Что такое полупроводник. Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках

Что такое полупроводник и с чем его едят?

Полупроводник - материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях. По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. Полупроводник отличается от проводников сильной зависимостью удельной проводимости от наличия в кристаллической решетки элементов-примесей (примесные элементы) и концентрации этих элементов, а также от температуры и воздействия различных видов излучения.
Основное свойство полупроводника - увеличение электрической проводимости с увеличением температуры.
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. Ширина запрещённой зоны - это ширина энергетического зазора между дном зоны проводимости и потолком валентной зоны, в котором отсутствуют разрешённые состояния для электрона.
Величина ширины запрещённой зоны имеет важное значение при генерации света в светодиодах и полупроводниковых лазерах и определяет энергию испускаемых фотонов.

К числу полупроводников относятся многие химические элементы: Si кремний, Ge германий, As мышьяк, Se селен, Te теллур и другие, а также всевозможные сплавы и химические соединения, например: йодид кремния, арсенид галлия, теллурит ртути и др.). В общем почти все неорганические вещества окружающего нас мира являются полупроводниками. Самым распространённым в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры.

В зависимости от того, отдаёт ли атом примесного элемента электрон или захватывает его, примесные атомы называют донорными или акцепторными. Донорские и акцепторные свойства атома примесного элемента зависят также того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Как выше упоминалось, проводниковые свойства полупроводников сильно зависит от температуры, а при достижениитемпературы абсолютного нуля (-273°С) полупроводники имеют свойства диэлектриков.

По виду проводимости полупроводники подразделяют на n-тип и р-тип

Полупроводник n-типа

По виду проводимости полупроводники подразделяют на n-тип и р-тип.

Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения полупроводников n-типа, называются донорными. Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.

Теория процесса переноса заряда описывается следующим образом:

В четырёхвалентный Si кремний добавляют примесный элемент, пятивалентный As мышьяка. В процессе взаимодействия каждый атом мышьяка вступает в ковалентную связь с атомами кремния. Но остается пятый свободный атом мышьяка, которому нет места в насыщенных валентных связях, и он переходит на дальнюю электронную орбиту, где для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный, способный переносить заряд. Таким образом перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам.
Также сурьмой Sb улучшают свойства одного из самых важных полупроводников – германия Ge.

Полупроводник p-типа

Полупроводник p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными.
«p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей.
Например в полупроводник, четырёхвалентный Si кремний, добавляют небольшое количество атомов трехвалентного In индия. Индий в нашем случае будет примесным элементом, атомы которого устанавливает ковалентную связь с тремя соседними атомами кремния. Но у кремния остается одна свободная связь в то время, как у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, образуя так называемую дырку и соответственно дырочный переход.
По такой же схеме In ндий сообщает Ge германию дырочную проводимость.

Исследуя свойства полупроводниковых элементов и материалов, изучая свойства контакта проводника и полупроводника, экспериментируя в изготовлении полупроводниковых материалов, О.В. Лосев 1920-х годах создал прототип современного светодиода.

Полупроводники характеризуются как свойствами проводников , так и диэлектриков . В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10 −19 Дж против 11,2·10 −19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10 −19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5-2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой .

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

- Постоянная Планка - масса электрона - температура ; - уровень проводимой зоны - уровень Ферми ;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

- Постоянная Планка ; - масса дырки; - температура ; - уровень Ферми ; - уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где - удельное сопротивление, - подвижность электронов , - подвижность дырок, - их концентрация, q - элементарный электрический заряд (1,602·10 −19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)

Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников - дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников - так называемый p-n переход . В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где - термодинамическое напряжение, - концентрация электронов, - концентрация дырок, - собственная концентрация .

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока .

Транзистор

Транзистор - полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов ,
  • сложные: двухэлементные A III B V и A II B VI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно - с увеличением периода ширина запрещённой зоны уменьшается.

Группа IIB IIIA IVA VA VIA
Период
2 5 6 7
3 13 14 15 16
4 30 31 32 33 34
5 48 49 50 51 52
6 80

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками . В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем - это в первую очередь относится к кремнию , но затрагивает и другие соединения ( , GaAs , InP , InSb).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро .

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре . И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов - фосфором , который является донором , и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок - установки молекулярно-лучевой эпитаксии , позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули , электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости . Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где - ширина запрещённой зоны, - постоянная Планка . Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний , германий , арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора , в частности закон сохранения импульса . Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где - длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников . Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными . Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон . Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами .

