Эпигенетика и процесс старения организма. Эпигенетика: теоретические аспекты и практическое значение Геномный импринтинг, и связанные с ним заболевания

Статья на конкурс «био/мол/текст»: Эпигенетика — это бурно развивающееся в последние годы направление современной науки. Наиболее очевидна роль эпигенетических механизмов в процессах развития, когда из клеток раннего зародыша, ДНК которых совершенно одинакова, возникает множество различающихся между собой специализированных клеток взрослого организма. Оказалось, однако, что эта роль не исчерпывается только развитием и может проявляться и после его завершения. Исследования последних лет показали, что здоровье человека может в значительной степени зависеть от того, в каких условиях происходило его раннее развитие. Выявлено также, что эпигенетические модификации могут передаваться и последующим поколениям, влияя на различные фенотипические проявления у детей и даже внуков.


Стремительное изучение эпигенетики приближает нас к пониманию самых фундаментальных принципов устройства и функционирования внутренних систем всех живых организмов.

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваши мама и бабушка. Клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами* и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. И во многом благодаря клеточной памяти мы отличаемся от шимпанзе, хотя имеем с ним примерно одинаковый состав генома. Эту удивительную особенность наших клеток помогла понять наука эпигенетика .

* — Наиболее виртуозно это делает иммунная система, сохраняя антитела к большинству вирусов, когда-либо вторгавшихся в организм. Именно индивидуальные профили этих антител теперь можно «читать» с помощью метода ВироСкан, причем зафиксировать всю историю иммунных баталий можно по одному микролитру крови: «Следствие ведет ВироСкан. Новый подход выявляет большинство вирусов, с которыми сталкивался человек»

Эпигенетические ландшафты

Эпигенетика — довольно молодое направление современной науки. И пока она не так широко известна, как ее «родная сестра» — генетика. В переводе с греческого приставка «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых первичная структура ДНК остается прежней. Эпигенетика похожа на «командира», который в ответ на внешние стимулы (такие, как питание, эмоциональные стрессы, физические нагрузки) отдает приказы нашим генам усилить или, наоборот, ослабить их активность.*


* — Подробно об эпигенетических процессах и связанных с ними явлениях рассказано в статьях: «Развитие и эпигенетика, или история о минотавре» , «Эпигенетические часы: сколько лет вашему метилому?» , «Обо всех РНК на свете, больших и малых» , «Шестое ДНК-основание: от открытия до признания» .

Пожалуй, самое ёмкое и в то же время точное определение принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару : «Генетика предполагает, а эпигенетика располагает».

Развитие эпигенетики как отдельного направления молекулярной биологии началось в сороковых годах прошлого столетия. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта» (рис. 1), объясняющую процесс формирования организма . Прошло несколько десятилетий, прежде чем эпигенетику стали воспринимать серьезно, как новую научную дисциплину. Такое положение сохранялось долго потому, что эпигенетика своими выводами подрывала устоявшиеся в генетике догмы. Например, относительно наследования приобретенных признаков. Почти зеркально повторилась ситуация с открытием Б. Мак-Клинток мобильных элементов генома, в которые полвека мало кто хотел верить. Но после серии определяющих работ, проведенных в 70-х годах прошлого века Джоном Гёрдоном , Робином Холлидеем, Борисом Ванюшиным и другими, эпигенетику стали наконец воспринимать всерьез . И уже недавно, на рубеже тысячелетий, был проведен ряд блестящих экспериментов, после которых стало ясно, что эпигенетические механизмы влияния на геном не только играют важнейшую роль в работе систем организма, но и могут наследоваться несколькими поколениями. Сразу в нескольких лабораториях были получены свидетельства, заставившие генетиков сильно задуматься.

Рисунок 1. К.Х. Уоддингтон и его рисунок «эпигенетического ландшафта». Шарик вверху обозначает первоначальные неспециализированные клетки зародыша. Под воздействием генетических и эпигенетических сигналов клетке будет задана траектория онтогенеза (развития), и она станет специализированной — клеткой сердца, печени и т.д. Рисунок с сайтаwww.computerra.ru .


Так, в 1998 году Р. Паро и Д. Кавалли проводили опыты с трансгенными линиями дрозофил, подвергая их тепловому воздействию. После этого дрозофилы меняли цвет глаз, и этот эффект — уже без внешнего влияния — сохранялся у нескольких поколений (рис. 2). Как обнаружилось, хромосомный элемент Fab-7 передавал эпигенетическую наследственность в процессе как митоза, так и мейоза .

Рисунок 2. Глаза двух дрозофил.
Разная окраска глаз обусловлена
эпигенетическими изменениями.

Рисунок с сайтаwww.ethlife.ethz.ch .


В 2003 году американские ученые из Дюкского университета Р. Джиртл и Р. Уотерленд провели эксперимент с беременными трансгенными мышами агути (yellow agouti (Avy) mouse), которые имели желтую шерсть и предрасположенность к ожирению (рис. 3). Они добавляли в корм мышам фолиевую кислоту, витамин В12, холин и метионин. В результате этого появилось нормальное потомство без отклонений . Пищевые факторы, выступавшие донорами метильных групп, путем метилирования ДНК нейтрализовали ген агути, вызывавший отклонения: фенотип их Avy-потомства изменялся за счет метилирования CpG-динуклеотидов в локусе Avy. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, и сами рожали нормальных мышей. Хотя питание у них было уже обычное, не обогащенное метильными группами.

Рисунок 3. Подопытные мыши из лаборатории Рэнди Джиртла.
Видно, как происходит изменение в окрасе шерсти детенышей в зависимости
от приема матерью доноров метильных групп — фолиевой кислоты,
витамина В 12 , холина и метионина.Рисунок из .


Вслед за этим, в 2005 году, журнал Science опубликовал работу Майкла Скиннера и его коллег из Вашингтонского университета. Они обнаружили, что, если в пищу беременным самкам крыс добавлять пестицид винклозолин, у их потомков мужского пола резко снижается количество и жизнеспособность сперматозоидов. И эти эффекты сохранялись на протяжении четырех поколений. Была четко установлена их связь с эпигеномом: ухудшение репродуктивной функции коррелировало с изменениями метилирования ДНК в зародышевой линии .

Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие последовательность нуклеотидов ДНК, могут закрепляться и передаваться следующим поколениям!

Судьба записана не только в генах

Позже выяснилось, что и у людей влияние эпигенетических механизмов (рис. 4, 5) так же велико. Исследования, о которых дальше пойдет речь, приобрели широкую известность — они упоминаются почти в каждой научной работе по эпигенетике. Ученые из Голландии и США в конце 2000-х годов обследовали пожилых голландцев, родившихся сразу после Второй мировой войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944-1945 гг. был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год-два позже (или раньше) .

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, существенно снижалось метилирование гена инсулиноподобного фактора роста 2 (ИФР-2), из-за чего количество ИФР-2 в крови повышалось. А этот фактор, как известно, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче .

Рисунок 4. Структура хроматина и механизмы эпигенетических модификаций. Хроматин — комплекс белков и нуклеотидов, обеспечивающий надежное хранение и нормальную работу ДНК. В наших клетках упаковка ДНК похожа на склад бижутерии . Иначе никак невозможно уложить спираль ДНК длиной в два метра в одно маленькое клеточное ядро. Нить ДНК наматывается в полтора оборота на многочисленные «бусинки», которые называются нуклеосомами. Этинуклеосомы , в свою очередь, состоят из нескольких специальных белков,гистонов . Гистоны имеют «хвостики» — белковые наросты, которые могут удлиняться или укорачиваться особыми ферментами. Длина такого «хвоста» напрямую влияет на уровень активности генов, находящихся вблизи него.Рисунок из .


Новозеландским ученым П. Глюкману и М. Хансону удалось сформулировать логическое объяснение взаимосвязи количества пищи во время беременности матери со здоровьем ребенка. В 2004 году в журнале Science вышла их статья, в которой они сформулировали «гипотезу несоответствия» (mismatch hypothesis) . В соответствии с ней в развивающемся организме на эпигенетическом уровне может происходить прогностическая адаптация к условиям обитания, которые ожидаются после рождения. Если прогноз подтверждается — это увеличивает шансы организма на выживание в мире, где ему предстоит жить, если нет — адаптация становится дезадаптацией, то есть болезнью. Например, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день».

Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни. Именно этот вариант мы сегодня чаще всего и наблюдаем.

Рисунок 5. Рентгеновская кристаллическая структура нуклеосомы. Гистоны показаны желтым, красным, синим и зеленым цветами. Рисунок из .


В целом, можно уверенно сказать, что период беременности и первых месяцев жизни является самым важным в жизни всех млекопитающих, в том числе и человека. Все имеющиеся сегодня данные говорят, что именно в этот период закладываются все основы не только физического, но и психического здоровья человека. И влияние этого начального периода жизни настолько велико, что не исчезает до самой глубокой старости, формируя — так или иначе — судьбу человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни» . В это трудно поверить, но факты прямо говорят об этом.

Эпигенетика помогла сделать очень важный вывод: от того, что ела мама во время беременности, в каком психологическом состоянии она находилась и сколько времени уделяла малышу в первые годы после его рождения, будет зависеть буквально вся дальнейшая жизнь ребенка. В это время закладываются основы всего.

Метилирование ДНК

Рисунок 6. Метилирование цитозинового основания ДНК. Схема метилированного цитозина. Зеленым овалом со стрелкой показан главный фермент метилирования — ДНК-метилтрансфера́за (DNMT), красным кругом — метильная группа (—СН 3). Рисунок с сайта www.myshared.ru .


