Что происходит во время профазы. Деление клетки. Митоз. Изменения, которые происходят в анафазе

Каждый день в нашем теле происходят незаметные для человеческого глаза и сознания изменения: клетки организма обмениваются друг с другом веществами, синтезируют белки и жиры, разрушаются, взамен них создаются новые.

Если человек случайно порежет руку за готовкой, спустя несколько дней рана затянется, и на ее месте останется лишь белесый шрам; каждые несколько недель наша кожа полностью сменяется; в конце концов, любой из нас когда-то был одной крошечной клеткой и образован многократными её делениями.

В основе всех этих важнейших процессов, без которых невозможна была бы сама жизнь, лежит митоз. Ему можно дать краткое определение: митоз (также его называют кариокинезом) – это непрямое деление клетки, с помощью которого образуются две клетки, совпадающие с исходной по генетическому набору.

Биологическое значение и роль митоза

Для митоза типично копирование информации, содержащейся в ядре в виде молекул ДНК, причем в генетический код не вносится никаких изменений, в отличие от мейоза, поэтому из материнской клетки образуются две дочерние, абсолютно идентичные ей, обладающие такими же свойствами.

Таким образом, биологический смысл митоза содержится в поддержании генетической неизменности и постоянства свойств клеток.

Клетки, прошедшие через митотическое деление, имеют в себе генетическую информацию о строении всего организма, поэтому его развитие вполне возможно из одной-единственной клетки. Это является основой вегетативного размножения растений: если взять клубень картофеля или лист, сорванный с фиалки, и поместить в подходящие условия, удастся вырастить целое растение.

В сельском хозяйстве важно сохранять постоянную урожайность, плодовитость, устойчивость к вредителям и условиям среды, потому понятно, почему по возможности используется именно вегетативный способ размножения растений.

Также с помощью митоза происходит процесс регенерации – замены клеток и тканей. При повреждении или утрате части тела клетки начинают активно делиться, заменяя собой утраченные.

Особо впечатляет регенерация у гидры – небольшого кишечнополостного животного, обитающего в пресной воде.

Длина гидры – несколько сантиметров, на одном конце тела у неё располагается подошва, с помощью которой она прикрепляется к субстрату, а на другом — щупальца, служащие для захватывания пищи.

Если разрезать тело на несколько частей, каждая из них будет способна восстановить недостающую, причем с сохранением пропорций и формы.

К сожалению, чем сложнее устроен организм, тем слабее у него выражена регенерация, потому более развитые животные, в том числе и люди, могут о подобном и не мечтать.

Стадии и схема митоза

Всю жизнь клетки можно уложить в шесть фаз в следующей последовательности:

Нажмите для увеличения

Причем сам процесс деления состоит из последних пяти.

Кратко митоз можно описать так: клетка создает и копит вещества, происходит удвоение ДНК в ядре, хромосомы выходят в цитоплазму, чему предшествует их спирализация, размещаются на экваторе клетки и растаскиваются в виде дочерних хромосом к полюсам с помощью нитей веретена деления.

После все органоиды материнской клетки делятся примерно пополам, образуются две дочерних. Их генетический набор остается прежним:

  • 2n, если исходная была диплоидной;
  • n, если исходная была гаплоидной.

Стоит отметить: в человеческом организме все клетки, исключая половые, содержат удвоенный набор хромосом (они называются соматическими), потому митоз происходит только в диплоидной форме.

Гаплоидный митоз присущ растительным клеткам, в частности, гаметофитам, например, ростку папоротника в виде сердцевидной пластинки, листостебельному растению у мхов.

Общую схему митоза можно изобразить следующим образом:

Интерфаза

Самому митозу предшествует длительная подготовка (интерфаза), и именно поэтому такое деление называется непрямым.

В эту фазу происходит собственно жизнь клетки. Она синтезирует белки, жиры и АТФ, копит их, растёт, увеличивает количество органоидов для последующего деления.

Стоит отметить: в интерфазе клетки находятся около 90% времени своей жизни.

Она состоит из трех этапов в следующей очередности: пресинтетический (или G1), синтетический (S) и постсинтетический (G2).

В пресинтетический период происходит основной рост клетки и накопление энергии в АТФ для будущего деления, хромосомный набор составляет 2n2c (где n – количество хромосом, а c – число молекул ДНК). Важнейшее событие синтетического периода – удвоение (или репликация, или редупликация) ДНК.

Это происходит следующим образом: связи между соответственными друг другу азотистыми основаниями (аденин – тимин и гуанин – цитозин) разрываются с помощью специального фермента, а затем каждая из одинарных цепей достраивается до двойной по правилу комплементарности. Этот процесс изображен на следующей схеме:

Таким образом хромосомный набор становится 2n4c, то есть появляются пары двухроматидных хромосом.