Таким образом, прямозонные полупроводники, такие как арсенид галлия , начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике .

Непрямозонные полупроводники, например, кремний , поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры . Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда , а следовательно фотопроводимость .

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов , электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры , создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы - собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными , и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами , серу - сульфидами , теллур - теллуридами , углерод - карбидами . Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева , к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A - первый элемент, B - второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение A III B V

Широкое применние получили следующие соединения:

A III B V

  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
A II B V
  • CdSb, ZnSb
A II B VI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
A IV B VI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (A I B III C 2 VI , A I B V C 2 VI , A II B IV C 2 V , A II B 2 II C 4 VI , A II B IV C 3 VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe) x (HgTe) 1-x , (HgTe) x (HgSe) 1-x , (PbTe) x (SnTe) 1-x , (PbSe) x (SnSe) 1-x и других.

Соединения A III B V , в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения A II B V используют в качестве люминофоров видимой области, светодиодов , датчиков Холла , модуляторов.

Соединения A III B V , A II B VI и A IV B VI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов , выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа A III B V
Параметры AlSb GaSb InSb AlAs GaAs InAs
Температура плавления, К 1333 998 798 1873 1553 1218
Постоянная решётки, 6,14 6,09 6,47 5,66 5,69 6,06
Ширина запрещённой зоны ΔE , эВ 0,52 0,7 0,18 2,2 1,32 0,35
Диэлектрическая проницаемость ε 8,4 14,0 15,9 - - -
Подвижность, см²/(В·с):
электронов 50 5000 60 000 - 4000 3400
дырок 150 1000 4000 - 400 460
Показатель преломления света, n 3,0 3,7 4,1 - 3,2 3,2
Линейный коэффициент теплового
расширения, K -1
- 6,9·10 -6 5,5·10 -6 5,7·10 -6 5,3·10 -6 -

Полупроводниковые приборы, обладающие рядом свойств, которые делают их применение предпочтительным перед вакуумными приборами, все более широко используются в электронной технике. В последние годы, характеризующиеся прогрессом в полупроводниковой электронике, разрабатываются приборы на новых физических принципах.

К полупроводникам относят многие химические элементы, такие, как кремний, германий, индий, фосфор и др., большинство оксидов, сульфидов, селенидов и теллуридов, некоторые сплавы, ряд минералов. По словам академика А. Ф. Иоффе, "полупроводники - это почти весь окружающий нас неорганический мир".

Полупроводники бывают кристаллические, аморфные и жидкие. В полупроводниковой технике обычно используют только кристаллические полупроводники (монокристаллы с примесями не более одного атома примеси на 1010 атомов основного вещества). Обычно к полупроводникам относят вещества, по удельной электрической проводимости занимающие промежуточное положение между металлами и диэлектриками (отсюда происхождение их названия). При комнатной температуре удельная электрическая проводимость их составляет от 10-8 до 105 См/м (для металлов - 106-108 См/м, для диэлектриков - 10-8-10-13 См/м). Основная особенность полупроводников - возрастание удельной электрической проводимости при повышении температуры (для металлов она падает). Электропроводность полупроводников значительно зависит от внешних воздействий: нагревания, облучения, электрического и магнитного полей, давления, ускорения, а также от содержания даже незначительного количества примесей. Свойства полупроводников хорошо поясняются с помощью зонной теории твердого тела.

Атомы всех веществ состоят из ядра и электронов, движущихся по замкнутой орбите вокруг ядра. Электроны в атоме группируются в оболочки. У основных полупроводников, используемых для создания полупроводниковых приборов - кремния и германия, кристаллическая решетка тетраэдрическая (имеет форму правильной треугольной пирамиды) (рис. 16.1). Проекция структуры Ge на плоскость показана на рис. 16.2. Каждый валентный электрон, т. е. электрон, находящийся на внешней, незаполненной, оболочке атома, в кристалле принадлежит не только своему, но и ядру соседнего атома. Все атомы в кристаллической решетке расположены на одинаковом расстоянии друг от друга и связаны ковалентными связями (ковалентной называется связь между парой валентных электронов двух атомов, на рис. 16.2 она показана двумя линиями). Эти связи являются прочными; чтобы их разорвать, нужно извне приложить энергию.