Наиболее изученным механизмом эпигенетической регуляции активности генов является процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода, —CH3) к цитозиновым основаниям ДНК, находящимся в составе CpG-динуклеотида (рис. 6). Уже известно, что метилирование ДНК у эукариот видоспецифично, и у беспозвоночных степень метилирования генома очень незначительна по сравнению с позвоночными и растениями. Основы понимания функций метилирования были заложены еще полвека назад профессором МГУ Б.Ф. Ванюшиным и его коллегами. Хотя обычно считается (и вполне правильно), что метилирование «выключает» ген, не давая возможности регуляторным белкам связаться с ДНК, было обнаружено и обратное явление. Иногда метилирование ДНК выступает обязательным условием взаимодействия с белками — были описаны специальные m5CрG-связывающие белки .

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с рационом, эмоциональным статусом, мозговой деятельностью и другими факторами. Так что об этом стоит рассказать поподробнее. И начнем мы с рациона.

Сегодня уже известно, что многие пищевые продукты содержат компоненты, которые определенным образом влияют на эпигенетические процессы. Почти все женщины знают, что во время беременности очень важно потреблять достаточно фолиевой кислоты. Эпигенетика помогает понять исключительную важность этой кислоты в рационе: ведь всё дело в том самом метилировании ДНК. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином является донором («поставщиком») метильных групп, необходимых для нормального метилирования. Метилирование непосредственно участвует во многих процессах, связанных с развитием и формированием всех органов и систем ребенка: и в инактивации Х-хромосомы у эмбриона, и в геномном импринтинге, и в клеточной дифференцировке*. Соответственно, принимая фолиевую кислоту, будущая мама имеет неплохие шансы выносить здорового ребенка без отклонений.

* — Подробно об этом написано в статьях на «биомолекуле»: «Загадочное путешествие некодирующей РНК Xist по X-хромосоме» и «Истории из жизни Х-хромосомы круглого червя-гермафродита» .

Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах. И дефицит витамина В12 и метионина, вызванный разгрузочными диетами беременной женщины, может иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что недостаток в рационе этих двух веществ, а также фолиевой кислоты, может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается простой трагической случайностью . В свете этих фактов ответственность родителей сильно увеличивается, и списывать всё на несчастный случай теперь будет затруднительно.

Также известно, что недоедание и стресс в период беременности меняют в «худшую сторону» концентрацию целого ряда гормонов в организмах матери и плода: глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша происходят негативные эпигенетические изменения (ремоделирование хроматина) в клетках гипоталамуса и гипофиза . Чем это чревато? Тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т.д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

Пластичность эпигенома: опасности и возможности

Выяснилось, что так же, как стресс и недоедание, на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции (рис. 7). Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд. Самым ярким и негативным примером, пожалуй, является бисфенол А, который уже много лет применяется в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится во всей пластиковой таре, которая используется сегодня в пищевой промышленности: в пластиковых бутылках для воды и напитков, в пищевых контейнерах и многом другом. Бисфенол А присутствует в жестяных банках консервов и напитков (им выстилают внутренний слой банок), а также в стоматологических пломбах.

Рисунок 7. Молекулярные составляющие развития отклонений под воздействием «эндокринных разрушителей»:бисфенола А (А) и фталатов (В) . Рисунок из . Нажмите на рисунок, чтобы просмотреть его в полном размере.


Негативные воздействия даже небольших концентраций бисфенола А многочисленны и разнообразны, а распространение его таково, что сегодня почти невозможно найти человека без бисфенола А в организме. Его постоянно обнаруживают не только в крови, но и в грудном молоке и пуповинной крови беременных. Причем в амниотической жидкости (жидкости, окружающей эмбрион) концентрация бисфенола А в несколько раз превышает его содержание в сыворотке крови матери . В 2003-2004 гг. американскими исследователями из Центра по контролю и профилактике заболеваний были получены такие результаты распространенности бисфенола А: из 2517 обследованных человек у 92% в моче содержался бисфенол, и его концентрация была значительно выше в организмах детей и подростков, у которых еще плохо сформированы «очистные системы» организма .

Очевидно, что, так или иначе, в результате контактов пищи с пластиком какая-то часть бисфенола попадает в организм человека. Последствия такого «обогащения» находятся сегодня в стадии активного изучения. Но уже всплывают тревожные факты.

Так, биологи с медицинского факультета Гарварда — Кэтрин Раковски и ее коллеги — обнаружили способность бисфенола А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Бисфенол сильно увеличивал частоту хромосомных аномалий в яйцеклетках. Вывод ученых был однозначным: «Поскольку соприкосновение с этим веществом происходит повсеместно, медикам надо знать, что бисфенол А может вызывать значительные нарушения в репродуктивной системе» .

Их коллеги из Колумбийского университета в экспериментах с животными выявили еще один тревожный факт. Они обнаружили способность бисфенола А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам — женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером — покладистыми и спокойными. Исчезала разница в поведении самцов и самок. Профессор Ф. Шемпейн и его коллеги вынуждены были сказать: «Мы показали, что воздействие малых доз бисфенола А вызывает неизгладимые эпигенетические нарушения в головном мозге, что, возможно, лежит в основе прочных воздействий бисфенола А на функции мозга и поведение — особенно в отношении межполовых различий» .

Другие проведенные исследования показывают, что бисфенол А обладает очень сильно выраженной эстрогенной активностью (не зря его называют «вездесущим ксеноэстрогеном») и способен изменять во время развития эмбриона профиль метилирования, а значит, и активность некоторых генов (например, Hoxa10) . Последствия этого для здоровья человека могут быть самыми неблагоприятными — во взрослом возрасте повышается риск развития некоторых болезней (ожирения, диабета, нарушений репродукции и др.) .

Но, к счастью, есть и противоположные примеры. Так, известно, что регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нём содержится вещество эпигаллокатехин-3-галлат, которое может активизировать гены — супрессоры (подавители) опухолевого роста, деметилируя их ДНК. Очень популярным в последние годы модулятором эпигенетических процессов является генистеин, содержащийся в продуктах из сои. Многие исследователи напрямую связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Характер — это судьба?

Эпигенетика также помогла понять, почему одни люди отличаются психологической устойчивостью и оптимизмом, а другие склонны к паническим настроениям и депрессии*. Как это заведено в научном мире, вначале были проведены эксперименты с животными. Эта серия работ приобрела широкую известность и название «licking and grooming» (вылизывание и уход). Канадские биологи из Университета Макгилла — Майкл Мини и его коллеги — начали изучать влияние материнской заботы у крыс в первые месяцы жизни потомства . Разделив крысят на две группы, они отнимали одну часть выводка у матерей сразу после рождения. Не получавшие материнской заботы в виде вылизывания, такие крысята все поголовно вырастали «неадекватными»: нервными, необщительными, агрессивными и трусливыми.

* — Дополнительно об этом — в статьях на «биомолекуле»: «Развитие и эпигенетика, или история о минотавре» и «Эпигенетика поведения: как бабушкин опыт отражается на ваших гена» .

Все детеныши в группе, получавшей материнскую заботу в полном объеме, развивались так, как это и положено крысам: энергичными, хорошо обучаемыми и социально активными. В чём же причина такого разительного отличия? Почему материнский уход оказал решающее влияние на развитие психических особенностей у потомства? Анализ ДНК помог ответить на эти вопросы.

Исследовав ДНК крыс, ученые выяснили, что у детенышей, которых не вылизывали матери, произошли негативные эпигенетические изменения в области мозга под названием гиппокамп. В гиппокампе оказалось уменьшено количество рецепторов к стрессовым гормонам. И именно из-за этого наблюдалась неадекватная реакция нервной системы на внешние раздражители: гипофиз подавал команду на избыточное производство стрессовых гормонов. Другими словами, те ситуации, которые переносились спокойно обычными крысами, у потомства, не получившего материнского ухода, вызывали неадекватно сильный стресс.

Как оказалось, всё вышеописанное абсолютно точно подходит и к человеческому развитию. Были проведены многочисленные исследования детей, которые в раннем детстве лишались родительской заботы или подвергались какому-либо насилию. Все эти дети без исключения вырастали потом с той или иной искаженной функцией нервной системы. И эти искажения были эпигенетически закреплены в клетках мозга. Всем таким детям была свойственна неадекватная реакция даже на слабые раздражители, которые нормально воспринимались благополучными детьми. Всё это формировало во взрослом возрасте склонность к алкоголизму, наркомании, суицидам и прочим неадекватным поступкам . Вот почему первые годы после рождения являются решающими в формировании социального поведения и закладывают все основы характера. От того, сколько времени родители уделяли своему малышу в этот период, будет зависеть всё его будущее: будет ли он психологически устойчивым, коммуникабельным и успешным или же склонным депрессиям и расстройствам.

Очевидно, что влияние эпигенома распространяется и на процессы, связанные со старением . С возрастом можно наблюдать общее понижение метилирования, в том числе загадочных участков генома, которые составляют почти половину всей последовательности ДНК, — мобильных генетических элементов (МГЭ). Они были открыты полвека назад нобелевским лауреатом Барбарой Мак-Клинток как последовательности, способные — в отличие от обычных генов — удивительным образом перемещаться по ДНК*. Излишне активизируясь с возрастом из-за деметилирования, МГЭ дестабилизируют геном, вызывая нежелательные хромосомные перестройки .

