Цезий - применение. Цезий: металл, по которому сверяют часы

В природном цезии не удалось обнаружить какие-либо иные изотопы, кроме стабильного 133 Cs. Известно 33 радиоактивных изотопа цезия с массовыми числами от 114 до 148. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже – несколькими часами или днями. Однако три из них распадаются не так быстро – это 134 Cs, 137 Cs и 135 Cs с периодами полураспада 2 года, 30 лет и 3·10 6 лет. Все три изотопа образуются при распаде урана, тория и плутония в атомных реакторах или в ходе испытаний ядерного оружия.

Степень окисления +1.

В 1846 в пегматитах о.Эльба в Тирренском море был открыт силикат цезия – поллуцит. При изучении этого минерала неизвестный в то время цезий был принят за калий. Содержания калия вычислялось по массе соединения платины, с помощью которого элемент переводили в нерастворимое состояние. Так как калий легче цезия, то подсчет результатов химического анализа показывал нехватку около 7%. Эта загадка была разрешена только после открытия спектрального метода анализа немецкими учеными Робертом Бунзеном и Густавом Кирхгоффом в 1859. Бунзен и Кирхгофф открыли цезий в 1861. Первоначально он был найден в минеральных водах целебных источников Шварцвальда. Цезий стал первым из элементов, открытых методом спектроскопии. Его название отражает цвет наиболее ярких линий в спектре (от латинского caesius – небесно-голубой).

Первооткрывателям цезия не удалось выделить этот элемент в свободном состоянии. Металлический цезий был впервые получен только через 20 лет, в 1882, шведским химиком К.Сеттербергом (Setterberg C.) при электролизе расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавлялся для снижения температуры плавления, однако работать с цианидами было трудно ввиду их высокой токсичности, а барий загрязнял конечный продукт, да и выход цезия был весьма мал. Более рациональный способ был найден в 1890 известным русским химиком Н.Н.Бекетовым , предложившим восстанавливать гидроксид цезия металлическим магнием в потоке водорода при повышенной температуре. Водород заполнял прибор и препятствовал окислению цезия, который отгонялся в специальный приемник, однако и в этом случае выход цезия не превышал 50% от теоретического.

Цезий в природе и его промышленное извлечение.

Цезий относится к редким элементам. Он встречается в рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом, в лепидолите. В отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы – поллуцит, авогадрит и родицит.

Родицит крайне редок. Его часто относят к литиевым минералам, так как в его состав (М 2 O·2Al 2 O 3 ·3B 2 O 3 , где М 2 O – сумма оксидов щелочных металлов) лития обычно входит больше, чем цезия. Авогадрит (K,Cs) тоже редок. Больше всего цезия содержится в поллуците (Cs,Na)·n H 2 O (содержание Cs 2 O составляет 29,8–36,7% по массе).

Данные по мировым ресурсам цезия очень ограничены. Их оценки основаны на поллуците, добываемом в качестве побочного продукта вместе с другими пегматитовыми минералами.

По добыче поллуцита лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено 70% мировых запасов цезия (ок. 73 тыс. т). Поллуцит добывают также в Намибии и Зимбабве, ресурсы которых оценивают в 9 тыс. т и 23 тыс. т цезия, соответственно. В России месторождения поллуцита находятся на Кольском п-ове, в Восточных Саянах и Забайкалье. Имеются они также в Казахстане, Монголии и Италии (о. Эльба).

Чтобы вскрыть этот минерал и перевести ценные компоненты, в растворимую форму его обрабатывают при нагревании концентрированными минеральными кислотами. Если поллуцит разлагают соляной кислотой, то из полученного раствора действием SbCl 3 осаждают Cs 3 , который затем обрабатывают горячей водой или раствором аммиака. При разложении поллуцита серной кислотой получают алюмоцезиевые квасцы CsAl(SO 4) 2 ·12H 2 O.

Используют и другой способ: поллуцит спекают со смесью оксида и хлорида кальция, спек выщелачивают в автоклаве горячей водой, раствор выпаривают досуха с серной кислотой, а остаток обрабатывают горячей водой. После отделения сульфата кальция из раствора выделяют соединения цезия.

Современные методы извлечения цезия из поллуцита основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавикового шпата. Если процесс вести при 1200° C, то почти весь цезий возгоняется в виде оксида Cs 2 O. Этот возгон загрязнен примесью других щелочных металлов, однако он растворим в минеральных кислотах, что упрощает дальнейшие операции. Металлический цезий извлекают, нагревая до 900° С смеси (1:3) измельченный поллуцит с кальцием или алюминием.

Но, в основном, цезий получают как пробочный продукт при производстве лития из лепидолита. Лепидолит предварительно сплавляют (или спекают) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения – их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция – отделение цезия от рубидия и громадного избытка калия.

Для разделения цезия, рубидия и калия и получения чистых соединений цезия применяют методы многократной кристаллизации квасцов и нитратов, осаждения и перекристаллизации Cs 3 или Cs 2 . Используют также хроматографию и экстракцию. Для получения соединений цезия высокой чистоты применяют полигалогениды.

Бóльшую часть производимого цезия выделяют в ходе получения лития, поэтому когда в 1950-х литий начали использовать в термоядерных устройствах и широко применять в автомобильных смазках, добыча лития, как и цезия возросла и соединения цезия стали доступнее, чем прежде.

Данные по мировому производству и потреблению цезия и его соединений не публикуются с конца 1980-х. Рынок цезия небольшой, и его ежегодное потребление оценивается всего лишь в несколько тысяч килограммов. В результате нет торговли и официальных рыночных цен.

Характеристика простого вещества, промышленное получение и применение металлического цезия.

Цезий – золотисто-желтый металл, один из трех интенсивно окрашенных металлов (наряду с медью и золотом). После ртути – это самый легкоплавкий металл. Плавится цезий при 28,44° С, кипит при 669,2° С. Его пары окрашены в зеленовато-синий цвет.

Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу элемента, его плотность при 20° С составляет всего 1,904 г/см 3 . Цезий много легче своих соседей по Периодической таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, в то время как их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в электронной структуре атомов цезия (один электрон на последнем s -подуровне), приводящей к тому, что металлический радиус цезия очень велик (0,266 нм).

