Что такое теорема пифагора. Задачи на применение теоремы пифагора

История теоремы Пифагора насчитывает несколько тысячелетий. Утверждение, гласящее, что было известно еще задолго до рождения греческого математика. Однако теорема Пифагора, история создания и доказательства ее связываются для большинства именно с этим ученым. Согласно некоторым источникам, причиной тому послужило первое доказательство теоремы, которое было приведено Пифагором. Однако часть исследователей опровергает этот факт.

Музыка и логика

Прежде чем рассказать, как складывалась история теоремы Пифагора, кратко остановимся на биографии математика. Жил он в VI веке до нашей эры. Датой рождения Пифагора считается 570 год до н. э., местом — остров Самос. О жизни ученого достоверно известно немного. Биографические данные в древнегреческих источниках переплетаются с явным вымыслом. На страницах трактатов он предстает великим мудрецом, великолепно владеющим словом и умением убеждать. Кстати, именно поэтому греческого математика и прозвали Пифагором, то есть «убеждающим речью». По другой версии, рождение будущего мудреца предсказала Пифия. Отец в ее честь назвал мальчика Пифагором.

Мудрец учился у великих умов того времени. Среди преподавателей молодого Пифагора значатся Гермодамант и Ферекид Сиросский. Первый привил ему любовь к музыке, второй обучил философии. Обе эти науки останутся в центре внимания ученого на протяжении всей его жизни.

Обучение длиной в 30 лет

По одной из версий, будучи пытливым юношей, Пифагор покинул родину. Он отправился искать знаний в Египет, где пробыл, согласно разным источникам, от 11 до 22 лет, а затем попал в плен и был отправлен в Вавилон. Пифагор смог извлечь пользу из своего положения. В течение 12 лет он изучал математику, геометрию и магию в древнем государстве. На Самос Пифагор вернулся только в 56 лет. Здесь в то время правил тиран Поликрат. Пифагор не смог принять такую политическую систему и вскоре отправился на юг Италии, где располагалась греческая колония Кротон.

Сегодня нельзя точно утверждать, был ли Пифагор в Египте и Вавилоне. Возможно, он покинул Самос позже и отправился сразу в Кротон.

Пифагорейцы

История теоремы Пифагора связана с развитием созданной греческим философом школы. Это религиозно-этическое братство проповедовало соблюдение особого образа жизни, изучало арифметику, геометрию и астрономию, занималось исследованием философской и мистической стороны чисел.

Все открытия учеников греческого математика приписывались ему. Однако история возникновения теоремы Пифагора связывается древними биографами только с самим философом. Предполагается, что он передал грекам знания, полученные в Вавилоне и Египте. Есть также версия, что он действительно открыл теорему о соотношениях катетов и гипотенузы, не зная о достижениях других народов.

Теорема Пифагора: история открытия

В некоторых древнегреческих источниках описывается радость Пифагора, когда ему удалось доказать теорему. В честь такого события он приказал принести жертву богам в виде сотни быков и устроил пир. Некоторые ученые, однако, указывают на невозможность такого поступка из-за особенностей воззрений пифагорейцев.

Считается, что в трактате «Начала», созданном Евклидом, автор приводит доказательство теоремы, автором которого и был великий греческий математик. Однако подобную точку зрения поддерживали не все. Так, еще античный философ-неоплатоник Прокл указывал, что автором приведенного в «Началах» доказательства является сам Евклид.

Как бы то ни было, но первым, кто сформулировал теорему, все-таки был не Пифагор.

Древний Египет и Вавилон

Теорема Пифагора, история создания которой рассматривается в статье, согласно немецкому математику Кантору, была известна еще в 2300 году до н. э. в Египте. Древние жители долины Нила во времена правления фараона Аменемхета I знали равенство 3 2 + 4 ² = 5 ² . Предполагается, что с помощью треугольников со сторонами 3, 4 и 5 египетские «натягиватели веревок» выстраивали прямые углы.