Энергия электрона W дискретна, или квантована, поэтому электрон может двигаться только по той орбите, которая соответствует его энергии. Возможные значения энергии электрона можно представить на диаграмме энергетическими уровнями (рис. 16.3). Чем более удалена орбита от ядра, тем больше энергия электрона и тем более высок его энергетический уровень. Энергетические уровни разделены зонами II, соответствующими запрещенной энергии для электронов (запрещенные зоны). Так как в твердом теле соседние атомы находятся очень близко друг от друга, это вызывает смещение и расщепление энергетических уровней, в результате чего образуются энергетические зоны, называемые разрешенными (I, III, IV на рис. 16.3). Ширина разрешенных зон обычно равна нескольким электрон-вольт. В энергетической зоне число разрешенных уровней равно числу атомов в кристалле. Каждая разрешенная зона занимает определенную область энергии и характеризуется минимальным и максимальным уровнями энергии, которые называются соответственно дном и потолком зоны.

Разрешенные зоны, в которых электроны отсутствуют, называются свободными (I). Свободная зона, в которой при температуре 0 К электронов нет, а при более высокой температуре они могут в ней находиться, называется зоной проводимости.

Она находится выше валентной зоны (III) - верхней из заполненных зон, в которых все энергетические уровни заняты электронами при температуре 0 К.

В зонной теории подразделение твердых тел на металлы, полупроводники и диэлектрики основано на ширине запрещенной зоны между валентной зоной и зоной проводимости и степени заполнения разрешенных энергетических зон (рис. 16.4). Ширина запрещенной зоны ΔWa называется энергией активации собственной электропроводности. Для металла ΔWa = 0 (рис. 16.4, а); условно при ΔWa ≤ 2 эВ кристалл является полупроводником (рис. 16.4,6), при ΔWa ≥ 2 эВ - диэлектриком (рис. 16.4, в). Так как у полупроводников значение ΔWa сравнительно невелико, то достаточно сообщить электрону энергию, сравнимую с энергией теплового движения, чтобы он перешел из валентной зоны в зону проводимости. Этим объясняется особенность полупроводников - увеличение электропроводности при повышении температуры.

Электропроводность полупроводников. Собственная электропроводность. Для того чтобы вещество обладало электропроводностью, оно должно содержать свободные носители заряда. Такими носителями заряда в металлах являются электроны. В полупроводниках - электроны и дырки.

Рассмотрим электропроводность собственных полупроводников (i-тип), т. е. таких веществ, в которых не содержатся примеси и нет структурных дефектов кристаллической решетки (пустых узлов, сдвигов решетки и др.) При температуре 0 К в таком полупроводнике свободных носителей заряда нет. Однако с повышением температуры (или при другом энергетическом воздействии, например освещении) часть ковалентных связей может быть разорвана и валентные электроны, став свободными, могут уйти от своего атома (рис. 16.5). Потеря электрона превращает атом в положительный ион. В связях на том месте, где раньше был электрон, появляется свободное ("вакантное") место - дырка. Заряд дырки положительный и по абсолютному значению равен заряду электрона.

Свободное место - дырку - может заполнить валентный электрон соседнего атома, на месте которого в ковалентной связи образуется новая дырка, и т. д. Таким образом, одновременно с перемещением валентных электронов будут перемещаться и дырки. При этом следует иметь в виду, что в кристаллической решетке атомы "жестко" закреплены в узлах. Уход электрона из атома приводит к ионизации, а последующее перемещение дырки означает поочередную ионизацию "неподвижных" атомов. Если электрическое поле отсутствует, электроны проводимости совершают хаотическое тепловое движение. Если полупроводник поместить во внешнее электрическое поле, то электроны и дырки, продолжая участвовать в хаотическом тепловом движении, начнут перемещаться (дрейфовать) под действием поля, что и создаст электрический ток. При этом электроны перемещаются против направления электрического поля, а дырки, как положительные заряды,- по направлению поля. Электропроводность полупроводника, возникающая за счет нарушения ковалентных связей, называется собственной электропроводностью.