У цезия есть еще одно весьма важное свойство, связанное с его электронной структурой, – он теряет свой единственный валентный электрон легче, чем любой другой металл; для этого необходима очень незначительная энергия – всего 3,89 эВ, поэтому, например, получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

По чувствительности к свету цезий превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Максимальная электронная эмиссия наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.

Химически цезий очень активен. На воздухе он мгновенно окисляется с воспламенением, образуя надпероксид CsO 2 с примесью пероксида Cs 2 O 2 . Цезий способен поглощать малейшие следы кислорода в условиях глубокого вакуума. С водой он реагирует со взрывом с образованием гидроксида CsOH и выделением водорода. Цезий взаимодействует даже со льдом при –116° C. Его хранение требует большой осторожности.

Цезий взаимодействует и с углеродом . Только самая совершенная модификация углерода – алмаз – в состоянии противостоять цезию. Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и давая довольно прочные соединения золотисто-желтого цвета. При 200–500° С образуется соединение состава C 8 Cs 5 , а при более высоких температурах – C 24 Cs, C 36 Cs. Они воспламеняются на воздухе, вытесняют водород из воды, а при сильном нагревании разлагаются и отдают весь поглощенный цезий.

Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором – взрывом. При нагревании цезий соединяется с водородом. С азотом в обычных условиях цезий не взаимодействует. Нитрид Cs 3 N образуется в реакции с жидким азотом при электрическом разряде между электродами, изготовленными из цезия.

Цезий растворяется в жидком аммиаке , алкиламинах и полиэфирах, образуя синие растворы, обладающие электронной проводимостью. В аммиачном растворе цезий медленно реагирует с аммиаком с выделением водорода и образованием амида CsNH 2 .

Сплавы и интерметаллические соединения цезия сравнительно легкоплавки. Аурид цезия CsAu, в котором между атомами золота и цезия реализуется частично ионная связь, является полупроводником n -типа.

Наилучшее решение задачи получения металлического цезия было найдено в 1911 французским химиком А.Акспилем. По его методу, до сих пор остающемуся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме:

2CsCl + Ca → CaCl 2 + 2Cs

при этом реакция идет практически до конца. Процесс ведут при давлении 0,1–10 Па и температуре 700–800° С. Выделяющийся цезий испаряется и отгоняется, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl 2 равна 773° С). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.

Описаны и многие другие способы получения металлического цезия из его соединений. Металлический кальций можно заменить его карбидом, однако при этом температуру реакции приходится повышать до 800° С, поэтому конечный продукт загрязняется дополнительными примесями. Проводят также электролиз расплава галогенида цезия с использованием жидкого свинцового катода. В результате получают сплав цезия со свинцом, из которого металлический цезий выделяют дистилляцией в вакууме.

Можно разлагать азид цезия или восстанавливать цирконием его дихромат, однако эти реакции иногда сопровождаются взрывом. При замене дихромата цезия хроматом процесс восстановления протекает спокойно, и хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.

Мировое производство цезия сравнительно невелико.

Металлический цезий – компонент материала катодов для фотоэлементов, фотоэлектронных умножителей, телевизионных передающих электронно-лучевых трубок. Фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к невидимым инфракрасным лучам и, в отличие, например, от селеновых, работают безинерционно. В телевидении и кино широко распространены сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5–6%, они надежно работают в интервале температур от –30° С до +90° С. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия – электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается. Усиление тока и повышение чувствительности достигаются также при заполнении цезиевых фотоэлементов инертным газом (аргоном или неоном).

Металлический цезий служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. Его используют в качестве теплоносителя в ядерных реакторах, компонента смазочных материалов для космической техники, геттера в вакуумных электронных приборах. Металлический цезий проявляет и каталитическую активность в реакциях органических соединений.

Цезий используется в атомных стандартах времени. «Цезиевые часы» необыкновенно точны. Их действие основано на переходах между двумя состоянием атома цезия с параллельной и антипараллельной ориентацией собственных магнитных моментов ядра атома и валентного электрона. Этот переход сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). В 1967 Международная генеральная конференция по мерам и весам установила: «Секунда – время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133».

В последнее время большое внимание уделяется цезиевой плазме, всестороннему изучению ее свойств и условий образования, возможно, она станет использоваться в плазменных двигателях будущего. Кроме того, работы по исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие считают, что целесообразно создавать цезиевую плазму, используя тепловую энергию атомных реакторов.

Хранят цезий в стеклянных ампулах в атмосфере аргона или стальных герметичных сосудах под слоем обезвоженного вазелинового масла. Утилизируют остатки металла обработкой пентанолом.

Соединения цезия.

Цезий образует бинарные соединения с большинством неметаллов. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием. Галогениды и соли большинства кислот более стабильны.

Соединения с кислородом . Цезий образует девять соединений с кислородом, имеющих состав от Cs 7 O до CsO 3 .

Оксид цезия Cs 2 O образует коричнево-красные кристаллы, расплывающиеся на воздухе. Его получают медленным окислением недостаточным (2/3 от стехиометрического) количеством кислорода. Остаток непрореагировавшего цезия отгоняют в вакууме при 180–200° С. Оксид цезия в вакууме при 350–450° С возгоняется, а при 500° С разлагается:

2Cs 2 O = Cs 2 O 2 + 2Cs

Энергично реагирует с водой, давая гидроксид цезия.

Оксид цезия является компонентом сложных фотокатодов, специальных стекол и катализаторов. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества оксида цезия (вместо оксида калия) повышает выход конечного продукта и улучшает условия процесса.

Гигроскопичные бледно-желтые кристаллы пероксида цезия Cs 2 O 2 можно получить окислением цезия (или его раствора в жидком аммиаке) дозированным количеством кислорода. Выше 650° С пероксид цезия разлагается с выделением атомарного кислорода и энергично окисляет никель, серебро, платину и золото. Пероксид цезия растворяется в ледяной воде без разложения, а выше 25° С реагирует с ней:

2Cs 2 O 2 + 2H 2 O = 4CsOH + O 2

В кислотах он растворяется с образованием пероксида водорода.

При сжигании цезия на воздухе или в кислороде образуется золотисто-коричневый надпероксид цезия CsO 2 . Выше 350° С он диссоциирует с выделением кислорода. Надпероксид цезия – очень сильный окислитель.

Пероксид и надпероксид цезия служат источниками кислорода и используются для его регенерации в космических и подводных кораблях.