Знали теорему Пифагора и в Вавилоне. На глиняных табличках, датируемых 2000 годом до н.э. и относимых ко времени правления обнаружен приблизительный расчет гипотенузы прямоугольного треугольника.

Индия и Китай

История теоремы Пифагора связана и с древними цивилизациями Индии и Китая. Трактат «Чжоу-би суань цзинь» содержит указания, что (его стороны соотносятся как 3:4:5) был известен в Китае еще в XII в. до н. э., а к VI в. до н. э. математики этого государства знали общий вид теоремы.

Построение прямого угла при помощи египетского треугольника было изложено и в индийском трактате «Сульва сутра», датируемом VII-V вв. до н. э.

Таким образом, история теоремы Пифагора к моменту рождения греческого математика и философа насчитывала уже несколько сотен лет.

Доказательство

За время своего существования теорема стала одной из основополагающих в геометрии. История доказательства теоремы Пифагора, вероятно, началась с рассмотрения равностороннего На его гипотенузе и катетах строятся квадраты. Тот, что «вырос» на гипотенузе, будет состоять из четырех треугольников, равных первому. Квадраты на катетах при этом состоят из двух таких треугольников. Простое графическое изображение наглядно показывает справедливость утверждения, сформулированного в виде знаменитой теоремы.

Еще одно простое доказательство сочетает геометрию с алгеброй. Четыре одинаковых прямоугольных треугольника со сторонами а, в, с вычерчиваются так, что образуют два квадрата: внешний со стороной (а + в) и внутренний со стороной с. При этом площадь меньшего квадрата будет равна с 2 . Площадь большого вычисляется из суммы площадей маленького квадрата и всех треугольников (площадь прямоугольного треугольника, напомним, вычисляется по формуле (а * в) / 2), то есть с 2 + 4 * ((а * в) / 2), что равно с 2 + 2ав. Площадь большого квадрата можно вычислить и иначе — как произведение двух сторон, то есть (а + в) 2 , что равно а 2 + 2ав + в 2 . Получается:

а 2 + 2ав + в 2 = с 2 + 2ав,

а 2 + в 2 = с 2 .

Известно множество вариантов доказательства этой теоремы. Над ними трудился и Евклид, и индийские ученые, и Леонардо да Винчи. Часто древние мудрецы приводили чертежи, примеры которых расположены выше, и не сопровождали их никакими объяснениями, кроме пометки «Смотри!» Простота геометрического доказательства при условии наличия некоторых знаний комментариев и не требовала.

История теоремы Пифагора, кратко изложенная в статье, развенчивает миф о ее происхождении. Однако трудно даже представить, что имя великого греческого математика и философа когда-нибудь перестанет ассоциироваться с ней.

Анимационное доказательство теоремы Пифагора – одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Считается, что она доказана греческим математиком Пифагором, в честь которого она названа (есть и другие версии, в частности альтернативное мнение, что эта теорема в общем виде была сформулирована математиком-пифагорейцем Гиппасом).
Теорема гласит:

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе равна сумме площадей квадратов, построенных на катетах.

Обозначив длину гипотенузы треугольника c, а длины катетов как a и b, получим следующую формулу:

Таким образом, теорема Пифагора устанавливает соотношение, которое позволяет определить сторону прямоугольного треугольника, зная длины двух других. Теорема Пифагора является частным случаем теоремы косинусов, которая определяет соотношение между сторонами произвольного треугольника.
Также доказано обратное утверждение (называют также обратной теореме Пифагора):