Также с возрастом становятся отчетливыми изменения в метилировании генов, связанных с возрастными заболеваниями: атеросклерозом, гипертонией, диабетом, болезнью Альцгеймера и др. . Кроме этого, была обнаружена прямая связь изменений эпигенома с продукцией активных форм кислорода, а также с функцией одного из белков, к которым приковано большое внимание геронтологов: белка p66Shc, названного академиком В.П. Скулачёвым «посредником запрограммированной гибели организма» . И потому знание эпигенетических основ возрастных изменений может принести нам существенную пользу в борьбе за продление жизни и здоровую старость.

Итоги и перспективы

Изучение эпигенетических механизмов помогло понять очень важную истину: человеческая судьба формируется большей частью не астрологическими прогнозами, а поведением самогό человека и его родителей. Эпигенетика совершенно ясно показывает, что очень многое в жизни зависит от нас, и в наших силах поменять жизнь к лучшему.

Эпигенетика также стирает границы между человеком и внешней средой. Очевидно, что никто не может чувствовать себя в безопасности, пока практикуется масштабное использование опасных химических веществ. Пестициды винклозолин и метоксихлор, применяющиеся в сельском хозяйстве и действующие как «эндокринные разрушители», ртуть из промышленных отходов и бисфенол А из разлагающегося пластика проникают в почву и в воду рек и морей. А потом вместе с продуктами и водой попадают в организм человека. И это — реальная угроза для человечества.

Но есть и хорошие новости. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. И это позволяет разработать принципиально новые стратегии и методы борьбы с самыми распространенными болезнями: методы, нацеленные на устранение* тех эпигенетических модификаций, которые возникли у человека при воздействии неблагоприятных факторов. Не случайно нынешнее столетие некоторые ученые называют веком эпигенетики. При изучении истории развития естественных наук, биологии и генетики в частности, может сложиться впечатление, что все предыдущие годы были большим подготовительным этапом, накоплением сил перед открытиями действительно сверхважного значения. И, вероятно, мы сегодня стоим на пороге этих открытий.

* — Как это может реализовываться (и реализуется ужé), описано в статье «Пилюли для эпигенома»

За последние десятилетия исследования показали, что прогрессивные изменения в эпигенетической информации сопровождают процесс старения делящихся и неделящихся клеток.

Функциональные исследования простых организмов и сложных как человек показывают, что эпигенетические изменения оказывают огромное влияние на процесс старения. Эти эпигенетические изменения происходят на различных уровнях, в том числе снижение массового уровня основных гистонов.

Гистоны – белки, связывающие непосредственно ДНК

У ребенка клетки в пределах каждого типа аналогичны. Во время жизни спорадически эпигенетическая информация меняется в зависимости от экзогенных и эндогенных факторов (внешних условий). В результате ненормального состояния хроматина характерны различные варианты изменения ДНК, включая мутации ДНК.

Биологическая предрасположенность старения

Старение организма – сложный многофакторный биологический процесс, общий для всех живых организмов. Он проявляется постепенным снижением нормальных физиологических функций в зависимости от времени. Биологическое старение организма имеет важное значение для здоровья человека, потому что с возрастом увеличивается восприимчивость ко многим болезням, включая рак, метаболические расстройства, такие как диабет, сердечно-сосудистые нарушения и нейродегенеративные заболевания. С другой стороны, старение клеток, также называемое репликативная деградация, является специализированным процессом и рассматривается как потенциальный эндогенный противоопухолевый механизм при котором происходит необратимый рост потенциальных онкогенных стимулов. Клеточное старение носит много общего с процессом старения, но и показывает отличительные черты. Хотя причины старения недостаточно изучены, продолжаются усилия, чтобы очертить пути долголетия.

В последние годы большие успехи достигнуты в ходе многочисленных исследований, что эффективно проявляется на клеточных и молекулярных признаках старения. Среди этих признаков эпигенетические изменения являются одними из важнейшим механизмов ухудшения функции клеток, наблюдаемые при старении и возраст-зависимых заболеваний.

Эпигенетика изучает закономерности изменения генов

По определению эпигенетика представляет обратимый наследственный механизм который происходит без какого-либо изменения базовой последовательности ДНК, а также происходит репарация ДНК.

Репарация ДНК – способность исправлять повреждения

Хотя хромосомы в геноме несут в себе генетическую информацию, эпигеном, ответственным за функциональное использование и стабильность является генотип с фенотипом – общими характеристиками. Эти эпигенетические изменения могут быть спонтанными или под влиянием внешних или внутренних воздействий. Эпигенетика потенциально служит недостающим звеном, чтобы объяснить, почему картина деградации отличается от двух генетически идентичных особей, таких, как однояйцовые близнецы, или же, в животном мире, между животными с одинаковой генетической структурой, например, матки и рабочих пчел.

Исследования долголетия населения показали, что генетические факторы могут объяснить от 20 до 30% различий наблюдаемых в продолжительности жизни близнецов, большинство остального разброса возникло через эпигенетическое изменение в течение своей жизни – различное влияние окружающей среды, включая питание.

Например, различные дифференциальные изменения хранимой эпигенетической информации создает поразительный контраст во внешности, репродуктивном поведении и продолжительности жизни рабочих пчел и матки, несмотря на идентичное содержание ДНК.

Таким образом, эпигенетика открывает большие перспективы для выбора лечебных мероприятий при генетических изменениях, которые в настоящее время технически необратимы в организме человека. Соответственно, определение и понимание эпигенетики и эпигенетических изменений, которые происходят во время старения, является основной областью исследования, которое может проложить путь к разработке новых терапевтических подходов к задержке старения и возрастных заболеваний.

Эпигенетические изменения при старении

Существуют различные типы эпигенетической информации, закодированной в наш эпигеном, включая, но не ограничиваясь наличием или отсутствием гистонов на какой-либо конкретной последовательности ДНК.

Эти различные типы эпигенетической информации составляют наш эпигеном и являются важными определяющими факторами функционирования и судьбу всех клеток и тканей организма как одноклеточных, так и многоклеточных организмов. Несомненно, каждый из этих различных видов эпигенетической информации является функционально значимым для процесса старения.

Все больше свидетельств в последние годы также явно указывают на структуру хроматина, который несет много эпигенетической информации, как основного игрока в процессе старения. Основная единица структуры хроматина является нуклеос, который состоит из 147 пар оснований ДНК обернутых вокруг гистонов. Упаковка геномной ДНК в высокоорганизованную структуру хроматина регулирует все геномные процессов в ядре, в том числе репликацию ДНК, транскрипцию, рекомбинацию и репарацию ДНК, контролируя доступ к ДНК.

Хроматин – вещество хромосом

Исследования на людях и различных моделей деградации свидетельствуют о прогрессирующей потери конфигурации при старении хромосомной архитектуры, целостность генома и экспрессия генов. Исследования подтвердили, что все эти эффекты в основном сохраняется на всем пути от одноклеточных организмов, таких как дрожжи, до сложных многоклеточных как человек. Эти сохраняющиеся механизмы помогают получить более четкое представление о процессе старения. Эпигенетические изменения в значительной степени влияют на процесс старения для последующих достижений в области эпигенетики и выявления возможных перспективных направлений.

Сокращение гистона при старении

Репликативное нарушение сопровождается потерей примерно половина основных гистоновых белков.

Гистоны – белки ДНК

Резкое снижение основных гистоновых белков обусловлено снижением синтеза белков гистонов. У человека, снижение синтеза новых гистонов во время деградации является следствием роста укороченной , которые активируются в ответ на повреждение ДНК, потенциально объясняя механизм укорочения теломер ограничением числа делений клеток. Следовательно, потери основных гистонов может быть более обобщенное явление, наблюдаемое с возрастом у многих организмов.

Процесс старения, несомненно, является сложным. В организме жизни, старение клетки претерпевает множество изменений и происходит накопление повреждений макромолекул. Фенотип старения проявляется путем суммирования изменений различных сигналов.

Генетические и экологические изменения однозначно важно расшифровать для действия конкретного фактора на процесс долголетия. Становится очевидным механистически, что многие из тех факторов, которые влияют на продолжительность жизни, действуют главным образом путем модификации эпигенома. Несомненно, эпигенетическое влияние на процессы старения должны быть включены в нашем нынешнем понимании старения.

Старение клетки

Молодые здоровые клетки поддерживают эпигенетическое состояние, что способствует образованию компактной структуры гистона и регуляции основных биологических процессов. Однако старение клетки испытывают изменения во всех аспектах. Обратимый характер эпигенетических механизмов позволяет восстановить или обратить вспять некоторые из этих фенотипов для достижения более молодой клетки. В то время как некоторые молекулярные изменения при старении могут быть классифицированы как причина старения, другие изменения просто сопровождают процесс старения. Однако, характеризуя причины и последствия деградации, нужно внимательно проанализировать экспериментальные результаты, поскольку большинство соответствующих путей взаимосвязаны.

Постоянное сочетание функционального анализа и молекулярного анализа в разных возрастных группах, у разных организмов и разных типах тканей даст всю необходимую информацию чтобы постичь этот эволюционно законсервированный основной процесс с целью разработки терапевтических мероприятий, чтобы противодействовать возраст-индуцированным осложнениям. Центральное понятие складывается для разработки эпигенетических препаратов или даже эпигенетического питания.

Таким образом, основные проблемы, которые будут доминировать на поле в ближайшем будущем будет достижение иерархического понимания того, как эпигенетика влияет на процесс старения и понимание долгосрочных эффектов лечебных вмешательств на эпигеном в стареющем человеке, учитывая взаимосвязанность эпигенетических механизмов.
Несколько важные выводы вытекают из этих исследований: генетическая предрасположенность старения 20-30 %, а остальное в нашей жизни во многом определяется питанием и другими воздействиями внешней среды.