Полуторный оксид «Cs 2 О 3 » образуется в виде темного парамагнитного порошка при осторожном термическом разложении надпероксида цезия. Его можно также получить окислением металла, растворенного в жидком аммиаке, или контролируемым окислением пероксида. Предполагается, что он является динадпероксидом-пероксидом [(Cs +)4(O 2 2–)(O 2 –) 2 ].

Оранжево-красный озонид CsО 3 можно получить при действии озона на безводный порошок гидроксида или пероксида цезия при низкой температуре. При стоянии озонид медленно разлагается на кислород и надпероксид, а при гидролизе он сразу превращается в гидроксид.

Цезий образует также субоксиды, в которых формальная степень окисления элемента существенно ниже +1. Оксид состава Cs 7 O имеет бронзовую окраску, его температура плавления равна 4,3° С, активно реагирует с кислородом и водой. В последнем случае образуется гидроксид цезия. При медленном нагревании Cs 7 O разлагается на Cs 3 O и цезий. Фиолетовые кристаллы Cs 11 O 3 плавятся с разложением при 52,5° С. Красно-фиолетовый Cs 4 O разлагается выше 10,5° С. Нестехиометрическая фаза Cs 2+x O меняет состав вплоть до Cs 3 O, который разлагается при 166° С.

Гидроксид цезия CsOH образует бесцветные кристаллы, которые плавятся при ° С. Температуры плавления гидратов еще ниже, например моногидрат CsOH·H 2 O плавится с разложением при 2,5° С, а тригидрат CsOH·3H 2 O – даже –5,5° С.

Гидроксид цезия служит катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300° С без высокого давления. Выход конечного продукта очень велик – 91,5%.

Галогениды цезия CsF, CsCl, CsBr, CsI (бесцветные кристаллы) плавятся без разложения, выше температуры плавления летучи. Термическая устойчивость понижается при переходе от фторида к иодиду; бромид и иодид в парах частично разлагаются на простые вещества. Галогениды цезия хорошо растворимы в воде. В 100 г воды при 25° С растворяется 530 г фторида цезия, 191,8 г хлорида цезия, 123,5 г бромида цезия, 85,6 г иодида цезия. Из водных растворов кристаллизуются безводные хлорид, бромид и иодид. Фторид цезия выделяется в виде кристаллогидратов состава CsF·n H 2 O, где n = 1, 1,5, 3.

При взаимодействии с галогенидами многих элементов галогениды цезия легко образуют комплексные соединения. Некоторые из них, например Cs 3 , используют для выделения и аналитического определения цезия.

Фторид цезия применяют для получения фторорганических соединений, пьезоэлектрической керамики, специальных стекол. Хлорид цезия – электролит в топливных элементах, флюс при сварке молибдена.

Бромид и иодид цезия широко используются в оптике и электротехнике. Кристаллы этих соединений прозрачны для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (CsI). Обычные призмы из хлорида натрия пропускают лучи с длиной волны 14 мкм, а из хлорида калия – 25 мкм, поэтому применение бромида и иодида цезия вместо хлоридов натрия и калия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области.

Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сульфида цинка примерно 20% иодида цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.

Сцинтилляционные приборы для регистрации тяжелых заряженных частиц, содержащие монокристаллы иодида цезия, активированного таллием, обладают наибольшей чувствительностью из всех приборов подобного назначения.

Цезий-137.

Изотоп 137 Cs образуется во всех атомных реакторах (в среднем 6 ядер 137 Cs из 100 ядер урана).

При нормальных условиях эксплуатации АЭС выбросы радионуклидов, в том числе радиоактивного цезия, незначительны. Подавляющее количество продуктов ядерного деления остается в топливе. По данным дозиметрического контроля, концентрация цезия в районах расположения АЭС почти не превышает концентрацию этого нуклида в контрольных районах.

Сложные ситуации возникают после аварий, когда во внешнюю среду поступает огромное количество радионуклидов и загрязнению подвергаются большие территории. Поступление цезия-137 в атмосферу было отмечено при аварии на Южном Урале в 1957 г., где произошел тепловой взрыв хранилища радиоактивных отходов, при пожаре на радиохимическом заводе в Уинденейле в Великобритании в 1957, при ветровом выносе радионуклидов из поймы оз. Карачай на Южном Урале в 1967. Катастрофой стала авария на Чернобыльской атомной электростанции в 1986, на долю цезия-137 пришлось около 15% общего радиационного заражения. Основной источник поступления радиоактивного цезия в организм человека – загрязненные нуклидом продукты питания животного происхождения.

Радионуклид 137 Cs можно использовать и с пользой для человека. Он применяется в дефектоскопии, а также в медицине для диагностики и лечения. Цезием-137 заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей. Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое g -излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 134 Cs с более коротким периодом полураспада и более жестким g -излучением.

Из растворов, полученных при переработке радиоактивных отходов ядерных реакторов, 137 Cs извлекается методами соосаждения с гексацианоферратами железа , никеля , цинка или фторовольфраматом аммония. Используют также ионный обмен и экстракцию.

Елена Савинкина

Цезий входит в группу химических элементов с ограниченными запасамивместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс. тонн (в пересчёте на окись цезия), но они крайне распылены. Сверхвысокие цены — это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом и настоящем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: извлечение этого металла из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы цезиевых руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий (потребности в металле более чем в 8,5 раз превышают его добычу, и положение в металлургии цезия ещё более тревожное, чем, например, в металлургии тантала или рения). Промышленность нуждается именно в очень чистом материале (на уровне 99,9—99,999 %), и это является одной из труднейших задач в металлургии редких элементов. Для получения цезия достаточной степени чистоты требуется многократная ректификация в вакууме, очистка от механических примесей на металлокерамических фильтрах, нагревание с геттерами для удаления следов водорода, азота, кислорода и многократная ступенчатая кристаллизация. Цезий весьма активен и агрессивен по отношению к контейнерным материалам и требует хранения, например, в сосудах из специального стекла в атмосфере аргона или водорода (обычные марки лабораторного стекла цезий разрушает).

Месторождения

По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения.

Ежегодное производство цезия в мире составляет около 20 тонн.