В постсинтетический период интерфазы происходит окончательная подготовка к митотическому делению: количество органоидов увеличивается, также удваиваются центриоли.

Профаза

Главный процесс, с которого начинается профаза – это спирализация (или скручивание) хромосом. Они становятся более компактными, уплотняются, и в конце концов их возможно разглядеть в самый обычный микроскоп.

Затем образуется веретено деления, состоящее из двух центриолей с микротрубочками, расположенными на разных полюсах клетки. Генетический набор, несмотря на изменение формы материала, остаётся прежним – 2n4c.

Прометафаза

Прометафаза является продолжением профазы. Её главное событие – это разрушение оболочки ядра, в результате которого хромосомы выходят в цитоплазму, располагаются в зоне бывшего ядра. Затем они размещаются в линию в экваториальной плоскости веретена деления, на чем прометафаза завершается. Набор хромосом не изменяется.

Метафаза

В метафазу хромосомы спирализуются окончательно, потому обычно их изучение и подсчет ведется именно в эту фазу.

Затем к хромосомам, расположенным на экваторе клетки, с её полюсов «тянутся» микротрубочки и присоединяются к ним, готовые растащить в разные стороны.

Анафаза

После прикрепления к хромосоме концов микротрубочек с разных сторон, происходит их одновременное расхождение. Каждая хромосома «разрывается» на две хроматиды, и с этого момента они называются дочерними хромосомами.

Нити веретена укорачиваются и тянут дочерние хромосомы к полюсам клетки, при этом хромосомный набор составляет в сумме 4n4c, а у каждого полюса – 2n2c.

Телофаза

Телофаза завершает митотическое деление клетки. Происходит деспирализация – раскручивание хромосом, приведение их в вид, в котором с них возможно считывать информацию. Ядерные оболочки заново образуются, а веретено деления разрушается за ненадобностью.

Завершается телофаза разделением цитоплазмы и органоидов, отделением дочерних клеток друг от друга, формированием у каждой из них клеточных оболочек. Теперь эти клетки вполне самостоятельны, и каждая из них вступает заново в первую фазу жизни – интерфазу.

Заключение

Этой теме в биологии уделяется большое внимание, на уроках в школе ученики должны понять, что с помощью митоза все эукариотические организмы размножаются, растут, восстанавливаются после повреждений, без него не обходится ни одно обновление клеток или регенерация.

Что немаловажно, митоз обеспечивает постоянство генов в ряду поколений, а значит и неизменность свойств, лежащую в основе наследственности.

С идентичным генетическим материалом.

Интерфаза

Прежде чем делящаяся клетка попадает в митоз, она подвергается периоду роста, называемому интерфазой. Около 90% времени клетки при нормальном могут быть потрачены на интерфазу, которая осуществляется в три основные фазы:

  • Фаза G1 : период до синтеза ДНК. В этой фазе клетка увеличивается в массе, подготавливаясь к делению.
  • S-фаза: период, в течение которого происходит синтез ДНК. В большинстве клеток эта стадия происходит за очень короткий промежуток времени.
  • Фаза G2: клетка продолжает синтез дополнительных белков увеличиваться в размерах.

В последней части интерфазы, клетка все еще имеет нуклеолы. Ядро ограничено ядерной оболочкой, а дублируются, но находятся в форме хроматина. В две пары центриолей, образованных из репликации одной пары, расположены за пределами ядра.

После фазы G2 наступает митоз, который в свою очередь состоит из нескольких стадий и завершается цитокинезом (делением клетки).

Фазы митоза:

Препрофаза (в клетках растений)

Препрофаза является дополнительной фазой во время митоза в , которая не встречается у других эукариот, таких как животные или грибы. Она предшествует профазе и характеризуется двумя различными событиями.

Изменения, которые происходят в препрофазе:

  • Образование полосы препрофазы - плотного микротрубочного кольца под .
  • Начало зарождения микротрубочек в ядерной оболочке.

Профаза

В профазе конденсируется в дискретные хромосомы. Ядерная оболочка ломается, а веретено деления образуются на противоположных полюсах клетки. Профаза (по сравнению с интерфазой) является первым истинным шагом митотического процесса.

Изменения, которые происходят в профазе:

  • Хроматиновые волокна превращаются в хромосомы, имеющие по две , соединенные в центромер. Волокна деления, состоящие из микротрубочек и белков, образуется в .
  • В клетках животных волокна деления первоначально появляется как структуры, называемые астерами, которые окружают каждую пару центриолей.
  • Две пары центриолей (сформированных из репликации одной пары в интерфазе) отходят друг от друга к противоположным полюсам клетки из-за удлинения микротрубочек, образующихся между ними.