Для любых трех положительных чисел a, b и c, таких что a ? + b ? = c ?, существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Визуальное доказательство для треугольника (3, 4, 5) из книги «Чу Пэй» 500-200 до н.э. Историю теоремы можно разделить на четыре части: знание о Пифагоровы числа, знания об отношении сторон в прямоугольном треугольнике, знание об отношении смежных углов и доказательство теоремы.
Мегалитические сооружения около 2500 до н.э. в Египте и Северной Европе, содержат прямоугольные треугольники со сторонами из целых чисел. Бартель Леендерт ван дер Варден высказал гипотезу, что в те времена Пифагоровы числа были найдены алгебраически.
Написанный между 2000 и 1876 до н.э. папирус времен Среднего Египетского царства Berlin 6619 содержит задачу решением которой являются числа Пифагора.
Во время правления Хаммурапи Великого, вивилонська табличка Plimpton 322, написанная между 1790 и 1750 до н.э содержит много записей тесно связанных с числами Пифагора.
В сутрах Будхаяны, которые датируются по разным версиям восьмой или второй веками до н.э. в Индии, содержит Пифагоровы числа выведены алгебраически, формулировка теоремы Пифагора и геометрическое доказательство для ривнобедренного прямоугольного треугольника.
В сутрах Апастамба (около 600 до н.э.) содержится числовое доказательство теоремы Пифагора с использованием вычисления площади. Ван дер Варден считает, что оно было основано на традициях предшественников. Согласно Альбертом Бурко, это оригинальное доказательство теоремы и он предполагает, что Пифагор посетил Араконам и скопировал его.
Пифагор, годы жизни которого обычно указывают 569 – 475 до н.э. использует алгебраические методы расчета пифагоровых чисел, согласно Проклова комментариями к Евклида. Прокл, однако, жил между 410 и 485 годами н.э. Согласно Томасом Гизом, нет никаких указаний на авторство теоремы течение пяти веков после Пифагора. Однако, когда такие авторы как Плутарх или Цицерон приписывают теорему Пифагору, они делают это так, будто авторство широко известно и несомненно.
Около 400 до н. э соответствии Прокла, Платон дал метод расчета пифагоровых чисел, сочетавший алгебру и геометрию. Около 300 до н.э., в Началах Евклида имеем древнейшее аксиоматическое доказательство, которое сохранилось до наших дней.
Написанные где-то между 500 до н.э. и 200 до н.э., китайский математическая книга «Чу Пэй» (? ? ? ?), дает визуальное доказательство теоремы Пифагора, которая в Китае называется теорема гугу (????), для треугольника со сторонами (3, 4, 5). Во время правления династии Хань, с 202 до н.э. до 220 н.э. Пифагоровы числа появляются в книге «Девять разделов математического искусства» вместе с упоминанием о прямоугольные треугольники.
Впервые зафиксировано использование теоремы в Китае, где она известна как теорема гугу (????) и в Индии, где она известна как теорема Баскара.
Многие дискутируется была теорема Пифагора открыта один раз или многократно. Бойер (1991) считает, что знания обнаружены в Шульба Сутра могут быть месопотамского происхождения.
Алгебраическое доказательство
Квадраты образуются из четырех прямоугольных треугольников. Известно более ста доказательств теоремы Пифагора. Здесь представлены доказательства основан на теореме существования площади фигуры:

Разместим четыре одинаковые прямоугольные треугольники так, как это изображено на рисунке.
Четырехугольник со сторонами c является квадратом, так как сумма двух острых углов , А развернутый угол – .
Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной «a + b», а с другой – сумме площадей четырех треугольников и внутреннего квадрата.

Что и необходимо доказать.
По сходству треугольников
Использование подобных треугольников. Пусть ABC – прямоугольный треугольник, в котором угол C прямой, как показано на рисунке. Проведем высоту с точки C, и назовем H точку пересечения со стороной AB. Образован треугольник ACH подобен треугольника ABC, поскольку они оба прямоугольные (по определению высоты), и у них общий угол A, очевидно третий угол будет в этих треугольников также одинаков. Аналогично миркуюючы, треугольник CBH также подобен треугольника ABC. С подобия треугольников: Если

Это можно записать в виде

Если добавить эти две равенства, получим

HB + c times AH = c times (HB + AH) = c ^ 2, ! Src = "http://upload.wikimedia.org/math/7/0/9/70922f59b11b561621c245e11be0b61b.png" />

Другими словами, теорема Пифагора:

Доказательство Евклида
Доказательство Евклида в евклидовых «Началах», теорема Пифагора доказана методом параллелограммов. Пусть A, B, C вершины прямоугольного треугольника, с прямым углом A. Опустим перпендикуляр из точки A на сторону противоположную гипотенузы в квадрате построенном на гипотенузе. Линия делит квадрат на два прямоугольника, каждый из которых имеет такую же площадь, что и квадраты построены на катетах. Главная идея при доказательстве состоит в том, что верхние квадраты превращаются в параллелограммы такой же площади, а потом возвращаются и превращаются в прямоугольники в нижнем квадрате и снова при неизменной площади.