Геохимия и минералогия

Среднее содержание цезия в земной коре 3,7 г/т. Наблюдается некоторое увеличение содержание цезия от ультраосновных пород (0,1 г/т) к кислым (5 г/т). Основная его масса в природе находится в рассеянной форме и лишь незначительная часть заключена в собственных минералах. Постоянно повышенные количества цезия наблюдаются в воробьевите (1—4 %), родиците (около 5 %), авогадрите и лепидолите (0,85 %). По кристаллохимическим свойствам цезий наиболее близок к рубидию, калию и таллию. В повышенных количествах цезий находится в калиевых минералах. Цезий, как и рубидий, имеет тенденцию накапливаться на поздних стадиях магматических процессов, и в пегматитах его концентрации достигают наивысших значений. Среднее содержание цезия в гранитных пегматитах около 0,01 %, а в отдельных пегматитовых жилах, содержащих поллуцит, даже достигает 0,4 %, что примерно в 400 раз выше, чем в гранитах. Наиболее высокие концентрации цезия наблюдаются в редкометально замещённых микроклин-альбитовых пегматитах со сподуменом. При пневматолито-гидротермальном процессе повышенные количества цезия связанны с массивами грейзенезированных аляскитов и гранитов с кварц-берилл-вольфрамитовыми жилами, где он присутствует главным образом в мусковитах и полевых шпатах. В зоне гипергенеза (в поверхностных условиях) цезий в небольшом количестве накапливается в глинах, глинистых породах и почвах, содержащих глинистые минералы, иногда в гидроокислах марганца. Максимальное содержание цезия составляет лишь 15 г/т. Роль глинистых минералов сводится к сорбции, цезий вовлекается в межпакетное пространство в качестве поглощённого основания. Активная миграция этого элемента в водах очень ограничена. Основное количество цезия мигрирует «пассивно», в глинистых частичках речных вод. В морской воде концентрация цезия составляет ок. 0,5 мкг/л. Из числа собственно цезиевых минералов наиболее распространены поллуцит (Cs, Na)·nH2O (22 — 36 % Cs2O), цезиевый берилл (воробьевит) Be2CsAl2(Si6O18) и авогадрит (KCs)BF4. Последние два минерала содержат до 7,5 % окиси цезия.

Получение цезия

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs). Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит.
При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой, добавление хлорида сурьмы SbCl3 для осаждения соединения Cs3 и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором — минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO4)2 · 12H2O.
В России после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала. К тому времени, когда российская промышленность смогла встать на ноги, выяснилось, что лицензию на разработку этого месторождения купила Канадская компания. В настоящее время переработка и извлечение солей цезия из поллуцита ведется в Новосибирске на ЗАО «Завод редких металлов».

Существует несколько лабораторных методов получения цезия. Он может быть получен:
нагревом в вакууме смеси хромата или дихромата цезия с цирконием;
разложением азида цезия в вакууме;
нагревом смеси хлорида цезия и специально подготовленного кальция.

Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.

Химические свойства

Цезий является наиболее химически активным металлом, полученным в макроскопических количествах (так как активность щелочных металлов растёт с порядковым номером, то франций, вероятно, ещё более активен, но в макроскопических количествах не получен, так как все его изотопы имеют малый период полураспада). Является сильнейшим восстановителем. На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO2. При ограниченном доступе кислорода окисляется до оксида Cs2O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H2. Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами, галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами, сухим льдом (взаимодействие протекает с сильным взрывом). Реагирует с бензолом. Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом, но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции). Многие образуемые цезием соли — нитраты, хлориды, бромиды, фториды, иодиды, хроматы, манганаты, азиды, цианиды, карбонаты и т. д. — чрезвычайно легко растворимы в воде и ряде органических растворителей; наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития, не вступает в реакцию с азотом при обычных условиях и, в отличие от бария, кальция, магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия — сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо, кобальт, никель, а также платину, корунд и диоксид циркония, и даже постепенно разрушает серебро и золото (в присутствии кислорода — очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и некоторые его сплавы.

Тает в руках, но не снег – загадка из раздела «химия». Отгадка – цезий . Температура плавления этого металла равна 24,5 градусам Цельсия. Вещество, буквально утекающее сквозь пальцы, открыто в 1860-ом году. Цезий стал первым элементом, обнаруженным с помощью спектрального анализа.

Провели его Роберт Бунзен и Густав Киргоф. Химики изучали воды минеральных источников в Дюркхейме. Обнаружили магний, литий, кальций, . Напоследок, поместили каплю воды в спектроскоп и увидели две линии синего цвета – свидетельство присутствия неизвестного вещества.

Для начала выделили его хлороплатинат. Ради 50 граммов переработали 300 тонн минеральной воды. С названием нового металла мудрить не стали. С латинского «цезий» переводится как «голубой».

Химические и физические свойства цезия

В спектроскопе металл лучится ярко-синий. В реальности же элемент схож с , немного светлее его. В жидком состоянии желтизна цезия уходит, расплав становится серебристым. Добыть сырье для опытов непросто.

Из металлов элемент самый редкий и рассеянный в земной коре. В природе встречается лишь один изотоп – цезий 133 . Он полностью устойчив, то есть не подвержен радиоактивному распаду.

Радиоактивные изотопы металла получены искусственно. 135-ый цезий – долгожитель. Период его полураспада приближается к 3 000 000 лет. Цезий 137 наполовину распадается за 33,5 года. Изотоп признан одним из основных источников загрязнения биосферы.

В нее нуклид попадает из сбросов заводов, атомных станций. Период полураспада цезия позволяет ему проникать в воды, почву, растения, накапливаться в них. Особенно много 137-го изотопа в пресноводных водорослях и лишайниках.

Будучи самым редким из металлов, цезий является еще и самым активным. Элемент щелочной, расположен в главной подгруппе 1-ой группы периодической системы, что уже обязывает вещество легко вступать в химические реакции. Их течение усиливает присутствие воды. Так, на воздухе атом цезия взрывается из-за нахождения ее паров в атмосфере.

Взаимодействие с водой сопровождается взрывом, даже если она замерзшая. Реакция со льдом возможна при -120-ти градусах Цельсия. Сухой лед – не исключение. Взрыв неизбежен и при контакте цезия с кислотами, простыми спиртами, галогенидами тяжелых металлов галогенами органического типа.

Взаимодействия легко запускаются по 2-м причинам. Первая – сильный отрицательный электрохимический потенциал. То есть, атом заряжен отрицательно, стремится притянуть к себе иные частицы.

Вторая причина – площадь поверхности цезия при реакциях с другими веществами. Тая в комнатных условиях, элемент растекается. Получается, что для взаимодействия открыто большее число атомов.