Прометафаза

Прометафаза - фаза митоза после профазы и предшествующая метафазе в эукариотических соматических клетках. Некоторые источники относят процессы протекающие в прометафазе к поздней профазе и начальной стадии метафазы.

Изменения, которые происходят в прометафазе:

  • Ядерная оболочка распадается.
  • Полярные волокна, которые представляют собой микротрубочки, составляющие волокна веретена, перемещаются от каждого полюса до экватора клетки.
  • Кинетохоры, которые являются специализированными областями в центромерах хромосом, прикрепляются к типу микротрубочек, называемых кинетохорными нитями.
  • Нити кинетохора «взаимодействуют» с веретеном деления.
  • Хромосомы начинают мигрировать к центру клетки.

Метафаза

В метафазе полностью развиваются волокна деления, а хромосомы выравниваются на метафазной (экваториальной) пластине (плоскость, которая одинаково удалена от двух полюсов).

Изменения, которые происходят в метафазе:

  • Ядерная мембрана полностью исчезает.
  • В клетках животных две пары расходятся в противоположных направлениях к полюсам клетки.
  • Полярные волокна (микротрубочки, составляющие волокна веретена) продолжают распространяться от полюсов к центру. Хромосомы перемещаются случайным образом, пока не присоединяют (при помощи своих кинетохор) к полярным волокнам с обеих сторон центромеров.
  • Хромосомы выравниваются на метафазной пластине под прямым углом к ​​полюсам веретена.
  • Хромосомы удерживаются на метафазной пластине равными силами полярных волокон, которые нажимают на их центромеры.

Анафаза

В анафазе парные хромосомы () отделяются и начинают двигаться к противоположным концам (полюсам) клетки. Волокна веретена, не связанные с хроматидами, вытягиваются и удлиняют клетку. В конце анафазы каждый полюс содержит полную компиляцию хромосом.

Изменения, которые происходят в анафазе:

  • Парные в каждой отдельной хромосоме начинают раздвигаться.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается «полной» хромосомой. Они называются дочерними хромосомами.
  • При помощи веретена деления, перемещаются к полюсам на противоположные концы клетки.
  • Дочерние хромосомы сначала мигрируют в центромер, а кинетохорные нити становятся короче, чем хромосомы вблизи полюсов.
  • При подготовке к телофазе два полюса клетки также отдаляются друг от друга во время анафазы. В конце анафазы каждый полюс содержит полную компиляцию хромосом.
  • Начинается процесс цитокинеза (разделение цитоплазмы исходной клетки), который завершается после телофазы.

Телофаза

В телофазе хромосомы достигают ядер новых дочерних клеток.

Изменения, которые происходят в телофазе:

  • Полярные волокна продолжают удлиняться.
  • Ядра начинают формироваться на противоположных полюсах.
  • Ядерные оболочки новых ядер образовываются из остатков ядерной оболочки материнской клетки и кусочков эндомембранной системы.
  • Появляются ядрышка.
  • Разматываются хроматиновые волокна хромосом.
  • После этих изменений телофаза и митоз в основном завершены, а генетическое содержание одной клетки поделено на две части.

Цитокинез

Цитокинез - это разделение цитоплазмы клетки. Он начинается до конца митоза в анафазе и заканчивается вскоре после телофазы. В конце цитокинеза образуются две генетически идентичные дочерние клетки.

Дочерние клетки

В конце митоза и цитокинеза хромосомы распределены поровну между двумя дочерними клетками. Эти клетки являются идентичными , причем каждая из которых содержит полный набор хромосом.

Клетки, продуцируемые через митоз, отличаются от клеток, продуцируемых через . В мейозе образуются четыре дочерние клетки. Эти клетки представляют собой , содержащие половину числа хромосом от исходной клетки. подвергаются мейозу. При делении половых клеток во время оплодотворения, гаплоидные клетки становятся диплоидной клеткой.

Хромосомы – структуры клетки, хранящие и передающие наследственную информацию = ДНК(7) + белок (6).

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид (3) , удерживаемых центромерой (кинетохором ) в области первичной перетяжки (1) , которая делит хромосому на 2 плеча (2) . Иногда бывает вторичная перетяжка (4), в результате которой образуется спутник хромосомы (5).

Отдельные участки молекулы ДНК - гены - ответственны за каждый конкретный признак или свойство организма. Наследственная информация из клетки в клетку передается путем удвоения молекулы ДНК (репликации), транскрипции и трансляции. Главная функция хромосом - хранение и передача наследственной информации, носителем которой является молекула ДНК.