Электропроводность полупроводников может быть объяснена и с помощью зонной теории. В соответствии с ней все энергетические уровни валентной зоны при температуре 0 К заняты электронами. Если электронам сообщить извне энергию, превышающую энергию активации ΔWa, то часть валентных электронов перейдет в зону проводимости, где они станут свободными, или электронами проводимости. Вследствие ухода электронов из валентной зоны в ней образуются дырки, число которых, естественно, равно числу ушедших электронов. Дырки могут быть заняты электронами, энергия которых соответствует энергии уровней валентной зоны. Следовательно, в валентной зоне перемещение электронов вызывает перемещение в противоположном направлении дырок. Хотя в валентной зоне перемещаются электроны, обычно удобнее рассматривать движение дырок.

Процесс образования пары "электрон проводимости - дырка проводимости" называется генерацией пары носителей заряда (1 на рис. 16.6). Можно сказать, что собственная электропроводность полупроводника - это электропроводность, вызванная генерацией пар "электрон проводимости - дырка проводимости". Образовавшиеся электронно-дырочные пары могут исчезнуть, если дырка заполняется электроном: электрон станет несвободным и потеряет возможность перемещения, а избыточный положительный заряд иона атома окажется нейтрализованным. При этом одновременно исчезают и дырка, и электрон. Процесс воссоединения электрона и дырки называется рекомбинацией (2 на рис. 16.6). Рекомбинацию в соответствии с зонной теорией можно рассматривать как переход электронов из зоны проводимости на свободные места в валентную зону. Отметим, что переход электронов с более высокого энергетического уровня на более низкий сопровождается высвобождением энергии, которая либо излучается в виде квантов света (фотоны), либо передается кристаллической решетке в виде тепловых колебаний (фононы). Среднее время существования пары носителей заряда называется временем жизни носителей заряда. Среднее расстояние, которое проходит носитель заряда за время жизни, называется диффузионной длиной носителя заряда (Lр, - для дырок, Ln - для электронов).

При постоянной температуре (и в отсутствие других внешних воздействий) кристалл находится в состоянии равновесия: число генерированных пар носителей заряда равно числу рекомбинированных пар. Число носителей заряда в единице объема, т. е. их концентрация, определяет значение удельной электрической проводимости. Для собственного полупроводника концентрация электронов ni равна концентрации дырок pi (ni = pi).

Примесная электропроводность. Если в полупроводник внести примесь, он будет обладать помимо собственной электропроводности еще и примесной. Примесная электропроводность может быть электронной или дырочной. В качестве примера рассмотрим случай, когда в чистый германий (четырехвалентный элемент) вводится примесь пятивалентного элемента, например мышьяка (рис. 16.7, а). Атом мышьяка связывается в кристаллической решетке германия ковалентными связями. Но в связи могут участвовать только четыре валентных электрона мышьяка, а пятый электрон оказывается "лишним", менее сильно связанным с атомом мышьяка. Для того чтобы этот электрон оторвать от атома, нужно значительно меньше энергии, поэтому уже при комнатной температуре он может стать электроном проводимости, не оставляя при этом в ковалентной связи дырки. Таким образом, в узле кристаллической решетки появляется положительно заряженный ион примеси, а в кристалле - свободный электрон. Примеси, атомы которых отдают свободные электроны, называются донорными (донорами).

На рис. 16.7,б показана диаграмма энергетических зон полупроводника с донорной примесью. В запрещенной зоне вблизи дна зоны проводимости создается разрешенный энергетический уровень (примесный, донорный), на котором при температуре, близкой к 0 К, располагаются "лишние" электроны. Для перевода электрона с примесного уровня в зону проводимости требуется меньше энергии, чем для перевода электрона из валентной зоны. Расстояние от донорного уровня до дна зоны проводимости называется энергией ионизации (активации) доноров ΔWиd.

Внесение в полупроводник донорной примеси существенно увеличивает концентрацию свободных электронов, а концентрация дырок остается такой же, какой она была в собственном полупроводнике. В таком примесном полупроводнике электропроводность обусловлена в основном электронами, ее называют электронной, а полупроводники - полупроводниками n-типа. Электроны в полупроводниках n-типа являются основными носителями заряда (их концентрация высока), а дырки - неосновными.

Если в германий ввести примесь трехвалентного элемента (например, индия), то для образования восьмиэлектронной ковалентной связи с германием индию не хватит одного электрона. Одна связь останется незаполненной. При незначительном повышении температуры в незаполненную валентную связь может перейти электрон соседнего атома германия, оставив на своем месте дырку (рис. 16.8, а), которая может быть также заполнена электроном и т. д. Таким образом, дырка как бы перемещается в полупроводнике. Примесный атом превращается в отрицательный ион. Примеси, атомы которых способны при возбуждении принять валентные электроны соседних атомов, создав в них дырку, называют акцепторными или акцепторами.