Результаты обеспечивают лучшее понимание механизмов вовлеченных в процесс старения. Учитывая обратимый характер эпигенетической информации, исследования подчеркивают огромные возможности для терапевтического вмешательства при старении и возраст-ассоциированных заболеваний, включая рак.

Эпигенетика — сравнительно недавнее направление биологической науки и пока не так широко известно, как генетика. Под ней понимают раздел генетики, который изучает наследуемые изменения активности генов во время развития организма или деления клеток.

Эпигенетические изменения не сопровождаются перестановкой последовательности нуклеотидов в дезоксирибонуклеиновой кислоте (ДНК).

В организме существуют различные регуляторные элементы в самом геноме, которые контролируют работу генов, в том числе в зависимости от внутренних и внешних факторов. Долгое время эпигенетику не признавали, т. к. было мало информации о природе эпигенетических сигналов и механизмах их реализации.

Структура генома человека

В 2002 г. в результате многолетних усилий большого числа ученых разных стран закончена расшифровка строения наследственного аппарата человека, который заключен в главной молекуле ДНК. Это одно из выдающихся достижений биологии начала ХХI века.

ДНК, в которой находится вся наследственная информация о данном организме, называется геномом. Гены — это отдельные участки, занимающие очень небольшую часть генома, но при этом составляют его основу. Каждый ген отвечает за передачу в организме человека данных о строении рибонуклеиновой кислоты (РНК) и белка. Структуры, которые передают наследственную информацию, называют кодирующими последовательностями. В результате проекта «Геном» были получены данные, согласно которым геном человека оценивался в более чем 30 000 генов. В настоящее время, в связи с появлением новых результатов масс-спектрометрии, геном предположительно насчитывает около 19 000 генов .

Генетическая информация каждого человека содержится в ядре клетки и расположена в особых структурах, получивших название хромосомы. Каждая соматическая клетка содержит два полных набора (диплоидный) хромосом. В каждом единичном наборе (гаплоидном) присутствует 23 хромосомы — 22 обычные (аутосомы) и по одной половой хромосоме — Х или Y.

Молекулы ДНК, содержащиеся во всех хромосомах каждой клетки человека, представляют собой две полимерные цепи, закрученные в правильную двойную спираль.

Обе цепи удерживают друг друга четырьмя основаниями: аденин (А), цитозин (Ц), гуанин (Г) и тиамин (Т). Причем основание А на одной цепочке может соединиться только с основанием Т на другой цепочке и аналогично основание Г может соединяться с основанием Ц. Это называется принципом спаривания оснований. При других вариантах спаривание нарушает всю целостность ДНК.

ДНК существует в виде тесного комплекса со специализированными белками, и вместе они составляют хроматин.

Гистоны — это нуклеопротеины, основная составляющая хроматина. Им свойственно образование новых веществ путем присоединения двух структурных элементов в комплекс (димер), что является особенностью для последующей эпигенетической модификации и регуляции.

ДНК, хранящая генетическую информацию, при каждом клеточном делении самовоспроизводится (удваивается), т. е. снимает с самой себя точные копии (репликация). Во время клеточного деления связи между двумя цепями двойной спирали ДНК разрушаются и нити спирали разделяются. Затем на каждой из них строится дочерняя цепь ДНК. В результате молекула ДНК удваивается, образуются дочерние клетки.

ДНК служит матрицей, на которой происходит синтез разных РНК (транскрипция). Этот процесс (репликация и транскрипция) осуществляется в ядрах клеток, а начинается он с области гена, называемой промотором, на котором связываются белковые комплексы, копирующие ДНК для формирования матричной РНК (мРНК).

В свою очередь последняя служит не только носителем ДНК-информации, но и переносчиком этой информации для синтеза белковых молекул на рибосомах (процесс трансляции).

В настоящее время известно, что зоны гена человека, кодирующие белки (экзоны), занимают лишь 1,5% генома . Большая часть генома не имеет отношения к генам и инертна в плане передачи информации. Выявленные зоны гена, не кодирующие белки, называются интронами.

Первая копия мРНК, полученная с ДНК, содержит в себе весь набор экзонов и интронов. После этого специализированные белковые комплексы удаляют все последовательности интронов и соединяют друг с другом экзоны. Этот процесс редактирования называется сплайсингом.

Эпигенетика объясняет один из механизмов, с помощью которого клетка способна контролировать синтез производимого ею белка, определяя в первую очередь, сколько копий мРНК можно получить с ДНК.

Итак, геном — это не застывшая часть ДНК, а динамическая структура, хранилище информации, которую нельзя свести к одним генам.

Развитие и функционирование отдельных клеток и организма в целом не запрограммированы автоматически в одном геноме, но зависят от множества различных внутренних и внешних факторов. По мере накопления знаний выясняется, что в самом геноме существуют множественные регуляторные элементы, которые контролируют работу генов. Сейчас это находит подтверждение во множестве экспериментальных исследований на животных .

При делении во время митоза дочерние клетки могут наследовать от родительских не только прямую генетическую информацию в виде новой копии всех генов, но и определенный уровень их активности. Такой тип наследования генетической информации получил название эпигенетического наследования.

Эпигенетические механизмы регуляции генов

Предметом эпигенетики является изучение наследования активности генов, не связанной с изменением первичной структуры входящей в их состав ДНК. Эпигенетические изменения направлены на адаптацию организма к изменяющимся условиям его существования.

Впервые термин «эпигенетика» предложил английский генетик Waddington в 1942 г. Разница между генетическими и эпигенетическими механизмами наследования заключается в стабильности и воспроизводимости эффектов .

Генетические признаки фиксируются неограниченное число, пока в гене не возникает мутация. Эпигенетические модификации обычно отображаются в клетках в пределах жизни одного поколения организма. Когда данные изменения передаются следующим поколениям, то они могут воспроизводиться в 3-4 генерациях, а затем, если стимулирующий фактор пропадает, эти преобразования исчезают.

Молекулярная основа эпигенетики характеризуется модификацией генетического аппарата, т. е. активации и репрессии генов, не затрагивающих первичную последовательность нуклеотидов ДНК.

Эпигенетическая регуляция генов осуществляется на уровне траскрипции (время и характер транскрипции гена), при отборе зрелых мРНК для транспорта их в цитоплазму, при селекции мРНК в цитоплазме для трансляции на рибосомах, дестабилизации определенных типов мРНК в цитоплазме, избирательной активации, инактивации молекул белков после их синтеза.

Совокупность эпигенетических маркеров представляет собой эпигеном. Эпигенетические преобразования могут влиять на фенотип.

Эпигенетика играет важную роль в функционировании здоровых клеток, обеспечивая активацию и репрессию генов, в контроле транспозонов, т. е. участков ДНК, способных перемещаться внутри генома, а также в обмене генетического материала в хромосомах .

Эпигенетические механизмы участвуют в геномном импритинге (отпечаток) — процессе, при котором экспрессия определенных генов осуществляется в зависимости от того, от какого родителя поступили аллели. Импритинг реализуется через процесс метилирования ДНК в промоторах, в результате чего транскрипция гена блокируется.

Эпигенетические механизмы обеспечивают запуск процессов в хроматине через модификации гистонов и метилирование ДНК. За последние два десятилетия существенно изменились представления о механизмах регуляции транскрипции эукариот. Классическая модель предполагала, что уровень экспрессии определяется транскрипционными факторами, связывающимися с регуляторными областями гена, которые инициируют синтез матричной РНК. Гистонам и негистоновым белкам отводилась роль пассивной упаковочной структуры для обеспечения компактной укладки ДНК в ядре.

В последующих исследованиях была показана роль гистонов в регуляции трансляции. Был обнаружен так называемый гистоновый код, т. е. модификация гистонов, неодинаковая в разных районах генома. Видоизмененные гистоновые коды могут приводить к активизации и репрессии генов .

Модификациям подвергаются различные части структуры генома. К концевым остаткам могут присоединяться метильные, ацетильные, фосфатные группы и более крупные белковые молекулы.

Все модификации являются обратимыми и для каждой существуют ферменты, которые ее устанавливают или удаляют.

Метилирование ДНК

У млекопитающих метилирование ДНК (эпигенетический механизм) было изучено раньше других. Показано, что он коррелирует с репрессией генов. Экспериментальные данные показывают, что метилирование ДНК является защитным механизмом, подавляющим значительную часть генома чужеродной природы (вирусы и др.).

Метилирование ДНК в клетке контролирует все генетические процессы: репликацию, репарацию, рекомбинацию, транскрипцию, инактивацию Х-хромосомы. Метильные группы нарушают ДНК-белковое взаимодействие, препятствуя связыванию транскрипционных факторов. Метилирование ДНК влияет на структуру хроматина, блокирует транскрипционные репрессоры .

Действительно, повышение уровня метилирования ДНК коррелирует с относительным увеличением содержания некодирующей и повторяющейся ДНК в геномах высших эукариот. Экспериментальные данные показывают, что это происходит потому, что метилирование ДНК служит главным образом как защитный механизм, чтобы подавлять значительную часть генома чужеродного происхождения (реплицированные перемещающиеся элементы, вирусные последовательности, другие повторяющиеся последовательности).

Профиль метилирования — активирование или угнетение — меняется в зависимости от средовых факторов. Влияние метилирования ДНК на структуру хроматина имеет большое значение для развития и функционирования здорового организма, чтобы подавлять значительную часть генома чужеродного происхождения, т. е. реплицированные перемещающиеся элементы, вирусные и другие повторяющиеся последовательности.

Метилирование ДНК происходит путем обратимой химической реакции азотистого основания — цитозина, в результате чего метильная группа СН3 присоединяется к углероду с образованием метилцитозина. Этот процесс катализируется ферментами ДНК-метилтрансферазами. Для метилирования цитозина необходим гуанин, в результате образуется два нуклеотида, разделенные фосфатом (СрG).