Под микроскопом видно, что хромосомы имеют поперечные полосы , которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение, светлых и темных полос (чередование АТ и ГЦ – пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Во всех соматических клетках любого растительного или животного организма число хромосом одинаково. Половые клетки (гаметы) всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организмов.

В кариотипе человека 46 хромосом – 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (половые хромосомы ХУ), а женщины гомогаметны (половые хромосомы XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Хромосомы одной пары называются гомологичными , они в одинаковых локусах (местах расположения) несут аллельные гены.

У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково. Число хромосом не является видоспецифическим признаком. Однако хромосомный набор в целом видоспецифичен, т. е. свойствен только одному какому-то виду организмов растений или животных.

Кариотип - совокупность внешних количественных и качественных признаков хромосомного набора (число, форма, размер хромосом) соматической клетки, характерных для данного вида

Деление клеток - биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов, процесс увеличения числа клеток путем деления исходной клетки.

Способы деления клеток :

1. амитоз - прямое (простое) деление интерфазного ядра путем перетяжки, которое происходит вне митотического цикла, т. е. не сопровождается сложной перестройкой всей клетки, а также спирализацией хромосом. Амитоз может сопровождаться делением клетки, а может ограничиваться лишь делением ядра без разделения цитоплазмы, что приводит к образованию дву- и многоядерных клеток. Клетка, претерпевшая амитоз, в дальнейшем не способна вступить в нормальный митотический цикл. По сравнению с митозом амитоз встречается довольно редко. В норме он наблюдается в высокоспециализированных тканях, клетках, которым предстоит делиться: в эпителии и печени позвоночных, зародышевых оболочках млекопитающих, клетках эндосперма семян растений. Амитоз наблюдается также при необходимости быстрого восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.

2 . митоз - непрямое деление, при котором исходно диплоидная клетка дает две дочерние, также диплоидные клетки; характерен для соматических клеток (клеток тела) всех эукариот (растений и животных); универсальный тип деления.

3. мейоз - осуществляется при образовании половых клеток у животных и спор у растений.

Жизненный цикл клетки (клеточный цикл) – время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.

В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:

часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);

редко делящиеся клетки (клетки печени – гепатоциты);

неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).

Жизненный цикл у часто делящихся клеток – это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом . Такой клеточный цикл подразделяется на два основных периода :

митоз или период деления;

интерфаза – промежуток жизни клетки между двумя делениями.

Интерфаза – период между двумя делениями, когда клетка готовится к делению: удваивается количество ДНК в хромосомах, количество других органоидов, синтезируются белки, происходит рост клетки.

К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами.

Периоды интерфазы:

1. Пресинтетический период (G 1) - период подготовки к синтезу ДНК после завершения митоза. Происходит образование РНК, белков, ферментов синтеза ДНК, увеличивается количество органоидов. Содержание хромосом (п) и ДНК (с) равно 2п2с.

2. Синтетический период (S-фаза) . Происходит репликация (удвоение, синтез ДНК). В результате работы ДНК-полимераз для каждой из хромосом хромосомный набор становится 2п4с. Так образуются двухроматидные хромосомы.

3. Постсинтетический период (G 2) - время от окончания синтеза ДНК до начала митоза. Завершается подготовка клетки к митозу, удваиваются центриоли, синтезируются белки, завершается рост клетки.

Митоз

это форма деления клеточного ядра, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имела родительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное.

Открыт с помощью светового микроскопа в 1874 г. русским ученым И. Д. Чистяковым в растительных клетках.

В 1878 г. В. Флеммингом и русским ученым П. П. Перемежко этот про­цесс обнаружен в животных клетках. У животных клеток митоз длится 30-60 мин, у растительных - 2-3 ч.

Митоз состоит из четырех фаз :

1. профаза - двухроматидные хромосомы спирализуются и становятся заметными, ядрышко и ядерная оболочка распадаются, образуются нити веретена деле­ния. Клеточный центр делится на две центриоли, расходящиеся к полюсам.

2 . метафаза - фаза скопления хромосом на экваторе клетки: нити веретена деления идут от полюсов и присоединяются к центромерам хромосом: к каждой хромосоме подходят две нити, идущие от двух полюсов.

3 . анафаза - фаза расхождения хромосом, в которой центромеры делятся, а однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки; самая короткая фаза митоза.

4 . т елофаза - окончание деления, движение хромосом заканчивается, и происходит их деспирализация (раскручивание в тонкие нити), формируется ядрышко, восстанавливается ядерная оболочка, на экваторе закладывается перегородка (у растительных кле­ток) или перетяжка (у животных клеток), нити веретена деле­ния растворяются.

Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.

В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра.

В опухолевых клетках ход митоза нарушается.

В результате митоза из одной диплоидной клетки, имеющей двухроматидные хромосомы и удвоенное ко­личество ДНК (2n4с), образуются две дочерние диплоидные клетки с однохроматидными хромосомами и одинарным коли­чеством ДНК (2n2с), которые затем вступают интерфазу. Так образуются соматические клетки (клетки тела) организма расте­ния, животного или человека.

Фаза митоза, набор хромосом

(n-хромосомы,

с - ДНК)

Рисунок

Профаза

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом.

Метафаза

Выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счёт борозды деления, в растительных клетках – за счёт клеточной пластинки.

Тематические задания

А1. Хромосомы состоят из

1) ДНК и белка

2) РНК и белка

3) ДНК и РНК

4) ДНК и АТФ

А2. Сколько хромосом содержит клетка печени человека?

А3. Сколько нитей ДНК имеет удвоенная хромосома

А4. Если в зиготе человека содержится 46 хромосом, то сколько хромосом содержится в яйцеклетке человека?

А5. В чем заключается биологический смысл удвоения хромосом в интерфазе митоза?

1) В процессе удвоения изменяется наследственная информация

2) Удвоенные хромосомы лучше видны

3) В результате удвоения хромосом наследственная информация новых клеток сохраняется неизменной

4) В результате удвоения хромосом новые клетки содержат вдвое больше информации

А6. В какой из фаз митоза происходит расхождение хроматид к полюсам клетки? В:

1) профазе

2) метафазе

3) анафазе

4) телофазе

А7. Укажите процессы, происходящие в интерфазе

1) расхождение хромосом к полюсам клетки

2) синтез белков, репликация ДНК, рост клетки

3) формирование новых ядер, органоидов клетки

4) деспирализация хромосом, формирование веретена деления

А8. В результате митоза возникает

1) генетическое разнообразие видов

2) образование гамет

3) перекрест хромосом

4) прорастание спор мха

А9. Сколько хроматид имеет каждая хромосома до ее удвоения?

А10. В результате митоза образуются

1) зигота у сфагнума

2) сперматозоиды у мухи

3) почки у дуба

4) яйцеклетки у подсолнечника

В1. Выберите процессы, происходящие в интерфазе митоза

1) синтез белков

2) уменьшение количества ДНК

3) рост клетки

4) удвоение хромосом

5) расхождение хромосом

6) деление ядра

В2. Укажите процессы, в основе которых лежит митоз

1) мутации

3) дробление зиготы

4) образование спермиев

5) регенерация тканей

6) оплодотворение

ВЗ. Установите правильную последовательность фаз жизненного цикла клетки

А) анафаза

Б) интерфаза

В) телофаза

Г) профаза

Д) метафаза

Е) цитокинез

Мейоз

это процесс деления клеточных ядер, приводящий к уменьшению числа хромосом вдвое и образованию гамет, при этом происходит обмен гомологичными участками парных (гомологичных) хромосом, а, следовательно, и ДНК, прежде чем они разойдутся в дочерние клетки.

В результате мейоза из одной диплоидной клетки (2n) образуется четыре гаплоидные клетки (n).

Открыт в 1882 г. В. Флеммингом у животных, в 1888 г. Э. Страсбургером у растений.

Мейозу предше­ствует интерфаза , поэтому вступают в мейоз хромосомы двухроматидные (2n4с).

Мейоз проходит в два этапа :

1. редукционное деление - наиболее сложный и важный процесс. Он подразделяется на фазы:

А) профаза I : парные хромосомы диплоидной клетки подходят друг к другу, перекрещиваются, образуя мостики (хиазмы), затем обменива­ются участками (кроссинговер), при этом осуществляется пере­комбинация генов, после чего хромосомы расходятся

Б) в метафазе I эти парные хромосомы располагаются по экватору клетки, к каждой из них присоединяется нить веретена деления: к одной хромосоме от одного полюса, ко второй - от другого

В) в анафазе I к полюсам клетки расходятся двухроматидные хромосомы; од­на из каждой пары к одному полюсу, вторая - к другому. При этом число хромосом у полюсов становится вдвое меньше, чем в материнской клетке, но они остаются двухроматидными (n2с)

Г) затем проходит телофаза I, которая сразу же переходит в профа­зу II второго этапа деления мейоза, идущего по типу митоза:

2. эквационное деление . Ин­терфазы в данном случае нет, так как хромосомы двухроматид­ные, молекулы ДНК удвоены.