На рис. 16.8,б показана диаграмма энергетических зон полупроводника с акцепторной примесью. В запрещенной зоне вблизи потолка валентной зоны создается примесный энергетический уровень (акцепторный). При температурах, близких к 0 К, этот уровень свободен, при повышении температуры он может быть занят электроном валентной зоны, в которой после ухода электрона образуется дырка. Расстояние от потолка валентной зоны до акцепторного уровня называется энергией ионизации (активации) акцепторов ΔWиa. Внесение в полупроводник акцепторной примеси существенно увеличивает концентрацию дырок, а концентрация электронов остается такой же, какой она была в собственном полупроводнике. В этом примесном полупроводнике электропроводность обусловлена в основном дырками, ее называют дырочной, а полупроводники - полупроводниками р-типа. Дырки для полупроводника р-типа - основные носители заряда, а электроны - неосновные.

В примесных полупроводниках наряду с примесной электропроводностью существует и собственная, обусловленная наличием неосновных носителей. Концентрация неосновных носителей в примесном полупроводнике уменьшается во столько раз, во сколько увеличивается концентрация основных носителей, поэтому для полупроводников n-типа справедливо соотношение nnpn = nipi = ni2 = pi2 , а для полупроводников р-типа - соотношение ppnp = ni2 = pi2 , где nn и pn - концентрация основных, a pp и np - концентрация неосновных носителей заряда соответственно в полупроводнике n и р-типа.

Удельная электрическая проводимость примесного полупроводника определяется концентрацией основных носителей и тем выше, чем больше их концентрация. На практике часто встречается случай, когда полупроводник содержит и донорные, и акцепторные примеси. Тогда тип электропроводности будет определяться примесью, концентрация которой выше. Полупроводник, у которого концентрации доноров Nd и акцепторов Na равны (Nd = Na)), называют скомпенсированным.

Мы рассказывали о проводниках и диэлектриках и вскользь упомянули о том, что есть промежуточная форма проводимости, которая при определенных условиях может принимать свойства проводника или диэлектрика. Этот тип веществ называют полупроводниками.

Напомню: по электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками тока.
Наиболее часто для производства полупроводников используют германий, кремний, реже — селен, закись меди и другие вещества.

Электропроводность полупроводников сильно зависит от окружающей температуры. При температуре, близкой к абсолютному нулю (- 273С), они ведут себя по отношению к электрическому току как изоляторы. Большинство же проводников, наоборот, при такой температуре становятся сверхпроводящими, т. е. почти не оказывают току никакого сопротивления. С повышением температуры проводников их сопротивление электрическому току увеличивается, а сопротивление полупроводников уменьшается. Электропроводность проводников не изменяется при действии на них света. Электропроводность же полупроводников под действием света, так называемая фотопроводность, повышается.

Полупроводники могут преобразовывать энергию света в электрический ток. Проводникам же это совершенно не свойственно. Электропроводность полупроводников резко увеличивается при введении в них атомов некоторых других элементов. Электропроводность же проводников при введении в них примесей понижается.

Германий и кремний, являющиеся исходными материалами многих современных полупроводниковых приборов, имеют во внешних слоях своих оболочек по четыре валентных электрона. Всего же в атоме германия 32 электрона, а в атоме кремния 14. Но 28 электронов германия и 10 электронов кремния, находящиеся во внутренних слоях их оболочек, прочно удерживаются ядрами и ни при каких обстоятельствах не отрываются от них. Только четыре валентных электрона атомов этих полупроводников могут, да и то не всегда, стать свободными. Атом же полупроводника, потерявший хотя бы один электрон, становится положительным ионом. В полупроводнике атомы расположены в строгом порядке: каждый из них окружен четырьмя такими же атомами. Они к тому же расположены настолько близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг всех соседних атомов, связывая их в единое вещество.
Такую взаимосвязь атомов в кристалле полупроводника можно представить себе в виде плоской схемы, как показано на рис. 1, а. Здесь большие шарики со знаком « + » условно изображают ядра атомов с внутренними слоями электронной оболочки (положительные ионы), а маленькие шарики — валентные электроны . Каждый атом, окружен четырьмя точно такими же. Любой из них связан с каждым соседним двумя валентными электронами, один из которых «свой», а второй заимствован у «соседа». Это двухэлектронная, или валентная, связь. Самая прочная связь! В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих и по одному от четырех соседних атомов. Здесь уже невозможно различить, какой из валентных электронов «свой», а какой «чужой», поскольку они стали общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. Схему взаимосвязи атомов в полупроводнике можно для наглядности упростить, изобразив ее так, как это сделано на рис. 1, 6. Здесь ядра атомов с внутренними электронными оболочками показаны в виде кружков со знаком плюс, а межатомные связи — двумя линиями, символизирующими валентные электроны.