Скопление неактивных последовательностей СрG называется островками СрG. Последние представлены в геноме неравномерно . Большинство из них выявляются в промоторах генов. Метилирование ДНК происходит в промоторах генов, в транскрибируемых участках, а также в межгенных пространствах.

Гиперметилированные островки вызывают инактивацию гена, что нарушает взаимодействие регуляторных белков с промоторами.

Метилирование ДНК оказывает огромное влияние на экспрессию генов и, в конечном счете, на функцию клеток, тканей и организма в целом. Установлена прямая зависимость между высоким уровнем метилирования ДНК и количеством репрессированных генов.

Удаление метильных групп из ДНК в результате отсутствия метилазной активности (пассивное деметилирование) реализуется после репликации ДНК. При активном деметилировании участвует ферментативная система, превращающая 5-метилцитозин в цитозин независимо от репликации. Профиль метилирования меняется в зависимости от средовых факторов, в которых находится клетка.

Утрата способности поддерживать метилирование ДНК может приводить к иммунодефициту, злокачественным опухолям и другим заболеваниям .

Долгое время механизм и ферменты, вовлеченные в процесс активного деметилирования ДНК, оставались неизвестными.

Ацетилирование гистонов

Существует большое число посттрансляционных модификаций гистонов, которые формируют хроматин. В 1960-е годы Винсент Олфри идентифицировал ацетилирование и фосфорилирование гистонов из многих эукариот .

Ферменты ацетилирования и деацетилирования (ацетилтрансферазы) гистонов играют роль в ходе транскрипции. Эти ферменты катализируют ацетилирование локальных гистонов. Деацетилазы гистонов репрессируют транскрипцию.

Эффект ацетилирования это ослабление связи между ДНК и гистонами из-за изменения заряда, в результате чего хроматин становится доступным для факторов транскрипции.

Ацетилирование представляет собой присоединение химической ацетил-группы (аминокислоты лизин) на свободный участок гистона. Как и метилирование ДНК, ацетилирование лизина представляет собой эпигенетический механизм для изменения экспрессии генов, не влияющих на исходную последовательность генов. Шаблон, по которому происходят модификации ядерных белков, стали называть гистоновым кодом.

Гистоновые модификации принципиально отличаются от метилирования ДНК. Метилирование ДНК представляет собой очень стабильное эпигенетическое вмешательство, которое чаще закрепляется в большинстве случаев.

Подавляющее большинство гистоновых модификаций более вариативно. Они влияют на регуляцию экспрессии генов, поддержание структуры хроматина, дифференциацию клеток, канцерогенез, развитие генетических заболеваний, старение, репарацию ДНК, репликацию, трансляцию. Если гистоновые модификации идут на пользу клетки, то они могут продолжаться довольно долго .

Одним из механизмов взаимодействия между цитоплазмой и ядром является фосфорилирование и/или дефосфорилирование транскрипционных факторов. Гистоны были одними из первых белков, фосфорилирование которых было обнаружено. Это осуществляется с помощью протеинкиназ.

Под контролем фосфорилируемых транскрипционных факторов находятся гены, в том числе гены, регулирующие пролиферацию клеток. При подобных модификациях в молекулах хромосомных белков происходят структурные изменения, которые приводят к функциональным изменениям хроматина.

Помимо описанных выше посттрансляционных модификаций гистонов имеются более крупные белки, такие как убиквитин, SUMO и др., которые могут присоединяться с помощью ковалентной связи к боковым аминогруппам белка-мишени, оказывая воздействие на их активность.

Эпигенетические изменения могут передаваться по наследству (трансгенеративная эпигенетическая наследственность). Однако в отличие от генетической информации, эпигенетические изменения могут воспроизводиться в 3-4 поколениях, а при отсутствии фактора, стимулирующего эти изменения, исчезают. Передача эпигенетической информации происходит в процессе мейоза (деления ядра клетки с уменьшением числа хромосом вдвое) или митоза (деления клеток).

Модификации гистонов играют фундаментальную роль в нормальных процессах и при заболеваниях.

Регуляторные РНК

Молекулы РНК выполняют в клетке множество функций. Одной из них является регуляция экспрессии генов. За эту функцию отвечают регуляторные РНК, к которым относятся антисмысловые РНК (aRNA), микроРНК (miRNA) и малые интерферирующие РНК (siRNA)

Механизм действия разных регуляторных РНК схож и заключается в подавлении экспрессии генов, реализующейся путем комплементарного присоединения регуляторной РНК к мРНК, с образованием двухцепочечной молекулы (дцРНК). Само по себе образование дцРНК приводит к нарушению связывания мРНК с рибосомой или другими регуляторными факторами, подавляя трансляцию. Также после образования дуплекса возможно проявление феномена РНК-интерференции — фермент Dicer, обнаружив в клетке двухцепочечную РНК, «разрезает» ее на фрагменты. Одна из цепей такого фрагмента (siRNA) связывается комплексом белков RISC (RNA-induced silencing complex) .

В результате деятельности RISC одноцепочечный фрагмент РНК соединяется с комплементарной последовательностью молекулы мРНК и вызывает разрезание мРНК белком семейства Argonaute. Данные события приводят к подавлению экспрессии соответствующего гена.

Физиологические функции регуляторных РНК разно-образны — они выступают основными небелковыми регуляторами онтогенеза, дополняют «классическую» схему регуляции генов.

Геномный импритинг

Человек обладает двумя копиями каждого гена, один из которых унаследован от матери, другой от отца. Обе копии каждого гена имеют возможность быть активной в любой клетке. Геномный импритинг это эпигенетически избирательная экспрессия только одного из аллельных генов, наследуемых от родителей. Геномный импритинг затрагивает и мужское и женское потомство. Так, импритингованный ген, активный на материнской хромосоме, будет активным на материнской хромосоме и «молчащим» на отцовской у всех детей мужского и женского пола. Гены, подверженные геномному импритингу, в основном кодируют факторы, регулирующие эмбриональный и неонатальный рост .

Импритинг представляет сложную систему, которая может ломаться. Импритинг наблюдается у многих больных с хромосомными делециями (утраты части хромосом). Известны заболевания, которые у человека возникают в связи с нарушением функционирования механизма импритинга.

Прионы

В последние десятилетие внимание привлечено к прионам, белкам, которые могут вызывать наследуемые фенотипические изменения, не изменяя нуклеотидной последовательности ДНК. У млекопитающих прионный белок расположен на поверхности клеток. При определенных условиях нормальная форма прионов может изменяться, что модулирует активность этого белка.

Викнер выразил уверенность в том, что этот класс белков является одним из многих, которые составляют новую группу эпигенетических механизмов, требующих дальнейшего изучения. Он может находиться в нормальном состоянии, а в измененном состоянии прионные белки могут распространяться, т. е. стать инфекционными .

Первоначально прионы были открыты как инфекционные агенты нового типа, но сейчас считают, что они представляют собой феномен общебиологический и являются носителями информации нового типа, хранимой в конформации белка. Феномен прионов лежит в основе эпигенетической наследственности и регуляции экспрессии генов на посттрансляционном уровне.

Эпигенетика в практической медицине

Эпигенетические модификации контролируют все стадии развития и функциональную активность клеток. Нарушение механизмов эпигенетической регуляции напрямую или косвенно связано с множеством заболеваний.

К заболеваниям с эпигенетической этиологией относят болезни импринтинга, которые в свою очередь делятся на генные и хромосомные, всего в настоящее время насчитывают 24 нозологии.

При болезнях генного импринтинга наблюдается моноаллельная экспрессия в локусах хромосом одного из родителей. Причиной являются точечные мутации в генах, дифференцированно экспрессирующихся в зависимости от материнского и отцовского происхождения и приводящих к специфическому метилированию цитозиновых оснований в молекуле ДНК. К ним относят: синдром Прадера-Вилли (делеция в отцовской хромосоме 15) — проявляется черепно-лицевым дисморфизмом, низким ростом, ожирением, мышечной гипотонией, гипогонадизмом, гипопигментацией и задержкой умственного развития; синдром Ангельмана (делеция критического района, находящегося в 15-й материнской хромосоме), основными признаками которого являются микробрахицефалия, увеличенная нижняя челюсть, выступающий язык, макростомия, редкие зубы, гипопигментация; синдром Беквитта-Видемана (нарушение метилирования в коротком плече 11-й хромосомы), проявляющийся классической триадой, включающей макросомию, омфалоцеле макроглоссию и др. .

К числу важнейших факторов, влияющих на эпигеном, относятся питание, физическая активность, токсины, вирусы, ионизирующая радиация и др. Особенно чувствительным периодом к изменению эпигенома является внутриутробный период (особенно охватывающий два месяца после зачатия) и первые три месяца после рождения. В период раннего эмбриогенеза геном удаляет большую часть эпигенетических модификаций, полученных от предыдущих поколений. Но процесс репрограммирования продолжается в течение всей жизни .

К заболеваниям, где нарушение генной регуляции является частью патогенеза, можно отнести некоторые виды опухолей, сахарный диабет, ожирение, бронхиальную астму, различные дегенеративные и другие болезни .

Эпигоном при раке характеризуется глобальными изменениями в метилировании ДНК, модификации гистонов, а также изменением профиля экспрессии хроматин-модифицирующих ферментов.

Опухолевые процессы характеризуются инактивацией посредством гиперметилирования ключевых генов-супрессоров и посредством гипометилирования активацией целого ряда онкогенов, факторов роста (IGF2, TGF) и мобильных повторяющихся элементов, расположенных в районах гетерохроматина .