А) профаза II

Б) в метафазе II двухроматидные хромосомы располагаются по экватору, при этом деление происходит сразу в двух дочерних клетках

В) в анафазе II к полю­сам отходят уже однохроматидные хромосомы

Г) в телофазе II в четырех дочерних клетках формируются ядра и перегородки между клетками.

Таким образом, в результате мейоза получаются четыре гаплоидные клетки с однохроматидными хромосомами (nc): это либо половые клетки (гаметы) животных, либо споры растений.

Фаза мейоза,

набор хромосом

хромосомы,
с - ДНК)

Рисунок

Характеристика фазы, расположение хромосом

Профаза 1
2n4c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.

Метафаза 1
2n4c

Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 1
2n4c

Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом.

Телофаза 1
в обеих клетках по 1n2c

Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы.

Профаза 2
1n2c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2
1n2c

Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 2
2n2c

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2
в обеих клетках по 1n1c

Всего
4 по 1n1c

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток.

Биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются.

Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше.

Однако это противоречит правилу постоянства числа хромосом.

Развитие половых клеток.

Процесс формирования половых клеток называется гаметогенезом . У многоклеточных организмов различают сперматогенез – формирование мужских половых клеток и овогенез – формирование женских половых клеток.

Рассмотрим гаметогенез, происходящий в половых железах животных – семенниках и яичниках.

Сперматогенез – процесс превращения диплоидных предшественников половых клеток – сперматогониев в сперматозоиды.

1. Сперматогонии делятся митозом на две дочерние клетки – сперматоциты первого порядка.

2. Сперматоциты первого порядка делятся мейозом (1-е деление) на две дочерние клетки – сперматоциты второго порядка.

3. Сперматоциты второго порядка приступают ко второму мейотическому делению, в результате которого образуются 4 гаплоидные сперматиды.

4. Сперматиды после дифференцировки превращаются в зрелые сперматозоиды.

Сперматозоид состоит из головки, шейки и хвоста. Он подвижен и благодаря этому вероятность встречи его с гаметами увеличивается.

У мхов и папоротников спермии развиваются в антеридиях, у покрытосеменных растений они образуются в пыльцевых трубках.

Овогенез – образование яйцеклеток у особей женского пола. У животных он происходит в яичниках. В зоне размножения находятся овогонии – первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут. Яйцеклетки неподвижны, имеют шаровидную форму. Они крупнее других клеток и содержат запас питательных веществ для развития зародыша.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений – в семяпочках, локализованных в завязи цветка.

Развитие половых клеток и двойное оплодотворение у цветковых растений.

Схема жизненного цикла цветкового растения.

Взрослая особь диплоидна. В жизненном цикле преобладает спорофит (С > Г).

Взрослое растение здесь является спорофитом, образующим макро (женские ) и микроспоры (мужские) , которые развиваются соответственно в зародышевый мешок и зрелое пыльцевое зерно , являющиеся гаметофитами.

Женский гаметофит у растений – зародышевый мешок.

Мужской гаметофит у растений – пыльцевое зерно.

Чашечка + венчик = ОКОЛОЦВЕТНИК

Тычинка и пестик – репродуктивные органы цветка

Мужские половые клетки созревают в пыльнике (пыльцевом мешке или микроспорангии), расположенном на тычинке.

В нем содержится множество диплоидных клеток, каждая из которых делится путем мейоза и образует 4 гаплоидных пыльцевых зерна (микроспоры), из всех них затем развивается мужской гаметофит .

Каждое пыльцевое зерно делится путем митоза и образует 2 клетки - вегетативную и генеративную . Генеративная клетка еще раз делится путем митоза и образует 2 спермия.

Таким образом, пыльца (проросшая микроспора, созревшее пыльцевое зерно) содержит три клетки - 1 вегетативную и 2 спермия , покрытых оболочкой.

Женские половые клетки развиваются в семязачатке (семяпочке или мегаспорангии), располагающемся в завязи пестика.

Одна из ее диплоидных клеток делится путем мейоза и образует 4 гаплоидных клетки. Из них только одна гаплоидная клетка (мегаспора) трижды делится путем митоза и прорастает в зародышевый мешок (женский гаметофит ),

три другие гаплоидные клетки отмирают.

В результате деления мегаспоры образуются 8 гаплоидных ядер зародышевого мешка, в котором 4 ядра располагаются на одном полюсе, а 4- на противоположном.

Затем от каждого полюса в центр зародышевого мешка мигрирует по одному ядру, сливаясь, они образуют центральное диплоидное ядро зародышевого мешка.