Электропроводность полупроводников

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 1, б — черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б — разорвавшаяся линия). Чем выше температура, тем больше появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному электрона.

Рис 1. Схема взаимосвязи атомов в кристале полупроводника (а) и упрощенная схема его структуры (б).

А теперь рассмотри рис. 2. На нем схематично изображено явление возникновения тока в полупроводнике. Причиной возникновения тока служит напряжение, приложенное к полюсам (на рис. 2 источник напряжения символизируют знаки « + » и « — ») . Вследствие тепловых явлений во всей массе полупроводника высвобождается из межатомных связей некоторое количество электронов (на рис. 2 они обозначены точками со стрелками). Электроны, освобождавшиеся вблизи положительного полюса источника напряжения, притягиваются этим полюсом и уходят из массы полупроводника, оставляя после себя дырки. Электроны, ушедшие из межатомных связей на некотором удалении от положительного полюса, тоже притягиваются им и движутся в его сторону. Но, встретив на своем пути дырки, электроны как бы «впрыгивают» в них (рис. 2, а), происходит заполнение межатомных связей. А ближние к отрицательному полюсу дырки заполняются другими электронами, вырвавшимися из атомов, расположенных еще ближе к отрицательному полюсу (рис. 2, б). Пока в полупроводнике действует электрическое поле, этот процесс продолжается: нарушаются одни межатомные связи — из них уходят валентные электроны, возникают дырки — и заполняются другие межатомные связи — в дырки «впрыгивают» электроны, освободившиеся из каких — то других межатомных связей (рис. 2, б-в).

Рис 2. Схема движения электронов и дырок.

При температуре выше абсолютного нуля в полупроводнике непрерывно возникают и исчезают свободные электроны и дырки даже тогда, когда нет внешних электрических полей. Но электроны и дырки движутся хаотически в разные стороны и не уходят за пределы полупроводника. В чистом полупроводнике число высвободившихся в каждый момент времени электронов равно числу образующихся при этом дырок . Общее же их число при комнатной температуре относительно невелико. Поэтому электропроводность такого полупроводника, (называемая собственной) , мала, он оказывает электрическому току довольно большое сопротивление. Но если в чистый полупроводник добавить даже ничтожное количество примеси в виде атомов других элементов, электропроводность его резко повысится. При этом в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость

Если какой-либо атом в кристалле полупроводника заменить атомом сурьмы, имеющим во внешнем слое электронной оболочки пять валентных электронов, этот атом — «пришелец» четырьмя электронами свяжется с четырьмя соседними атомами полупроводника. Пятый же валентный электрон атома сурьмы окажется «лишним» и станет свободным. Чем больше в полупроводник будет введено атомов сурьмы, тем больше в его массе окажется свободных электронов. Следовательно, полупроводник с примесью сурьмы приближается по своим свойствам к металлу: для того чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи. Их называют полупроводниками с электропроводностью или типа (n). Здесь латинская буква n — начальная буква латинского слова negativ (негатив), что значит «отрицательный» . Этот термин в данном случае нужно понимать в том смысле, что в полупроводнике типа n основными носителями тока являются отрицательные заряды, т.е. электроны.