Так, в 19% случаев гипернефроидные опухоли почки ДНК островков СрG была гиперметилированной, а при раке груди и немелкоклеточной карциноме легких выявлена взаимосвязь между уровнями гистонового ацетилирования и экспрессией супрессора новообразований — чем ниже уровни ацетилирования, тем слабее экспрессия гена.

В настоящее время уже разработаны и внедрены в практику противоопухолевые лекарственные препараты, основанные на подавлении активности ДНК-метилтрансфераз, что приводит к снижению метилирования ДНК, активации генов-супрессоров опухолевого роста и замедлению пролиферации опухолевых клеток. Так, для лечения миелодиспластического синдрома в комплексной терапии применяют препараты децитабин (Decitabine) и азацитидин (Azacitidine) . С 2015 г. для лечения множественной миеломы в сочетании с классической химиотерапией применяют панобиностат (Panibinostat), являющийся ингибитором гистоновой деацитилазы . Данные препараты по данным клинических исследований оказывают выраженный положительный эффект на уровень выживаемости и качество жизни пациентов.

Изменения экспрессии тех или иных генов могут происходить и в результате действия на клетку факторов внешней среды. В развитии сахарного диабета 2-го типа и ожирения играет роль так называемая «гипотеза экономного фенотипа», согласно которой недостаток питательных веществ в процессе эмбрионального развития приводит к развитию патологического фенотипа . На моделях животных был выявлен участок ДНК (локус Pdx1), в котором под влиянием недостаточности питания снижался уровень ацетилирования гистонов, при этом наблюдались замедление деления и нарушения дифференцировки B-клеток островков Лангерганса и развития состояния, схожего с сахарным диабетом 2-го типа .

Активно развиваются и диагностические возможности эпигенетики. Появляются новые технологии, способные анализировать эпигенетические изменения (уровень метилирования ДНК, экспрессию микроРНК, посттрансляционные модификации гистонов и др.), такие как иммунопреципитация хроматина (CHIP), проточная цитометрия и лазерное сканирование, что дает основания полагать, что в ближайшее время будут выявлены биомаркеры для изучения нейродегенеративных заболеваний, редких, многофакторных болезней и злокачественных новообразований и внедрены в качестве методов лабораторной диагностики .

Итак, в настоящее время эпигенетика бурно развивается. С ней связывают прогресс в биологии и медицине.

Литература

  1. Ezkurdia I., Juan D., Rodriguez J. M. et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes // Human Molecular Genetics. 2014, 23 (22): 5866-5878.
  2. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome // Nature. 2001, Feb. 409 (6822): 860-921.
  3. Xuan D., Han Q., Tu Q. et al. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages // Journal of Cellular Physiology. 2016, May; 231 (5): 1090-1096.
  4. Waddington C. H. The Epigenotpye // Endeavour. 1942; 18-20.
  5. Бочков Н. П. Клиническая генетика. М.: Гэотар.Мед, 2001.
  6. Jenuwein T., Allis C. D. Translating the Histone Code // Science. 2001, Aug 10; 293 (5532): 1074-1080.
  7. Коваленко Т. Ф. Метилирование генома млекопитающих // Молекулярная медицина. 2010. № 6. С. 21-29.
  8. Элис Д., Дженювейн Т., Рейнберг Д. Эпигенетика. М.: Техносфера, 2010.
  9. Taylor P. D., Poston L. Development programming of obesity in mammals // Experemental Physiology. 2006. № 92. P. 287-298.
  10. Льюин Б. Гены. М.: БИНОМ, 2012.
  11. Plasschaert R. N., Bartolomei M. S. Genomic imprinting in development, growth, behavior and stem cells // Development. 2014, May; 141 (9): 1805-1813.
  12. Wickner R. B., Edskes H. K., Ross E. D. et al. Prion genetics: new rules for a new kind of gene // Annu Rev Genet. 2004; 38: 681-707.
  13. Мутовин Г. Р. Клиническая генетика. Геномика и протеомика наследственной патологии: учеб. пособие. 3-е изд., перераб. и доп. 2010.
  14. Романцова Т. И. Эпидемия ожирения: очевидные и вероятные причины // Ожирение и метаболизм. 2011, № 1, с. 1-15.
  15. Bégin P., Nadeau K. C. Epigenetic regulation of asthma and allergic disease // Allergy Asthma Clin Immunol. 2014, May 28; 10 (1): 27.
  16. Martínez J. A., Milagro F. I., Claycombe K. J., Schalinske K. L. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes // Advances in Nutrition. 2014, Jan 1; 5 (1): 71-81.
  17. Dawson M. A., Kouzarides T. Cancer epigenetics: from mechanism to therapy // Cell. 2012, Jul 6; 150 (1): 12-27.
  18. Kaminskas E., Farrell A., Abraham S., Baird A. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes // Clin Cancer Res. 2005, May 15; 11 (10): 3604-3608.
  19. Laubach J. P., Moreau P., San-Miguel J..F, Richardson P. G. Panobinostat for the Treatment of Multiple Myeloma // Clin Cancer Res. 2015, Nov 1; 21 (21): 4767-4773.
  20. Bramswig N. C., Kaestner K. H. Epigenetics and diabetes treatment: an unrealized promise? // Trends Endocrinol Metab. 2012, Jun; 23 (6): 286-291.
  21. Sandovici I., Hammerle C. M., Ozanne S. E., Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes // Cell Mol Life Sci. 2013, May; 70 (9): 1575-1595.
  22. Szekvolgyi L., Imre L., Minh D. X. et al. Flow cytometric and laser scanning microscopic approaches in epigenetics research // Methods Mol Biol. 2009; 567: 99-111.

В. В. Смирнов 1 , доктор медицинских наук, профессор
Г. Е. Леонов

ФГБОУ ВО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва

Почему некоторые курильщики живут более ста лет, а люди, ведущие здоровый образ жизни, могут тяжело болеть? На эти вопросы может ответить эпигенетика - наука, исследующая изменение активности генов, не затрагивающих структуру ДНК. T&P публикует обзор книги немецкого нейробиолога Петера Шпорка об одной из самых перспективных научных дисциплин.

Появление эпигенетики

Петер Шпорк пишет о сравнительно молодой науке. Название «эпигенетика» появилось в 1942 году, когда Конрад Уоддингтон, биолог из Англии, заложивший основы системной биологии, предложил этот термин как среднее между «генетикой» и аристотелевским «эпигенезом» - учением о последовательном эмбриональном развитии. Мы знаем о классическом эксперименте Аристотеля с разбиванием куриных яиц - с помощью него философу удалось установить, что сначала в зародыше формируется сердце, а возникновение внутренних частей предшествует развитию наружных. В 40-х, когда ученым была еще непонятна физическая природа генома, предположение Уоддингтона о эпигенетическом ландшафте было революционным.

По аналогии с географическим ландшафтом, на котором есть реки, текущие от истока к устью, можно представить себе развитие организма как течение реки - исток в данном случае станет зачатием, а устье - зрелостью. Однако не стоит забывать о рельефе, по которому пролегает речное русло: этой метафорой можно обозначить внешние условия, которые влияют на развитие организма. Лавина, камнепад или даже землетрясение могут иначе направить течение реки. Приспосабливаясь к новым условиям, организм претерпевает мутации, что составляет основу изменчивости - важнейшую часть биологической эволюции.

«То, что клетки передают по наследству только свой геном, больше не отвечает научной действительности»

Петер Шпорк

Нейрофизиолог

В 60-х и 70-х началось активное изучение генов. Теперь мы все знаем, что многие гены владеют информацией о структуре клетки и способах ее функционирования и активны в течение всей жизни человека. Однако ученые столкнулись с тем, что многие гены работают непостоянно, а режим их включения зависит от внешних факторов. Как раз такими механизмами и занимается эпигенетика - наука, исследующая изменение активности генов, не затрагивающее структуру ДНК. Таким образом, мнение о том, что все функции человеческого организма обусловлены последовательностью цепочки ДНК, опровергается эпигенетикой. Иными словами, эпигенетика может объяснить, как окружающая среда может влиять на включение и выключение наших генов. Первая Нобелевская премия за открытия в области эпигенетики была присуждена только в 2006 году - это были ученые из США.

Второй код

Шпорк сравнивает человеческие гены с компьютерным «железом». Хорошо иметь дорогую видеокарту и мощный процессор. Но что насчет софта? Разве без него можно выполнить самое элементарное действие - набрать текст, посмотреть изображение? Эпигенетики занимаются как раз программным обеспечением нашего организма. В ближайшей перспективе ученые намерены исследовать, как, изменяя свой образ жизни, мы можем научиться управлять нашими генами и продлевать жизнь - свою и наших потомков.

Генетика и ее печально известная прикладная отрасль, евгеника, предполагали, что только генетический материал влияет на состояние развития организма. Рэнди Джертл , биолог из Дюкского университета (Дарем, США), опровергнул это с помощью наглядного эксперимента: он давал генетически идентичным лабораторным мышам во время беременности различный корм. Мыши, родившиеся от матерей, употребляющих в пищу корм с биодобавками, были здоровыми и бурыми, а мыши, лишенные такого корма, рождались желтыми и болезненными. Эти изменения будут в дальнейшем влиять на всю последующую жизнь животных: плохое питание отключило в них некоторые гены, определяющие цвет шерсти и сопротивляемость болезням. Гены эмбрионов на момент кормления были уже сформированными и не подвергались воздействию - следовательно, воздействию подвергалось что-то еще. Как раз этими механизмами воздействия и занимается эпигенетика - «над-генетика», изучающая эпигеномы, расположенные как бы над геномом клеток.