Одна из трех гаплоидных клеток, расположенных у пыльцевхода, является крупной яйцеклеткой, 2 другие - вспомогательные клетки-синергиды.

Опыление - перенос пыльцы с пыльников на рыльце пестика.

Оплодотворение - это процесс слияния яйцеклетки и сперматозоида, в результате чего образуется зигота – зародышевая клетка или первая клетка нового организма

При оплодотворении пыльцевое зерно, попав на рыльце пестика, прорастает по направлению к семязачаткам, расположенным в завязи, за счет своей вегетативной клетки, образующей пыльцевую трубку. На переднем конце пыльцевой трубки находятся 2 спермия (спермии сами двигаться не могут, поэтому продвигаются за счет роста пыльцевой трубки). Проникая в зародышевый мешок через канал в покровах - пыльцевход (микропиле), один спермий оплодотворяет яйцеклетку, а второй сливается с 2n центральной клеткой (диплоидным ядром зародышевого мешка) с образованием 3n триплоидного ядра. Этот процесс получил название двойного оплодотворения , был открыт С.Г. Навашиным в 1898 г. у лилейных. В дальнейшем из оплодотворенной яйцеклетки - зиготы развивается зародыш семени, а из триплоидного ядра - питательная ткань - эндосперм . Так, из семязачатка образуется семя, а из его покровов - семенная кожура. Вокруг семени из завязи и других частей цветка формируется плод .

Тематические задания

А1. Мейозом называется процесс

1) изменения числа хромосом в клетке

2) удвоения числа хромосом в клетке

3) образования гамет

4) конъюгации хромосом

А2. В основе изменения наследственной информации детей

по сравнению с родительской информацией лежат процессы

1) удвоения числа хромосом

2) уменьшения количества хромосом вдвое

3) удвоения количества ДНК в клетках

4) конъюгации и кроссинговера

А3. Первое деление мейоза заканчивается образованием:

2) клеток с гаплоидным набором хромосом

3) диплоидных клеток

4) клеток разной плоидности

А4. В результате мейоза образуются:

1) споры папоротников

2) клетки стенок антеридия папоротника

3) клетки стенок архегония папоротника

4) соматические клетки трутней пчел

А5. Метафазу мейоза от метафазы митоза можно отличить по

1) расположению бивалентов в плоскости экватора

2) удвоению хромосом и их скрученности

3) формированию гаплоидных клеток

4) расхождению хроматид к полюсам

А6. Телофазу второго деления мейоза можно узнать по

1) формированию двух диплоидных ядер

2) расхождению хромосом к полюсам клетки

3) формированию четырех гаплоидных ядер

4) увеличению числа хроматид в клетке вдвое

А7. Сколько хроматид будет содержаться в ядре сперматозоидов крысы, если известно, что в ядрах ее соматических клеток содержится 42 хромосомы

А8. В гаметы, образовавшиеся в результате мейоза попадают

1) копии полного набора родительских хромосом

2) копии половинного набора родительских хромосом

3) полный набор рекомбинированных родительских хромосомы

4) половина рекомбинированного набора родительских хромосом

В1. Установите правильную последовательность процессов, происходящих в мейозе

A) Расположение бивалентов в плоскости экватора

Б) Образование бивалентов и кроссинговер

B) Расхождение гомологичных хромосом к полюсам клетки

Г) формирование четырех гаплоидных ядер

Д) формирование двух гаплоидных ядер, содержащих по две хроматиды

Митоз - процесс деления клетки, при котором её строение подвергается существенным изменениям, возникновением новых структур и реализацией строго определенных стадий.

При митозе дочерние клетки получают диплоидный набор хромосом и такое же количество ядерного вещества, которое характерно для нормально функционирующей соматической родительской клетки.Митоз осуществляется при размножении соматических (клеток тела) клеток, например, в меристемах (тканях роста) растений или в активных зонах деления у животных (в кроветворных органах, в коже и т. д.). Для животных организмов состояние деления характерно в молодом возрасте, но оно может осуществляться и в зрелом возрасте в соответствующих органах (кожа, органы кроветворения и др.).

Митоз представляет собой последовательность строго определенных процессов, которые протекают по стадиям. Митоз состоит из четырех фаз: профазы, метафазы, анафазы и телофазы. Общая длительность митоза составляет 2-8 часов. Рассмотрим фазы митоза более подробно.