Дырочная проводимость

Совсем иная картина получится, если в полупроводник ввести атомы с тремя валентными электронами, например индия. Каждый атом металла индия своими тремя электронами заполнит связи только с тремя соседними атомами полупроводника, а для заполнения связи с четвертым у него не хватает одного электрона. Образуется дырка. Она, конечно, может заполниться каким — либо электроном, вырвавшимся из валентной связи с другими атомами полупроводника. Однако независимо от того, где будут дырки, в массе полупроводника с примесью индия не будет хватать электронов для их заполнения. И чем больше будет введено в полупроводник примесных атомов индия, тем больше в нем образуется дырок. Чтобы в таком полупроводнике электроны могли перемещаться, совершенно обязательно должны разрушаться валентные связи между атомами. Вырвавшиеся из них электроны или же электроны, поступившие в полупроводник извне, движутся от дырки к дырке. А во всей массе полупроводника в любой момент времени число дырок будет больше общего числа свободных электронов. Их называют полупроводниками с дырочной электропроводностью или тип (р). Латинская буква р — первая буква латинского слова positiv (позитив), что значит «положительный». Этот термин в данном случае нужно понимать в том смысле, что явление электрического тока в массе полупроводника типа (р) сопровождается непрерывным возникновением и исчезновением положительных зарядов — дырок. Перемещаясь в массе полупроводника, дырки как бы являются носителями тока. Полупроводники типа р, так же как и типа n, обладают во много раз лучшей электропроводностью по сравнению с чистыми.
Надо сказать, что практически не существует как совершенно чистых полупроводников, так и абсолютно электропроводимых типов n и р. В полупроводнике с примесью индия обязательно есть небольшое количество атомов некоторых других элементов, придающих ему электронную проводимость, а с примесью сурьмы есть атомы элементов, создающих в нем дырочную электропроводность. Например, в полупроводнике, имеющем в целом электропроводность типа n, есть дырки, которые могут заполняться свободными электронами примесных атомов сурьмы. Вследствие этого электропроводность несколько ухудшится, но в целом он сохранит электронную проводимость. Аналогичное явление будет наблюдаться и в том случае, если в полупроводник с дырочным характером попадут свободные электроны.

Поэтому в полупроводниках типа n — основными носителями тока являются электроны (преобладает электронная электропроводность), а к полупроводниках типа р — основными носителями тока являются дырки (преобладает дырочная электропроводность).

Наряду с проводниками электричества в природе существует много веществ, обладающих значительно меньшей электропроводимостью, чем металлические проводники. Вещества подобного рода называются полупроводниками.

К полупроводникам относятся: некоторые химические элементы, например селен, кремний и германий, сернистые соединения, например сернистый таллий, сернистый кадмий, сернистое серебро, карбиды, например карборунд, углерод (алмаз), бор, серое олово, фосфор, сурьму, мышьяк, теллур, йод и ряд соединений, в состав которых входит хотя бы один из элементов 4 - 7-й групп системы Менделеева. Существуют также органические полупроводники.

Природа электрической проводимости полупроводника зависит от рода примесей, имеющихся в основном материале полупроводника, и от технологии изготовления его составных частей.

Полупроводник - вещество с 10 -10 - 10 4 (ом х см) -1 , находящееся по этим свойствам между проводником и изолятором. Различие между проводниками, полупроводниками и изоляторами по зонной теории заключается в следующем: в чистых полупроводниках и электронных изоляторах между заполненной зоной (валентной) и зоной проводимости находится запрещенная зона энергий.


Почему полупроводники проводят ток

Полупроводник обладает электронной проводимостью, если в атомах его примеси внешние электроны относительно слабо связаны с ядрами этих атомов. Если в подобного рода полупроводнике создать электрическое поле, то под влиянием сил этого поля внешние электроны атомов примеси полупроводника покинут пределы своих атомов и превратятся в свободные электроны.

Свободные электроны создадут в полупроводнике электрический ток проводимости под влиянием сил электрического поля. Следовательно, природа электрического тока в полупрооводниках с электронной проводимостью та что и в металлических проводниках. Но так как свободных электронов в единице объема полупроводника во много раз меньше, чем в единице объема металлического проводника, то естественно, что при всех прочих одинаковых условиях ток в полупроводнике будет во много раз меньше, чем в металлическом проводнике.

Полупроводник обладает «дырочной» проводимостью, если атомы его примеси не только не отдают своих внешних электронов, но, наоборот, стремятся захватить электроны атомов основного вещества полупроводника. Если атом примеси отберет электрон у атома основного вещества, то в последнем образуется нечто вроде свободного места для электрона - «дырка».