Проведем отрезки CF и AD, получим треугольники BCF и BDA.
Углы CAB и BAG – прямые; соответственно точки C, A и G – коллинеарны. Так же B, A и H.
Углы CBD и FBA – оба прямые, тогда угол ABD равен углу FBC, поскольку оба являются суммой прямого угла и угла ABC.
Треугольник ABD и FBC уровне по двум сторонам и углу между ними.
Поскольку точки A, K и L – коллинеарны, площадь прямоугольника BDLK равна двум площадям треугольника ABD (BDLK = BAGF = AB 2)
Аналогично миркуюючы получим CKLE = ACIH = AC 2
С одной стороны площадь CBDE равна сумме площадей прямоугольников BDLK и CKLE, а с другой стороны площадь квадрата BC 2, или AB 2 + AC 2 = BC 2.

Используя дифференциалы
Использование дифференциалов. Теореме Пифагора можно прийти, если изучать как прирост стороны влияет на ведичину гипотенузы как показано на рисунке справа и применить небольшое вычисления.
В результате прироста стороны a, из подобных треугольников для бесконечно малых приращений

Интегрируя получим

Если a = 0 тогда c = b, так что "константа" – b 2. Тогда

Как можно увидеть, квадраты получен благодаря пропорции между приращениями и сторонами, тогда как сумма является результатом независимого вклада приростов сторон, не очевидно из геометрических доказательств. В этих уравнениях da и dc – соответственно бесконечно малые приращения сторон a и c. Но вместо них мы используем? a и? c, тогда предел отношения, если они стремятся к нулю равна da / dc, производная, и также равен c / a, отношению длин сторон треугольников, в результате получаем дифференциальное уравнение.
В случае ортогональной системы векторов имеет место равенство, которую также называют теоремой Пифагора:

Если – Это проекции вектора на координатные оси, то эта формула совпадает с расстоянием Евклида и означает, что длина вектора равна корню квадратному суммы квадратов его компонентов.
Аналог этого равенства в случае бесконечной системы векторов называется равенства Парсеваля.

Теорема Пифагора : Сумма площадей квадратов, опирающихся на катеты (a и b ), равна площади квадрата, построенного на гипотенузе (c ).

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

Алгебраическая формулировка:

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

a 2 + b 2 = c 2

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади . То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора:

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы . Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры .

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

  1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
  2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
  3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и двух внутренних квадратов.

Что и требовалось доказать.

Доказательства через равносоставленность

Элегантное доказательство при помощи перестановки

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Чертеж к доказательству Евклида

Иллюстрация к доказательству Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.

Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.

Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°).

Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.

Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.

Доказательство Леонардо да Винчи

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок C I рассекает квадрат A B H J на две одинаковые части (так как треугольники A B C и J H I равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур C A J I и G D A B . Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

Доказательство методом бесконечно малых

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди , жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Доказательство методом бесконечно малых

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

c 2 = a 2 + b 2 + constant.

Таким образом, мы приходим к желаемому ответу

c 2 = a 2 + b 2 .

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет b ). Тогда для константы интегрирования получим

Вариации и обобщения

  • Если вместо квадратов построить на катетах другие подобные фигуры, то верно следующее обобщение теоремы Пифагора: В прямоугольном треугольнике сумма площадей подобных фигур, построенных на катетах, равна площади фигуры, построенной на гипотенузе. В частности:
    • Сумма площадей правильных треугольников, построенных на катетах, равна площади правильного треугольника, построенного на гипотенузе.
    • Сумма площадей полукругов, построенных на катетах (как на диаметре), равна площади полукруга, построенного на гипотенузе. Этот пример используется при доказательстве свойств фигур, ограниченных дугами двух окружностей и носящих имя гиппократовых луночек .