1. Профаза (первая фаза митоза) - самая длительная. Во время профазы в ядре появляются хромосомы (за счет спирализации молекул ДНК). Ядрышко растворяется. Четко проявляются все хромосомы. Центриоли клеточного центра расходятся к разным полюсам клетки и между центриолями формируется «веретено деления». Ядерная оболочка растворяется, и хромосомы попадают в цитоплазму. Профаза завершается.Следовательно, в результате профазы формируется «веретено деления», состоящее из двух центриолей, находящихся в разных полюсах клетки и связанных между собой двумя типами нитей - опорными и тянущими. В цитоплазме имеется диплоидный набор хромосом, каждая из которых содержит двойное (по отношению к норме) количество ядерного вещества и имеет перетяжку вдоль большой оси симметрии.

2. Метафаза (вторая фаза деления). Иногда ее называют «фаза звезды», так как при виде сверху хромосомы образуют некоторое подобие звезды. Во время метафазы хромосомы выражены в наибольшей степени.В метафазе хромосомы перемещаются в центр клетки и прикрепляются центромерами к тянущим нитям веретена, что приводит к возникновению строго упорядоченной структуры расположения хромосом в клетке. После прикрепления к тянущей нити каждая хроматиновая нить разделяется на две части, за счет чего каждая хромосома напоминает как бы слепленные в районе центромеры хромосомы. В конце метафазы центромера разделяется вдоль (параллельно хроматиновым нитям) и образуется тетраплоидное количество хромосом. На этом метафаза завершается.



Итак, в конце метафазы возникает тетраплоидное количество хромосом (4n), одна половина которых прикреплена к нитям, тянущим эти хромосомы к одному полюсу, а вторая половина - к другому полюсу.

3. Анафаза (третья фаза, следует за метафазой). При анафазе (начальный период) тянущие нити веретена сокращаются и за счет этого хромосомы расходятся к разным полюсам делящейся клетки. Каждая из хромосом характеризуется нормальным количеством ядерного вещества.К концу анафазы хромосомы концентрируются у полюсов клетки, а на опорных нитях веретена в центре клетки (на «экваторе») возникают утолщения. На этом анафаза завершается.

4. Телофаза (последняя стадия митоза). Во время телофазы происходят следующие изменения: возникшие в конце анафазы утолщения на опорных нитях увеличиваются и сливаются, образуя первичную мембрану, отделяющую одну дочернюю клетку от другой.В итоге возникают две клетки, содержащие диплоидный набор хромосом (2n). На месте первичной мембраны образуется перетяжка между клетками, которая углубляется, и к концу телофазы одна клетка отделяется от другой.

Одновременно с формированием клеточных оболочек и разделением исходной (материнской) клетки на две дочерние происходит окончательное формирование молодых дочерних клеток. Хромосомы мигрируют в центр новых клеток, тесно сближаются, молекулы ДНК деспирализуются и хромосомы как отдельные образования исчезают. Вокруг ядерного вещества формируется ядерная оболочка, возникает ядрышко, т. е. происходит формирование ядра.

В это же время формируется и новый клеточный центр, т. е. из одной центриоли образуется две (за счет деления), между возникшими центриолями появляются тянущие опорные нити. Телофаза на этом завершается, а вновь возникшие клетки вступают в свой цикл развития, который зависит от местонахождения клеток и их будущей роли.

Путей развития дочерних клеток несколько. Один из них состоит в том, что вновь возникшие клетки специализируются на выполнении конкретных функций, например, становятся форменными элементами крови. Пусть часть из этих клеток становится эритроцитами (красными кровяными тельцами). Такие клетки растут, достигая определенного размера, затем они теряют ядро и заполняются дыхательным пигментом (гемоглобином) и становятся зрелыми, способными к выполнению своих функций. Для эритроцитов - это способность реализации газообмена между тканями и органами дыхания, осуществляя перенос молекулярного кислорода (O 2) из органов дыхания к тканям и углекислый газ из тканей к органам дыхания. Молодые эритроциты попадают в кровяное русло, где функционируют 2-3 месяца, а затем погибают.

Вторым путем развития дочерних клеток тела является вступление их в митотический цикл.

Митоз - непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу .Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Поведение хромосом в митозе.

1) Профаза:

· хроматин спирализуется (скручивается, конденсируется) до состояния хромосом

· ядрышки исчезают

· ядерная оболочка распадается

· центриоли расходятся к полюсам клетки, в цитоплазме начинается формирование веретена деления

2) Метафаза – заканчивается формирование веретена деления: хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка.

3) Анфаза – дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам.

4) Телофаза:

· хромосомы деспирализуются (раскручтваются, деконденсируются) до состояния хроматина

· появляются ядро и ядрышки

· нити веретена деления разрушаются

· происходит цитокинез – разделение цитоплазмы материнской клетки на две дочерних

Продолжительность митоза – 1-2 часа.

  • < Назад
  • Вперёд >