Атом полупроводника, потерявший электрон, называют «электронной дыркой», или просто «дыркой». Если «дырка» заполняется электроном, перешедшим с соседнего атома, то она ликвидируется и атом становится нейтральным в электрическом отношении, а «дырка» смещается на соседний атом, потерявший электрон. Следовательно, если на полупроводник, обладающий «дырочной» проводимостью, воздействовать электрическим полем, то «электронные дырки» будут смещаться в направлении этого поля.

Смещение «электронных дырок» в направлении действия электрического поля аналогично перемещению положительных электрических зарядов в поле и, следовательно, представляет собой явление электрического тока в полупроводнике.

Полупроводники нельзя строго разграничивать по механизму их электрической проводимости, так как наряду с «дырочной» проводимостью данный полупроводник может в той или иной степени обладать и электронной проводимостью.

Полупроводники характеризуются:

    типом проводимости (электронный - n -тип, дырочный - р-тип);

    удельным сопротивлением;

    временем жизни носителей заряда (неосновных) или диффузионной длиной, скоростью поверхностной рекомбинации;

    плотностью дислокаций.

Кремний - наиболее распространенный полупроводниковый материал

Температура оказывает существ, влияние на характеристики полупроводников. Повышение ее преимущественно приводит к уменьшению удельного сопротивления и наоборот, т. е. для полупроводников характерно наличие отрицательного . Вблизи абсолютного нуля полупроводник становится изолятором.

Основой многих приборов служат полупроводники. В большинстве случаев они должны быть получены в виде монокристаллов. Для придания заданных свойств полупроводники легируют различными примесями. К чистоте исходных полупроводниковых материалов предъявляются повышенные требования.


В современной технике полупроводники нашли самое широкое применение, они оказали очень сильное влияние на технический прогресс. Благодаря им удается значительно уменьшить вес и габариты электронных устройств. Развитие всех направлений электроники приводит к созданию и совершенствованию большого количества разнообразной аппаратуры на полупроводниковых приборах. Полупроводниковые приборы служат основой микроэлементов, микромодулей, твердых схем и т. д.

Электронные устройства на полупроводниковых приборах практически безинерционны. Тщательно выполненный и хорошо герметизированный полупроводниковый прибор может служить десятки тыс. часов. Однако некоторые полупроводниковые материалы имеют малый температурный предел (например, германий), но не очень сложная температурная компенсация или замена основного материала прибора другим (напр., кремнием, карбидом кремния) в значительной, степени устраняет и этот недостаток. Совершенствование технологии изготовления полупроводниковых приборов приводит к уменьшению имеющихся еще разброса и нестабильности параметров.

Контакт полупроводник - металл и электронно-дырочный переход (n -р-переход), созданный в полупроводниках, используются при изготовлении полупроводниковых диодов. Двойные переходы (р-n -р или n -р-n ) - транзисторов и тиристоров. Эти приборы в основном применяются для выпрямления, генерации и усиления электрических сигналов.

На основе фотоэлектрических свойств полупроводников создают фотосопротивления, фотодиоды и фототранзисторы. Полупроводник служит активной частью генераторов (усилителей) колебаний . При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов, что используется при создании светодиодов.



Термоэлектрические свойства полупроводников позволили создать термосопротивления полупроводниковые, термоэлементы полупроводниковые, термобатареи и термоэлектрические генераторы, а термоэлектрическое охлаждение полупроводников, на основе эффекта Пельтье, - термоэлектрические холодильники и термостабилизаторы.

Полупроводники используются в безмашинных преобразователях тепловой и солнечной энергии в электрическую - термоэлектрических генераторах, и фотоэлектрических преобразователях (солнечных батареях).

Механическое напряжение, приложенное к полупроводнику, изменяет его электрическое сопротивление (эффект сильнее, чем в металлах), что явилось основой тензометра полупроводникового.

Полупроводниковые приборы получили широкое распространение в мировой практике, революционно преобразуя электронику, они служат основой при разработке и производстве:

    измерительной техники, компьютеров,

    аппаратуры для всех видов связи и транспорта,

    для автоматизации процессов в промышленности,

    устройств для научных исследований,

    ракетной техники,

    медицинской аппаратуры

    других электронных устройств и приборов.

Применение полупроводниковых приборов позволяет создавать новую аппаратуру и совершенствовать старую, приводит к значит, уменьшению ее габаритов, веса, потребляемых мощностей, а значит, уменьшению выделения тепла в схеме, к увеличению прочности, к немедленной готовности к действию, позволяет увеличить срок службы и надежность электронных устройств.