История

Чу-пей 500–200 до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы.

В древнекитайской книге Чу-пей говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

Литература

На русском языке

  • Скопец З. А. Геометрические миниатюры. М., 1990
  • Еленьский Щ. По следам Пифагора. М., 1961
  • Ван-дер-Варден Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959
  • Глейзер Г. И. История математики в школе. М., 1982
  • В.Литцман, «Теорема Пифагора» М., 1960.
    • Сайт о теореме Пифагора с большим числом доказательств материал взят из книги В.Литцмана, большое число чертежей представлено в виде отдельных графических файлов.
  • Теорема Пифагора и пифагоровы тройки глава из книги Д. В. Аносова «Взгляд на математику и нечто из нее»
  • О теореме Пифагора и способах ее доказательства Г. Глейзер, академик РАО, Москва

На английском

  • Теорема Пифагора на WolframMathWorld (англ.)
  • Cut-The-Knot, секция посвящённая теореме пифагора, около 70 доказательств и обширная дополнительная информация (англ.)

Wikimedia Foundation . 2010 .

Геометрия – наука не простая. Она может пригодиться как для школьной программы, так и в реальной жизни. Знание многих формул и теорем упростит геометрические вычисления. Одна из наиболее простых фигур в геометрии – это треугольник. Один из разновидностей треугольников, равносторонний, имеет свои особенности.

Особенности равностороннего треугольника

Согласно определению, треугольник – это многогранник, который имеет три угла и три стороны. Это плоская двумерная фигура, ее свойства изучаются в средней школе. По типу угла различают остроугольные, тупоугольные и прямоугольные треугольники. Прямоугольный треугольник – такая геометрическая фигура, где один из углов равен 90º. Такой треугольник имеет два катета (они создают прямой угол), и одну гипотенузу (она находится напротив прямого угла). В зависимости от того, какие величины известны, существует три простых способа вычислить гипотенузу прямоугольного треугольника.

Первый способ найти гипотенузу прямоугольного треугольника. Теорема Пифагора

Теорема Пифагора – древнейший способ вычислить любую из сторон прямоугольного треугольника. Звучит она так: “В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов”. Таким образом, чтобы вычислить гипотенузу, следует вывести квадратный корень из сумы двух катетов в квадрате. Для наглядности приведены формулы и схема.

Второй способ. Вычисление гипотенузы с помощью 2-х известных величин: катета и прилегающего угла

Одно из свойств прямоугольного треугольника гласит, что отношение длины катета к длине гипотенузы, равносильно косинусу угла между этиv катетом и гипотенузой. Назовем известный нам угол α. Теперь, благодаря известному определению, можно легко сформулировать формулу для вычисления гипотенузы: Гипотенуза = катет/cos(α)


Третий способ. Вычисление гипотенузы с помощью 2х известных величин: катета и противолежащего угла

Если известен противолежащий угол, возможно снова воспользоваться свойствами прямоугольного треугольника. Отношение длины катета и гипотенузы равносильно синусу противолежащего угла. Снова назовем известный угол α. Теперь для вычислений применим немного другую формулу:
Гипотенуза = катет/sin (α)


Примеры, которые помогут разобраться с формулами

Для более глубокого понимания каждой из формул, следует рассмотреть наглядные примеры. Итак, предположим, дан прямоугольный треугольник, где есть такие данные:

  • Катет – 8 см.
  • Прилегающий угол cosα1 – 0.8.
  • Противолежащий угол sinα2 – 0.8.

По теореме Пифагора: Гипотенуза = корень квадратный из (36+64) = 10 см.
По величине катета и прилежащего угла: 8/0.8 = 10 см.
По величине катета и противолежащего угла: 8/0.8 = 10 см.