«Благодаря эпигеному клетки обладают памятью»

Ренато Паро

Профессор Швейцарской высшей технической школы Цюриха

Правда в том, что если бы только геном, состоящий из всего лишь четырех различных компонентов, своего рода «монтажная схема», определял бы наше развитие, то мы бы были все примерно одинаковые. «Даже шимпанзе мало чем отличались бы от нас», - пишет Шпорк. Именно благодаря эпигеному, «второму коду», наш организм способен выстраивать клетки разных типов - волоса, печени, мозга, - хотя в них один и тот же геном. Эпигеном, таким образом, - это указания насчет того, как управлять геномом. Именно он отвечает за активацию и дезактивацию определенных генов и программирует скорость старения клеток. Очевидно, что, если бы каждая клетка одновременно считывала все свои гены и синтезировала все возможные белки, организм не смог бы функционировать. То, чему нас учили в школе, что клетки передают по наследству только свой геном, больше не отвечает научной действительности. На самом деле клетки наследуют и эпигеном.

«Эпигенетические переключатели определяют, какие именно гены клетка в принципе может использовать, а какие - нет. Таким образом эпигеном создает грамматику, структурирующую текст жизни».

Петер Шпорк

Нейрофизиолог

Влияние эпигенетики на геронтологию огромно. Теперь ученые знают, что несмотря на существование неизменного генома, судьба человека в большой степени в его собственных руках. «Измените стиль жизни - и вы положите начало цепочке биохимических изменений, которые станут незаметно, но неуклонно помогать и вам, и, возможно, всем вашим потомкам до конца их жизни на Земле», - предлагает Шпорк. И, несмотря на то, что это высказывание походит на то, что обещают все мировые религии, оно имеет под собой строгие биологические основания.

После того как в 2003 году эпохально завершился проект «Геном человека», ученые столкнулись с новыми проблемами. Фармацевты уже надеялись на новые генные препараты, но оказалось, что сбой функции какого-то определенного гена редко приводит к развитию болезни, которую можно диагностировать заранее. Все оказалось куда сложнее, чем выглядело в начале. Ученые узнали, что геном не устойчивый текст. Число генов может увеличиваться, например, в 16 раз, а сами гены - модифицироваться, дробиться и снова состыковываться: такие гены называются транспозонами .

Ученые делали ставки на своеобразном генном тотализаторе - они должны были угадать, сколько генов будет у человека по окончанию исследований. Оценки разнились - количество генов прыгало от 27 до 160 тысяч. После окончания секвенирования генома человека в 2003 году выяснилось, что генетический код амебы в двести раз длиннее человеческого, - последний составляет лишь примерно 22 тысячи генов. Почему же сложность организмов не отражается в их ДНК? Или, может быть, у более сложных организмов ДНК более компактная? Но что тогда делать с дрожжами, у которых ДНК в двести раз короче человеческой?

Эпигенетика ответила на вопрос о том, как у человека может быть генов меньше, чем у амебы или сорняка: высшие организмы способны синтезировать из одной «схемы» множество вариантов белков. Иными словами, все дело в генной регуляции - она появляется только у сложных организмов, и чем она сложнее, тем разнообразнее устроена его жизнедеятельность. Таким образом, несмотря на небольшое количество генов, человек, благодаря своему эпигеному, гораздо сложнее других организмов. Этот же тезис эпигенетиков отвечает и на другой популярный вопрос: почему мы мало отличаемся от шимпанзе, если совпадение наших геномов - 98,7%? Несмотря на то, что различия в генетическом материале минимальны, эпигенетические различия - огромны.

«Раз окружающая среда влияет на изменение наших эпигеномов, разрыв между биологическими и социальными процессами практически ликвидируется. И это в корне меняет наш взгляд на жизнь»

Ведущий специалист Университета МакДжил, Монреаль

Еще один вопрос, который можно было задать эволюционным биологам еще несколько десятилетий назад, - как человек приспосабливается к внешней среде в долгосрочной перспективе? Ранее наука знала только о двух крайностях - эволюции, которая требует тысяч лет, и гормональных изменениях, работающих сверхбыстро. Однако между ними оказался немаловажный срединный механизм - эпигенетические переключатели. Именно они формируют наше приспособление к окружающей среде на срок, соизмеримый со сроком человеческой жизни. Особенно важно, что изменения, произведенные ими, будут действовать долгосрочно - даже если в клетку не будут поступать новые сигналы. Так становится понятнее, почему питание нашей матери или ранние детские переживания могут влиять на всю дальнейшую жизнь. Но не стоит думать, что эпигеном - абсолютно неподвижная система. Человек способен менять свойства своего организма, как в лучшую, так и в худшую сторону.

Как эпигеном действует на
бабочек, муравьев и пчел

Нужно заметить, что эпигенетическая система - привилегия не только человека. Петер Шпорк описывает, как в детстве он наблюдал за превращениями гусеницы бражника. Примитивная гусеница смогла заново переродиться в прекрасную бабочку с помощью эпигенетических изменений. За зиму миллиарды клеток гусеницы трансформировались - изменились ее метильные и ацетильные группы, перестроилась РНК, изменилась форма гистонов - все эти изменения имели отношение не к генетике, а к эпигенетике. В ДНК каждой клетки бражника существуют генетические коды и гусеницы и бабочки. Но переключение между двумя этими схемами полностью зависит от эпигенетического кода.

«Геном и белки функционируют как одна огромная библиотека: ДНК содержит тексты, а эпигенетические структуры выполняют функции библиотекарей, каталогов и указателей, распоряжающихся информацией и упорядочивающих ее».

Петер Шпорк

Нейрофизиолог

Другой пример важности эпигенома - медоносные пчелы, развивающиеся поначалу как одинаковые личинки. На момент, когда они выбираются из яиц, природой еще не решено, кто из них будет маткой, а кто - рабочей пчелой. Все они обладают потенциалом стать пчелиной королевой. За три дня после вылупления, когда пчелы-няньки кормят личинок маточным молоком, особи дифференцируются. Это напрямую зависит от питания - некоторых личинок постепенно переводят на корм из обычной пыльцы и нектара. Но других вплоть до окукливания кормят «королевским желе», которое содержит витамины и фолиевую кислоту , влияющие на эпигеном. В 2008 году группе австралийских исследователей удалось получить пчелиных маток без молочка - они только манипулировали эпигенетическими переключателями.

Влияние внешней среды и эпигеном важны и для муравьев. Самые большие из них - солдаты - в триста раз больше, чем садовники, которые ухаживают за грибами. Несмотря на такие различия, все эти муравьи - один вид и, мало того, «единоутробные» братья и сестры. Ученые склоняются к тому, что температура и влажность места, в котором развивается личинка муравья, и есть решающий фактор, определяющий его будущую «касту». Восприимчивый эпигеном муравьев, считывая сигналы внешней среды, включает различные гены, и муравей развивается одним из возможных способов.

Как эпигенетика позволит прожить дольше

Впрочем, для всего человечества актуальнее всего вопрос о том, как открытия эпигенетики повлияют на продолжительность жизни человека. «Почему от рака умирают люди, которые регулярно занимались спортом, никогда не курили и всю жизнь придерживались здорового питания? Почему одни уже в семьдесят лет страдают болезнью Альцгеймера, а другие встречают свой столетний юбилей в здравом уме и трезвой памяти?» - задается вопросами Петер Шпорк. Важно, что эпигенетические исследования показали - очень редко один измененный, «неправильный» ген отвечает за заболевание. Роль генов в заболеваниях ожирением, диабетом или инфарктом сильно преувеличена - для расстройства должны сойтись множество факторов. Болезни возникают не только из-за плохой наследственности, но и из-за влияния окружающей среды - следовательно, то, что мы едим в течение жизни, может изменить эпигенетические системы. Мало того, эпигенетические переключатели могут обезвредить уже мутировавшие гены. С помощью такого «лечения» наш эпигеном (если он хорошо работает) снижает риск возникновения, к примеру, рака или сердечной недостаточности. Однако эпигеном может и навредить, выключая нужные гены.

Ответ на вопрос о том, почему люди, ведущие здоровый образ жизни, могут тяжело болеть, кроется в особенностях эпигенетических переключателей: большинство из них действуют уже в утробе матери или в первые годы жизни. Самые первые решения эпигенетической системы могут влиять на человека всю его жизнь, так как на ранней стадии эпигеном как бы закладывает «русло» эпигенетического ландшафта, обуславливая свой дальнейший путь развития.

«Долины эпигенетического ландшафта со временем только углубляются. Это означает, что в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни. А смесь сигнальных веществ, поступавших в наш мозг за несколько месяцев до рождения и уже после нашего появления на свет, часто определяет личность сильнее, чем воспитание, которое мы получаем в течение многих последующих лет».

Петер Шпорк

Нейрофизиолог

Ученые выяснили, что главная цель эпигеномов - сразу качественно «заморозить» реакции на окружающую среду, чтобы решения, когда-то принятые организмом, сохранялись как можно дольше. Примером может послужить развитие потовых желез - у всех людей есть одинаковое их количество, но все потеют по-разному. Это происходит из-за того, что первые три года жизни потовые железы не активны, а сколько из них активируется, зависит от температуры окружающей среды. Те, кто родился, например, в Африке, будут больше потеть на протяжении жизни - где бы они ни жили, - чем рожденные в Германии. Но когда даже в теплую погоду родители кутают детей, природный механизм нарушается, и дети на всю жизнь остаются потливыми.