Активность элемента привела к отсутствии его чистой формы в природе. Встречаются лишь соединения, к примеру, . В их числе: хлорид цезия , фторид, йодит, азит, цианит, бромид и карбонат цезия . Все соли 55-го элемента легко растворяются в воде.

Если же работа ведется с гидроксидом цезия , бояться нужно не его растворения, а того, что он сам способен разрушить, к примеру, стекло. Его структура нарушается реагентом уже при комнатной температуре. Стоит повысить градус, гидроксид не пощадит и кобальт, , корунд, и железо.

Реакции проходят особенно быстро в кислородной среде. Противостоять гидроксиду цезия способен только . Во взаимодействие с 55-ым элементом не вступает и азот. Азит цезия получают только косвенным путем.

Применение цезия

Цезий, формула которого обеспечивает низкую работу выхода электрона, пригождается при изготовлении фотоэлементов. В приборах на основе 55-го вещества затраты на получение тока минимальны. Чувствительность же к излучению, напротив, максимальна.

Чтобы фотоэлектрическое оборудование не стоило запредельно из-за редкости цезия, его сплавляют с , , , . Как источник тока цезий применяется в топливных элементах. Твердый электролит на основе 55-го металла – часть автомобилей и высокоэнергоемких аккумуляторов.

Применяют 55-ый металл и в счетчиках заряженных частиц. Для них закупают йодит цезия. Активированный таллием, он регистрирует почти любые излучения. Цезиевые детекторы приобретают для атомных предприятий, геологической разведки, медицинских клиник.

Пользуются приборами и космической отрасли. В частности, «Марс-5» изучил элементарный состав поверхности красной планеты именно благодаря гамма-спектрометру на основе цезия.

Способность улавливать инфракрасные лучи – причина для применения в оптике. В нее добавляют бромид цезия и оксид цезия . Он есть в биноклях и очках ночного видения, оружейных прицелах. Последние, срабатывают даже из космоса.

137-ой изотоп элемента тоже нашел достойное применение. Радиоактивный нуклид не только загрязняет атмосферу, но и стерилизует продукты, точнее, тару для них. Полураспад цезия долог. Можно обработать миллионы консервов. Порой, стерилизуют и мясо – туши птиц и .

Обрабатывать 137-ым изотопом можно и медицинские инструменты, лекарства. Нуклид нужен и в самом лечении, если дело касается опухолей. Метод называется радиотерапией. Препараты с цезием дают и при шизофрении, дифтерии, язвенных заболеваниях, некоторых видах шока.

Металлурги нуждаются в чистом элементе. Его примешивают к сплавам и . Добавка повышает их жаропрочность. У , к примеру, она увеличивается втрое при цезия всего в 0,3%.

Растет и прочность на разрыв, стойкость к коррозии. Правда, промышленники ищут альтернативу 55-му элементу. Слишком уж он дефицитен, не выгоден в цене.

Добыча цезия

Металл выделяют из поллуцита. Это водный алюмосиликат и цезия. Минералов, содержащих 55-ый элемент единицы. В поллуците процентовка цезия делает добычу экономически обоснованной. Немало металла и в авогардите. Однако, этот камень сам столь же редок, как и цезий.

Промышленники вскрывают поллуцит хлоридами или сульфатами . Цезий из камня выделяют, погружая его в подогретую соляную кислоту. Туда же засыпают хлорид сурьмы. Образуется осадок.

Его промывают горячей водой. Итог операций – хлорид цезия. При работе с сульфатом, поллуцит погружают в серную кислоту. На выходе образуются алюмоцезиевые квасцы.

В лабораториях применяют другие методы получения 55-го элемента. Их 3, все трудоемки. Можно нагреть дихромат и хромат цезия с цирконием. Но, для этого требуется вакуум. Он нужен и для разложения азида цезия. Без вакуума обходятся лишь при нагреве специально подготовленного кальция и хлорида 55-го металла.

Цена цезия

В России добычей и переработкой поллуцита занимается Завод редких металлов в Новосибирске. Продукцию предлагает и Горно-обогатительный комбинат Ловозерска. Последний предлагает цезий в ампулах по 10 и 15 миллиграммов.

Они идут в пачках по 1000 штук. Минимальная цена – 6000 рублей. Севредмет тоже торгует ампулами, но готов осуществлять поставки меньших объемов, — от 250-ти граммов.

Если чистота металла 99,9%, за один грамм, как правило, просят в районе 15-20-ти долларов США. Речь идет об устойчивом 133-ем изотопе 55-го элемента периодической системы .

Молярная теплоёмкость 32,21 Дж /( ·моль) Теплопроводность 35,9 Вт /( ·) Температура плавления 301,6 Теплота плавления 2,09 кДж /моль Температура кипения 951,6 Теплота испарения 68,3 кДж /моль Молярный объём 70,0 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая
объёмноцентрированная Параметры решётки 6,140 Отношение c/a n/a Температура Дебая 39,2
Cs 55
132,90545
6s 1
Цезий

Получение

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs). Кроме того, в виде примесей цезий входит в ряд алюмосиликатов : лепидолит , флогопит, биотит , амазонит , петалит , берилл , циннвальдит , лейцит , карналлит . В качестве промышленного сырья используются поллуцит и лепидолит.

При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой , добавление хлорида сурьмы SbCl 3 для осаждения соединения Cs 3 и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором - минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO 4) 2 · 12H 2 O.

Физические свойства

Цезий - мягкий металл, из-за низкой температуры плавления (T пл =28,6 °C) при комнатной температуре находится в полужидком состоянии. Металлический цезий представляет собой вещество золотисто-белого цвета, по внешнему виду похожее на золото , но светлее. Расплав представляет подвижную жидкость , при этом его цвет становится более серебристым. Жидкий цезий хорошо отражает свет. Кристаллизуется цезий в объёмно-центрированную кубическую решётку (тип α-железа), при высоком давлении может переходить в другие полиморфные модификации . Цезий - парамагнетик .