Разобравшись в формуле, можно с легкостью вычислить гипотенузу с любыми данными.

Видео: Теорема Пифагора

Когда вы только начинали изучать квадратные корни и способы решения иррациональных уравнений (равенств, содержащих неизвестную под знаком корня), вы, вероятно, получили первое представление об их практическом использовании. Умение извлекать квадратный корень из чисел также необходимо для решения задач на применение теоремы Пифагора. Эта теорема связывает длины сторон любого прямоугольного треугольника.

Пусть длины катетов прямоугольного треугольника (тех двух сторон, которые сходятся под прямым углом) будут обозначены буквами и , а длина гипотенузы (самой длинной стороны треугольника, расположенной напротив прямого угла) будет обозначена буквой . Тогда соответствующие длины связаны следующим соотношением:

Данное уравнение позволяет найти длину стороны прямоугольного треугольника в том случае, когда известна длина двух других его сторон. Кроме того, оно позволяет определить, является ли рассматриваемый треугольник прямоугольным, при условии, что длины всех трёх сторон заранее известны.

Решение задач с использованием теоремы Пифагора

Для закрепления материала решим следующие задачи на применение теоремы Пифагора.

Итак, дано:

  1. Длина одного из катетов равняется 48, гипотенузы – 80.
  2. Длина катета равняется 84, гипотенузы – 91.

Приступим к решению:

a) Подстановка данных в приведённое выше уравнение даёт следующие результаты:

48 2 + b 2 = 80 2

2304 + b 2 = 6400

b 2 = 4096

b = 64 или b = -64

Поскольку длина стороны треугольника не может быть выражена отрицательным числом, второй вариант автоматически отбрасывается.

Ответ к первому рисунку: b = 64.

b) Длина катета второго треугольника находится тем же способом:

84 2 + b 2 = 91 2

7056 + b 2 = 8281

b 2 = 1225

b = 35 или b = -35

Как и в предыдущем случае, отрицательное решение отбрасывается.

Ответ ко второму рисунку: b = 35

Нам дано:

  1. Длины меньших сторон треугольника равны 45 и 55 соответственно, большей – 75.
  2. Длины меньших сторон треугольника равны 28 и 45 соответственно, большей – 53.

Решаем задачу:

a) Необходимо проверить, равна ли сумма квадратов длин меньших сторон данного треугольника квадрату длины большей:

45 2 + 55 2 = 2025 + 3025 = 5050

Следовательно, первый треугольник не является прямоугольным.

b) Выполняется та же самая операция:

28 2 + 45 2 = 784 + 2025 = 2809

Следовательно, второй треугольник является прямоугольным.

Сперва найдем длину наибольшего отрезка, образованного точками с координатами (-2, -3) и (5, -2). Для этого используем известную формулу для нахождения расстояния между точками в прямоугольной системе координат:

Аналогично находим длину отрезка, заключенного между точками с координатами (-2, -3) и (2, 1):

Наконец, определяем длину отрезка между точками с координатами (2, 1) и (5, -2):

Поскольку имеет место равенство:

то соответствующий треугольник является прямоугольным.

Таким образом, можно сформулировать ответ к задаче: поскольку сумма квадратов сторон с наименьшей длиной равняется квадрату стороны с наибольшей длиной, точки являются вершинами прямоугольного треугольника.

Основание (расположенное строго горизонтально), косяк (расположенный строго вертикально) и трос (протянутый по диагонали) формируют прямоугольный треугольник, соответственно, для нахождения длины троса может использоваться теорема Пифагора:

Таким образом, длина троса будет составлять приблизительно 3,6 метра.

Дано: расстояние от точки R до точки P (катет треугольника) равняется 24, от точки R до точки Q (гипотенуза) – 26.

Итак, помогаем Вите решить задачу. Поскольку стороны треугольника, изображённого на рисунке, предположительно образуют прямоугольный треугольник, для нахождения длины третьей стороны можно использовать теорему Пифагора:

Итак, ширина пруда составляет 10 метров.

Сергей Валерьевич