Так происходит эпигенетическое программирование в раннем детстве, но не стоит думать, что человек обречен, если не предпринять позитивные шаги в самом раннем возрасте. Для людей, что не обладают хорошим иммунитетом, полезно предпринимать большие усилия, чтобы перепрограммировать свой «софт». К примеру, врачи, для того, чтобы избежать врожденной болезни детей Spina bifida - синдрома расщепленного позвоночника - советуют женщинам еще до зачатия начать принимать фолиевую кислоту, которую добавляют в соль. В США и Канаде ее даже предписано законом добавлять в муку. Позитивное воздействие фолиевой кислоты связано с тем, что она стимулирует работу эпигенетического фермента: так, помогая своей эпигенетической системе, можно подавить предрасположенность к болезням.

Петер Шпорк не советует впадать в панику, пообедав однажды в фастфуде: здоровая еда должна стать нормой, но не обязательно делать из нее культ. Пищевое разнообразие куда лучше витаминных препаратов: свежие овощи и фрукты быстрее обогатят наш организм. Но если говорить о природных стимуляторах эпигенома, то можно составить своеобразное «эпигенетическое меню». В него обязательно будут входить соя, куркума и зеленый чай. Именно эти продукты лучше всего стимулируют систему ферментов эпигенома так, чтобы он производил позитивные изменения в наших клетках. Впрочем, не стоит забывать о токсинах, которые однозначно вредны для эпигенетической системы, особенно на ранних этапах развития. Это, безусловно, пестициды, никотин, алкоголь и большие дозы кофеина, а также соединение бисфенол-А, содержащееся в пластиковых бутылках и во внутреннем покрытии жестяных банок. Это вещество переходит из полимеров прямо в продукты питания.

Острова долголетия

Ученые-эпигенетики, сравнивая биографии долгожителей, обнаружили интересную закономерность. Например, что общего между 122-летней Жанной-Луизой Кальман из Франции, которая бросила курить в 119 (только из-за того, что не могла самостоятельно закурить) и пила портвейн, и жителями японского архипелага Рюкю, живущих до ста лет? Как выясняется, почти все долгожители обитали в местах с мягким климатом, много времени проводили на свежем воздухе, двигались и питались здоровой пищей. Еще один фактор - зачастую долгожители едят маленькими порциями, и скорее немного недоедают, уходя из-за стола чуть-чуть голодными. Вкупе с физической и умственной активностью такая стратегия может сделать из человека не только долгожителя, но и здорового: такие люди не болеют даже в старости, и умирают в основном от износа органов. Нужно заметить, что среди долгожителей было мало фанатиков здоровья: никто из них не вел аскетический образ жизни, а некоторые из них, такие как Кальман, даже курили - впрочем, эта привычка не смогла ей повредить скорее из-за силы ее эпигенетической системы.

Подытоживая свою книгу, Петер Шпорк напоминает об исследованиях, проводимых среди голодающих во время Второй мировой в Нидерландах. Благодаря метрическим книгам мы знаем, что многие дети, которых вынашивали в голодное время, рождались с меньшей продолжительностью жизни и низким ростом. Цепочка продолжалась: эти дети, вырастая, рожали, в свою очередь, тоже очень маленьких детей, хотя жили в условиях изобилия. Эпигенетические изменения не стоит недооценивать: нужно помнить, что весь вред, что мы причиняем себе, будет действовать и на последующие поколения, передаваясь через эпигенетическую систему, поэтому каждый из нас несет колоссальную ответственность.

Но как же тогда нужно жить? Шпорк предупреждает фанатиков здорового образа жизни: алкоголь, картошка фри и ленивые вечера перед компьютером не нужно вычеркивать из жизни, так как это может привести к более вредным стрессам. Главное, чтобы все это не стало привычкой и образом жизни. Эпигенетика не культ вегетарианства или абстиненции; она лишь указывает на то, что в жизни есть критические периоды развития, когда наши эпигеномы очень чутко откликаются на раздражители внешней среды. Поэтому беременным женщинам нужно особенно внимательно относиться к своему здоровью, больным людям - положительно влиять на свое здоровье при помощи физических и умственных усилий, а здоровым - следить за собой и своими близкими и думать о здоровье внуков.

«Нам самим и нашим родителям в значительной мере предоставлено решать, куда направить свой геном - а возможно, даже геном своих потомков».

Петер Шпорк

Эпигенетика - относительно новая отрасль генетики, которую называют одним из наиболее важных биологических открытий с момента обнаружения ДНК. Раньше считалось, что набор генов, с которым мы рождаемся, необратимо определяет нашу жизнь. Однако теперь известно, что гены можно «включать» и «выключать», а также добиться их большей или меньшей экспрессии под воздействием различных факторов образа жизни. сайт расскажет, что такое эпигенетика, как она работает, и что Вы можете сделать, чтобы повысить шансы на выигрыш в «лотерею здоровья».

Эпигенетика: изменения в образе жизни - ключ к изменению генов

Эпигенетика - наука, которая изучает процессы, приводящие к изменению активности генов без изменения последовательности ДНК. Проще говоря, эпигенетика изучает воздействие внешних факторов на активность генов.

В ходе проекта «Геном человека» было идентифицировано 25,000 генов в человеческой ДНК. ДНК можно назвать кодом, который организм использует для построения и перестройки самого себя. Однако генам и самим нужны «инструкции», по которым они определяют необходимые действия и время их выполнения.

Эпигенетические модификации и являются теми самыми инструкциями. Существует несколько видов таких модификаций, однако двумя основными из них являются те, которые затрагивают метильные группы (углерод и водород) и гистоны (белки).

Чтобы понять, как работают модификации, представим, что ген - это лампочка. Метильные группы действуют в роли выключателя света (т.е. гена), а гистоны - в качестве регулятора силы света (т.е. они регулируют уровень активности генов). Так вот, считается, что у человека есть четыре миллиона таких выключателей, которые приводятся в действие под влиянием образа жизни и внешних факторов.

Ключом к пониманию влияния внешних факторов на активность генов стали наблюдения за жизнью однояйцевых близнецов. Наблюдения показали, насколько сильными могут быть изменения в генах таких близнецов, ведущих разный образ жизни в разных внешних условиях. По идее, у однояйцевых близнецов болезни должны быть «общими», однако зачастую это не так: алкоголизм, болезнь Альцгеймера, биполярное расстройство, шизофрения, диабет, рак, болезнь Крона и ревматоидный артрит могут проявляться только у одного близнеца в зависимости от различных факторов. Причиной этого является эпигенетический дрифт - возрастное изменение экспрессии генов.

Секреты эпигенетики: как факторы образа жизни влияют на гены

Исследования в области эпигенетики показали, что только 5% генных мутаций, связанных с болезнями, являются полностью детерминированными; на остальные 95% можно повлиять посредством питания, поведения и прочих факторов внешней среды. Программа здорового образа жизни позволяет изменить активность от 4000 до 5000 различных генов.

Мы не просто являемся суммой генов, с которыми были рождены. Именно человек является пользователем, именно он управляет своими генами. При этом не столь важно, какие «генетические карты» раздала Вам природа - важно, что Вы с ними будете делать.

Эпигенетика находится на начальной стадии развития, многое еще предстоит узнать, однако существуют сведения о том, какие основные факторы образа жизни влияют на экспрессию генов.

  1. Питание, сон и упражнения

Не удивительно, что питание способно влиять на состояние ДНК. Рацион, насыщенный переработанными углеводами, приводит к «атакам» ДНК высокими уровнями глюкозы в крови. С другой стороны, обратить повреждения ДНК могут:

  • сульфорафан (содержится в брокколи);
  • куркумин (в составе куркумы);
  • эпигаллокатехин-3-галлат (есть в зеленом чае);
  • ресвератрол (содержится в винограде и вине).

Что касается сна, всего неделя недосыпа негативно сказывается на активности более 700 генов. На экспрессии генов (117) положительно сказываются занятия спортом.

  1. Стресс, отношения и даже мысли

Эпигенетики утверждают, что не только такие «материальные» факторы, как диета, сон и спорт, влияют на гены. Как оказывается, стресс, отношения с людьми и Ваши мысли тоже являются весомыми факторами, влияющими на экспрессию генов. Так:

  • медитация подавляет экспрессию провоспалительных генов, помогая бороться с воспалениями, т.е. защититься от болезни Альцгеймера, рака, болезней сердца и диабета; при этом эффект такой практики виден уже через 8 часов занятий;
  • 400 научных исследований показали, что проявление благодарности, доброта, оптимизм и различные техники, которые задействуют разум и тело, положительно влияют на экспрессию генов;
  • отсутствие активности, плохое питание, постоянные негативные эмоции, токсины и вредные привычки, а также травмы и стрессы запускают негативные эпигенетичекие изменения.

Длительность результатов эпигенетических изменений и будущее эпигенетики

Одним из наиболее потрясающих и противоречивых открытий является то, что эпигенетические изменения передаются следующим поколениям без изменения последовательности генов. Доктор Митчелл Гейнор, автор книги «План генной терапии: Возьмите генетическую судьбу под контроль при помощи питания и образа жизни», считает, что экспрессия генов также передается по наследству.

Эпигенетика, считает доктор Рэнди Джиртл, доказывает, что мы также несем ответственность за целостность нашего генома. Раньше мы считали, что от генов зависит все. Эпигенетика позволяет понять, что наше поведение и привычки могут повлиять на экспрессию генов у будущих поколений.

Эпигенетика - сложная наука, которая имеет огромный потенциал. Специалистам предстоит проделать еще много работы, чтобы определить, какие именно факторы окружающей среды влияют на наши гены, как мы можем (и можем ли) обратить заболевания вспять или максимально эффективно их предотвратить.