Химические свойства

Цезий является наиболее химически активным металлом . На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO 2 . При ограниченном доступе кислорода окисляется до оксида Cs 2 O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H 2 . Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами , галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами , сухим льдом (взаимодействие протекает с сильным взрывом). Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом , но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции).Все образуемые цезием соли - нитраты , хлориды , бромиды , фториды , йодиды , хроматы , манганаты , перхлораты , хлораты , азиды , цианиды , карбонаты и т. д - чрезвычайно легко растворимы в воде и ряде органических растворителей , наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития , не вступает в реакцию с азотом при обычных условиях и, в отличие от бария , кальция , магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия - сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо , кобальт , никель , а также платину , корунд и диоксид циркония , и даже постепенно разрушает серебро и золото (в присутствии кислорода - очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и его некоторые сплавы.

Применение

Цезий нашёл применение только в начале XX века, когда были обнаружены его минералы и разработана технология получения в чистом виде. В настоящее время цезий и его соединения используются в электронике , радио- , электро- , рентгенотехнике , химической промышленности , оптике, медицине , ядерной энергетике . В основном применяется стабильный природный цезий-133, и ограниченно - его радиоактивный изотоп цезий-137, выделяемый из суммы осколков деления урана , плутония , тория в реакторах атомных электростанций .

Фотоэлементы, фотоумножители

Медицина

На основе соединений цезия созданы эффективные лекарственные препараты для лечения язвенных заболеваний, дифтерии, шоков, шизофрении.

Применение цезия в энергетике и космосе

Значительной сферой применения металлического цезия являются новейшие и стремительно развивающиеся работы и производство энергетических агрегатов. Цезиевая плазма является важнейшей и неотъемлемой компонентой МГД-генераторов с повышенным КПД до 65-70 %. Ионизированые пары цезия являются лучшим рабочим телом для ионных двигателей в космосе. [источник не указан 416 дней ]

Сплав цезия с барием является лучшим [источник не указан 416 дней ] из известных материалов для выпрямления сверхмощных потоков электроэнергии (превосходя в этом отношении ртутные и полупроводниковые вентили) и в будущем займёт важнейшее положение в большой энергетике и космических электроракетных установках. Одним из его отличительных особенностей является возможность выпрямления и коммутирования чудовищных мощностей в импульсном режиме.В виду того что цезий имеет большую теплоёмкость, теплопроводность и ряд собственных сплавов с очень низкой температурой плавления (цезий 94,5 и натрий 5,5 %) −30 °C, то используется в качестве теплоносителя в атомных реакторах и высокотемпературных турбоэнергетических установках, а сплав состава натрий 12 %, калий 47 %, цезий 41 % обладает рекордно низкой температурой плавления −78 °C.

В течение последних 25 лет цезий исследуется в мире как Материя Ридберга (конденсат возбуждённых состояний цезия КВС), по предварительным оценкам сделанным экспериментально в Швеции и России, КВС цезия при температуре менее 700 K имеет весьма высокую электропроводность и работу выхода менее 1эВ и вплоть до 0,2 эВ, что позволяет применить металлический цезий для производства высокоэффективных источников тока, электростанций, утилизации тепла (например тепла продуктов сгорания автомобилей). Конденсат возбуждённых состояний цезия образуется при прокачке его паров сквозь перфорированный (губчатый) материал коллектора имеющий на своей поверхности тончайший слой углерода или окислов (например карбид гафния, ниобия или тантала). Для исследования КВС цезия применяется растровое лазерное сканирование, оптическая спектроскопия и съёмка видеокамерой, и уже в ходе первых исследований были обнаружены аномальные явления проявившие себя в образовании кластеров капельной плазменной фракции окрашенной в зеленые тона и резком уменьшении работы выхода коллектора.

Металлургия

Металлический цезий на заре поисков его ассимиляции в промышленности обнаружил свойство резко повышать жаропрочность магния и алюминия, так например добавка 0,3-0,4 % цезия к магнию в 3 раза повышает [источник не указан 416 дней ] его прочность на разрыв и резко улучшает его коррозионную стойкость, но ввиду весьма высокой цены, и наличия других более дешёвых металлов для легирования он не применяется для этой цели.

Высокотемпературная сверхпроводимость

Недавно найдено что продукты внедрения цезия в графит (фуллериды) обладают свойством высокотемпературной сверхпроводимости и интенсивно изучаются.

Производство лазеров

В последние годы цезий так же весьма интенсивно изучается как рабочее тело и излучательная среда для создания лазеров имеющих рекордные значения пиковых мощностей как в непрерывном так и в импульсном режиме работы, и в значительной степени этот интерес и огромные капиталовложения направлены на разработку лазеров для вооружения и в области получения термоядерной энергии, но… в равной степени интересу и капиталовложениям противопоставлена закрытость и минимум информации для печати (обусловленных некоторой соревновательностью развитых в технологическом отношении стран, заинтересованных в этом направлении).

Производство электродов

Совершенно особое место и очень большую область применения и расхода металлического цезия в последние годы представляет его использование в качестве добавки к вольфраму для производства электродов мощных осветительных дуговых ламп и электродов применяемых для сварки алюминия, магния, титана, церия, нержавеющей стали и целого ряда активных сплавов в среде аргона, гелия и водорода. Применение этой добавки (около 0,1-0,35 %) в значительной степени облегчает зажигание и горение дуги при низком напряжении.

Термоэлектрические материалы

Совсем недавно цезий приобрёл новое направление своей ассимиляции (освоение практикой), и это направление является революционным прорывом для разработки новейшей компьютерной техники, генераторов энергии, холодильников глубокого холода (криогенных) и так далее. Оказалось что сплав сверхчистого висмута , сверхчистого теллура , и сверхчистого цезия обладает поистине фантастическими возможностями для создания охладителей основанных на эффекте Пельтье [источник не указан 416 дней ] . Как показывает практический опыт эксплуатации этого нового полупроводникового материала, его использование наиболее эффективно именно в новейших суперпроцессорах на основе нитрида бора и монокристаллического алмаза в качестве теплоотвода и основы схемы. Применение этого материала открывает широкие возможности для повышения быстродействия - то есть «ускорения холодом». Так в опытах с этим новым полупроводниковым материалом удалось на сегодняшний день получить охлаждение вплоть до −237 °C, и это в свою очередь позволяет создавать микрохолодильники для охлаждения мощных процессоров (в том числе нанопроцессоров), холодильники для глубокой заморозки тканей и клеточного материала, сжижения газов, охлаждения боевых ультрафиолетовых и инфракрасных лазерных систем, тепловизоров , а в перспективе для охлаждения высокотемпературных сверхпроводников для высокоскоростного транспорта на «магнитной подушке». Очень важным направлением использования данного полупроводника ряд специалистов рассматривает создание лазеров на монокристаллах алмаза с очень высоким КПД , и возможностью работы в пикосекундном диапазоне, что очень важно для конструирования оптоэлектронных систем для обработки информации. Ведущей страной в этой новой области использования является Япония .

