья и наиболее редкая причина гипоксии. В зависимости от тяжести гипоксии клетки могут адаптироваться к ней, повреждаться или погибать.

2. Физические агенты. К ним относят механическую травму, чрезмерное снижение или повышение температуры окружающей среды, внезапные колебания атмосферного давления, радиацию и электрический шок.

3. Химические агенты и лекарства. Даже простые химические соединения, такие как глюкоза и поваренная соль, в повышенных концентрациях могут вызвать повреждение клеток непосредственно или путем нарушения их электролитного гомеостаза. Кислород в высоких концентрациях очень токсичен.

Следовые количества веществ, известных как яды (мышьяк, цианиды, соли ртути), могут разрушить достаточно большое количество клеток в течение минут и часов.

Разрушительным действием обладают также многие факторы окружающей среды: пыль, инсектициды и гербициды; промышленные и природные факторы, например уголь и асбест; социальные факторы: алкоголь, курение и наркотики; высокие дозы лекарств.

5. Иммунные реакции. Могут защищать организм, но могут вызвать и его смерть. Хотя иммунная система защищает организм от воздействия биологических агентов, тем не менее иммунные реакции могут привести к повреждению клеток. Развитие некоторых иммунных реакций лежит в основе аутоиммунных болезней.

6. Генетические нарушения. Многие врожденные нарушения метаболизма связаны с энзимопатиями, чаще отсутствием фермента.

7. Дисбаланс питания. Нередко является основной причиной повреждения клеток. Дефицит белковой пищи и витаминов остается распространенным явлением.

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

Молекулярные механизмы повреждения клеток, приводящие к их смерти, очень сложны. Существуют четыре наиболее чувствительные внутриклеточные системы:

Поддержание целости клеточных мембр"ан, от которой зави
сит ионный и осмотический гомеостаз клетки и ее органелл;

Аэробное дыхание, связанное с окислительным фосфорили-рованием и образованием аденозинтрифосфата (АТФ);

Синтез ферментов и структурных белков;

Сохранение единства генетического аппарата клетки. Структурные и биохимические элементы клетки тесно взаимосвязаны. Например, нарушение аэробного дыхания повреждает натриевый насос мембраны, который поддерживает ионно-жидкостный баланс клетки, что приводит к нарушению внутриклеточного содержания ионов и воды.

Морфологические изменения становятся очевидными только после того, как нарушения биологической системы клетки проходят некий критический уровень, причем развитие морфологических признаков смертельного повреждения клетки занимает больше времени, чем появление обратимых изменений. Например, набухание клетки обратимо и может развиться в течение нескольких минут, а достоверные светооптические признаки смерти клетки в миокарде выявляются лишь спустя 10-12 ч после тотальной ишемии, хотя известно, что необратимые повреждения наступают уже через 20-60 мин. Естественно, ультраструктурные повреждения будут видны раньше, чем светооптические.

Реакция клеток на повреждающие воздействия зависит от типа, продолжительности действия и тяжести повреждающего фактора. Например, малые дозы токсинов или непродолжительная ишемия могут вызвать обратимые изменения, тогда как большие дозы того же токсина и продолжительная ишемия способны привести к немедленной гибели клетки или медленному необратимому повреждению, вызывающему клеточную смерть. Тип, состояние и приспособляемость клетки также определяют последствия ее повреждения. Для ответа клетки на повреждение важны ее гормональный статус, характер питания и метаболические потребности.

Механизмы действия многих повреждающих агентов хорошо известны. Так, многие токсины вызывают повреждение клеток, воздействуя на эндогенные субстраты или ферменты. Особенно чувствительны к действию токсинов гликолиз, цикл лимонной кислоты и окислительное фосфорилирование на внутренних мембранах митохондрий. Например, цианид инактивирует цито-хромоксидазу, а флуороацетат препятствует реализации цикла лимонной кислоты, что в результате приводит к недостаточности АТФ. Некоторые анаэробные бактерии, например Clostridium perfringens, высвобождают фосфолипиды, которые атакуют фос-фолипиды клеточных мембран, повреждая их.

Наиболее важными для развития повреждения и смерти клетки считают следующие четыре механизма.

1. При недостаточном поступлении кислорода в ткани образуются его свободные радикалы, вызывающие свободнора-дикальное пероксидное окисление липидов (СПОЛ), что оказывает разрушительное действие на клетки.

2. Особую роль в повреждении клетки играет нарушение гомеостаза кальция. Свободный кальций в цитозоле присутствует в исключительно низких концентрациях по сравнению с таковым вне клетки. Это состояние поддерживается связанными с клеточной мембраной энергозависимыми Са 2+ , Mg 2+ -АТФазами. Ишемия и некоторые токсины вызывают увеличение концентрации кальция в цитозоле путем его избыточного поступления через плазматическую мембрану и высвобождения из митохондрий и эндоплазматической сети. Повышенное содержание кальция в клетке ведет к активации ряда ферментов, повреждающих клетку: фосфолипаз (повреждение клеточной мембраны), протеаз (разрушение мембраны и белков цитоскелета), АТФаз (истощение запасов АТФ) и эндонуклеаз (фрагментация хроматина).

3. Потеря митохондриями пиридиннуклеоти-дов и последующая недостаточность АТФ, а также снижение синтеза АТФ являются характерными как для ишемического, так и для токсического повреждения клеток. Высокоэнергетические фосфаты в форме АТФ требуются для многих процессов синтеза и расщепления, происходящих в клетках. К этим процессам относятся мембранный транспорт, синтез белка, липогенез и реакции деацилирования - реа-цилирования, необходимые для фосфолипидного обмена. Имеется много данных о том, что недостаточность АТФ играет роль в потере целости плазматической мембраны, что характерно для смерти клетки.

4. Ранняя потеря плазматической мембраной избирательной проницаемости - постоянный признак всех видов повреждения клеток. Такие дефекты могут возникать вследствие ряда событий, связанных с потерей АТФ и активацией фосфолипаз. Кроме того, плазматическая мембрана может быть повреждена в результате прямого воздействия некоторых бактериальных токсинов, вирусных белков, компонентов комплемента, веществ из лизированных лимфоцитов (перфоринов), а также ряда физических и химических агентов.