Оптические материалы микроэлектроники

Триборат цезия и триборат цезия-лития, а так же фосфат цезия-галлия используются как специальные оптические материалы в новейших областях радиоэлектроники.

Пьезоэлектрические материалы

Дигидрофосфат цезия в 7 раз более эффективный пьезоэлектрик , чем кварц [источник не указан 416 дней ] , и, несмотря на то, что несколько уступает по эффективности сегнетовой соли , тем не менее более устойчив к влаге чем последняя.

Атомно-водородная энергетика

Совершенно исключительное значение металлический цезий играет [источник не указан 416 дней ] в атомно-водородной энергетике при разложении воды термохимическим способом (цикл «Аэроджет Дженерал»).

Защита воздушных судов

Очень важной областью применения цезия является производство специальных ламп [источник не указан 416 дней ] с электронным управлением, для создания тепловых помех для ракет противника. Такие цезиевые лампы устанавливаются на современных боевых самолётах и в значительной степени повышают живучесть самолетов в бою.

Прочие области ассимиляции цезия

Фторид цезия применяют для получения фторорганических соединений [источник не указан 416 дней ] , пьезоэлектрической керамики, специальных стекол. Хлорид цезия - электролит в топливных элементах, флюс при сварке молибдена.

Биологическая роль

[источник не указан 416 дней ]

Цезий и рубидий относят к малоизученным микроэлементам. Эти элементы находятся в окружающей среде и поступают в организм различными путями, в основном с пищей. Установлено их постоянное наличие в организме. Однако до сих пор эти элементы не считаются биотическими.

Рубидий и цезий найдены во всех исследованных органах млекопитающих и человека. Поступая в организм с пищей, они быстро всасываются из желудочно-кишечного тракта в кровь. Средний уровень рубидия в крови составляет 2,3-2,7 мг/л, причём его концентрация в эритроцитах почти в три раза выше, чем в плазме. Рубидий и цезий весьма равномерно распределяется в органах и тканях, причём, рубидий, в основном, накапливается в мышцах, а цезий поступает в кишечник и вновь реабсорбируется в нисходящих его отделах.

Известна роль рубидия и цезия в некоторых физиологических процессах. В настоящее время установлено стимулирующее влияние этих элементов на функции кровообращения и эффективность применения их солей при гипотониях различного происхождения. Исходя из выраженного гипертензивного и сосудосуживающего действия, соли цезия ещё в 1888 г. впервые были применены С. С. Боткиным при нарушениях функции сердечно-сосудистой системы. В лаборатории И. П. Павлова С. С. Боткиным было установлено, что хлориды цезия и рубидия вызывают повышение артериального давления на длительное время и, что это действие связано, главным образом, с усилением сердечно-сосудистой деятельности и сужением периферических сосудов.

Установлено адреноблокирующее и симпатомиметическое действие солей цезия и рубидия на центральные и периферические адренореактивные структуры, которое особенно ярко выражено при подавлении тонуса симпатического отдела центральной нервной системы и дефиците катехоламинов. Солям этих металлов свойственен, главным образом, β-адреностимулирующий эффект.

Соли рубидия и цезия оказывают влияние на неспецифические показатели иммунобиологической резистентности - они вызывают значительное увеличение титра комплемента, активности лизоцима, фагоцитарной активности лейкоцитов. Есть указание на стимулирующее влияние солей рубидия и цезия на функции кроветворных органов. В микродозах они вызывают стимуляцию эритро- и лейкопоэза (на 20-25 %), заметно повышают резистентность эритроцитов, увеличивают содержание гемоглобина в них.

Хлорид рубидия и хлорид цезия участвуют в газовом обмене, активируя деятельность окислительных ферментов, соли этих элементов повышают устойчивость организма к гипоксии.

Цезий в живых организмах

Цезий в живых организмах - постоянный химический микроэлемент организма растений и животных. Морские водоросли например содержат от 0,01-0,1 мкг цезия в 1 г сухого вещества, наземные растения - 0,05-0,2. Животные получают цезий с водой и пищей. В организме членистоногих около 0,067-0,503 мкг/г цезия, пресмыкающихся - 0,04, млекопитающих - 0,05. Главное депо цезия в организме млекопитающих - мышцы, сердце, печень; в крови - до 2,8 мкг/л цезий относительно малотоксичен; его биологическая роль в организме растений и животных окончательно не раскрыта.

Цезий-137 - радиоактивный изотоп цезия, испускающий бета излучение и гамма-кванты, и один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления Cs-137 наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных Cs-137 накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и североамериканских водоплавающих птиц. Накапливается в грибах, ряд которых (маслята, моховики, свинушка, горькушка, поль­ский гриб) считается «аккумуляторами» радиоцезия

Цезий (лат. Caesium), Cs, химический элемент I группы периодической системы Менделеева; атомный номер 55, атомная масса 132, 9054; серебристо-белый металл, относится к щелочным металлам. В природе встречается в виде стабильного изотопа 133 Cs. Из искусственно полученных радиоактивных изотопов с массовыми числами от 113 до 148 наиболее устойчив 137 Cs с периодом полураспада Т ½ = 33 года.

Историческая справка. Цезий открыт в 1860 году Р. В. Бунзеном и Г. Р. Кирхгофом в водах Дюркхеймского минерального источника (Германия) методом спектрального анализа. Назван Цезий (от лат. caesius - небесно-голубой) по двум ярким линиям в синей части спектра. Металлический Цезий впервые выделил шведский химик К. Сеттерберг в 1882 при электролизе расплавленной смеси CsCN и Ва.

Распространение Цезия в природе. Цезий - типичный редкий и рассеянный элемент. Среднее содержание Цезия в земной коре (кларк) 3,7·10 -4 % по массе. В ультраосновных горных породах содержится 1·10 -5 % Цезия, в основных - 1·10 -4 %. Цезий геохимически тесно связан с гранитной магмой, образуя концентрации в пегматитах вместе с Li, Be, Та, Nb; в особенности в пегматитах, богатых Na (альбитом) и Li (лепидолитом). Известно два крайне редких минерала Цезия - поллуцит и авогадрит (К,Cs)(BF) 4 ; наибольшая концентрация Цезия в поллуците (26-32% Cs 2 O). Большая часть атомов Цезия изоморфно замещает К и Rb в полевых шпатах и слюдах. Примесь Цезия встречается в берилле, карналлите, вулканическом стекле. Слабое обогащение Цезия установлено в некоторых термальных водах. В целом Цезий - слабый водный мигрант. Основное значение в истории Цезия имеют процессы изоморфизма и сорбции крупных катионов Цезия. В геохимическом отношении Цезий близок к Rb и К, отчасти к Ва.

Физические свойства Цезия. Цезий - очень мягкий металл; плотность 1,90 г/см 3 (20 °С); t пл 28,5 °С; t кип 686 °С. При обычной температуре кристаллизуется в кубической объемноцентрированной решетке (а = 6,045Å). Атомный радиус 2,60 Å, ионный радиус Cs + 1,86 Å. Удельная теплоемкость 0,218 кдж/(кг·К) ; удельная теплота плавления 15,742 кдж/кг (3,766 кал/г); удельная теплота испарения 610,28 кдж/кг (146,0 кал/г); температурный коэффициент линейного расширения (0-26 °С) 9,7·10 -5 ; коэффициент теплопроводности (28,5°С) 18,42 вт/(м·К) ; удельное электросопротивление (20 °С) 0,2 мком·м; температурный коэффициент электросопротивления (0-30°С) 0,005. Цезий диамагнитен, удельная магнитная восприимчивость (18 °С) -0,1·10 -6 . Динамическая вязкость 0,6299 Мн·сек/м 2 (43,4 °С), 0,4065 Мн·сек/м 2 (140,5 °С). Поверхностное натяжение (62 °С) 6,75·10 -2 н/м (67,5 дин/см); сжимаемость (20 °С) 7,05Мн/м 2 (70,5 кгс/см 2). Энергия ионизации 3,893 эв; стандартный электродный потенциал - 2,923 в, работа выхода электронов 1,81 эв. Твердость по Бринеллю 0,15 Мн/м 2 (0,015 кгс/см 2).

Химические свойства Цезия. Конфигурация внешних электронов атома Цезия 6s 1 ; в соединениях имеет степень окисления + 1. Цезий обладает очень высокой реакционной способностью. На воздухе мгновенно воспламеняется с образованием пероксида Cs 2 O 2 и надпероксида CsO 2 ; при недостатке воздуха получается оксид Cs 2 O; известен также озонид CsО 3 . С водой, галогенами, углекислым газом, серой, четыреххлористым углеродом Цезий реагирует со взрывом, давая соответственно гидроксид CsOH, галогениды, оксиды, сульфиды, CsCl. С водородом взаимодействует при 200-350 °С и давлении 5-10 Мн/м 2 (50-100 кгс/см 2), образуя гидрид. Выше 300 °С Цезий разрушает стекло, кварц и других материалы, а также вызывает коррозию металлов. Цезий при нагревании соединяется с фосфором, кремнием, графитом. При взаимодействии Цезия со щелочными и щелочноземельными металлами, а также с Hg, Au, Bi и Sb образуются сплавы; с ацетиленом - ацетиленид Cs 2 C 2 . Большинство простых солей Цезия, особенно CsF, CsCl, Cs 2 CO 3 , Cs 2 SO 4 , CsH 2 PO 4 , хорошо растворимы в воде; малорастворимы CsMnO 4 , CsClO 4 и Cs 2 Cr 2 O 7 . Цезий не принадлежит к числу комплексообразующих элементов, но он входит в состав многих комплексных соединений в качестве катиона внешней среды.

Получение Цезия. Цезий получают непосредственно из поллуцита методом вакуумтермического восстановления. В качестве восстановителей используют Са, Mg, Al и других металлы.

Различные соединения Цезий также получают путем переработки поллуцита. Сначала руду обогащают (флотацией, ручной рудоразработкой и т. п.), а затем выделенный концентрат разлагают либо кислотами (H 2 SO 4 , HNO 3 и другими), либо спеканием с оксидно-солевыми смесями (например, СаО с СаCl 2). Из продуктов разложения поллуцита Цезий осаждают в виде CsAl(SO 4) 2 ·12H 2 O, Cs 3 и других малорастворимых соединений. Далее осадки переводят в растворимые соли (сульфат, хлорид, иодид и других). Завершающим этапом технологического цикла является получение особо чистых соединений Цезия, для чего применяют методы кристаллизации из растворов Cs, Cs 3 , Cs 2 и сорбцию примесей на окисленных активированных углях. Глубокую очистку металлического Цезия производят методом ректификации. Перспективно получение Цезия из отходов от переработки нефелина, некоторых слюд, а также подземных вод при добыче нефти; Цезий извлекают экстракционными и сорбционными методами.

Хранят Цезий либо в ампулах из стекла "пирекс" в атмосфере аргона, либо в стальных герметичных сосудах под слоем обезвоженного вазелинового или парафинового масла.

Применение Цезия. Цезий идет для изготовления фотокатодов (сурьмяно-цезиевых, висмуто-цезиевых, кислородно-серебряно-цезиевых), электровакуумных фотоэлементов, фотоэлектронных умножителей, электронно-оптических преобразователей. Изотопы Цезия применяют: 133 Cs в квантовых стандартах частоты, 137 Cs в радиологии. Резонансная частота энергетического перехода между подуровнями основного состояния 133 Cs положена в основу современного определения секунды.

Цезий в организме. Цезий - постоянный химический микрокомпонент организма растений и животных. Морские водоросли содержат 0,01-0,1 мкг Цезия в 1 г сухого вещества, наземные растения - 0,05-0,2. Животные получают Цезий с водой и пищей. В организме членистоногих около 0,067-0,503 мкг/г Цезия, пресмыкающихся - 0,04, млекопитающих -0,05. Главное депо Цезия в организме млекопитающих - мышцы, сердце, печень; в крови - до 2,8 мкг/л. Цезий относительно малотоксичен.

Цезий-137 (137 Cs) - бета-гамма-излучающий радиоизотоп Цезий; один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимуществено в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления 137 Cs наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных 137 Cs накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и северных американских водоплавающих птиц. В организме человека l37 Cs распределен относительно равномерно и не оказывает значительного вредного действия.