Биохимический метод исследования. Методы исследования, применяемые в генетике Заболевание для диагностики которого используется биохимический метод

В самостоятельную науку биологическая химия выделилась почти 100 лет назад, но многие биохимические процессы известны людям с давних времен и использовались в различных областях производства, сначала кустарного, а в последствии и промышленного масштаба. Например, на биохимических реакциях основано хлебопечение, сыроварение, изготовление вин, выделка кожи.
Сыроварением и изготовлением кисломолочных продуктов люди занимались еще до нашей эры, об этом упоминается даже в поэмах Пэмера. В процессе приготовления кисломолочных продуктов большую роль играют молочнокислые бактерии.
Использование лекарственных растений для лечения болезней привело к поиску действующего вещества и заставило задуматься о том, что с ним происходит в организме человека. Употребление плодов, зелени, изготовление растительных красок также привлекло интерес к химическому составу растений. Многие лекарственные вещества различного происхождения описаны в труде великого арабского врачевателя Авиценны «Канон врачебной науки».
Известный итальянский художник Леонардо да Винчи проводил различные опыты и сделал заключение о том, что живые организмы могут существовать только в той атмосфере, в которой может появиться пламя. Теперь уже всем известно, что почти всем жи4
вым организмам необходим кислород, содержащийся в атмосферном воздухе и обеспечивающий процесс горения. В конце XVIII в. было открыто значение дыхания и объяснена роль кислорода для живого организма.
Изучение химического состава живых организмов позволило английскому врачу и химику У. Прауту в 1827 г. разделить молекулы на белки, жиры и углеводы.
Химический состав организма человека вызывал большой интерес в научном мире. Немецкий химик Ф. Велер в 1828 г. впервые получил такое органическое вещество, как мочевина, сначала из аммиака и циановой кислоты, а затем из аммиака и углекислого газа. В 1882 г. ученый И.Я. Горбачевский (Украина) получил мочевую кислоту из глицина, а в дальнейших работах выявил процесс образования мочевой кислоты в живых организмах: мочевина и мочевая кислота образуются в результате превращения белков в организме, и их уровень в крови является важным показателем состояния белкового обмена. И. Я. Горбачевский известен и другими исследованиями в области биохимии (получение метилмочевой кислоты, креатина, открытие ксантиноксидазы). Именно он доказал то, что белки состоят из аминокислот, разработал способ определения азота в моче и других биологических материалах.
В 1854 г. французский химик П. Бертло получил в ходе лабораторных опытов жиры, а в 1861 г. русский химик А. М. Бутлеров высказал теорию строения органических соединений. Изучением микроорганизмов и вызываемого ими брожения занимался французский микробиолог Л. Пастер. Брожение - это расщепление углеводов под воздействием ферментов, происходящее с участием кислорода или без него и приводящее к образованию энергии, которую микроорганизмы используют для своей жизнедеятельности.
В организме человека брожение осуществляется в кишечнике населяющими его микроорганизмами, под воздействием выделяемых ими ферментов. Изучением брожения занимался и немецкий химик Э. Бухнер, который доказал, что процесс расщепление сахара имеет более химическую природу, чем биологическую, так как происходит с участием не только дрожжей (живых грибков), но и экстракта из них.
Большой вклад в изучение белков внес немецкий химик Э. Фишер, определивший строение и свойства большинства аминокислот. Также он установил химическую связь между аминокислотами в белках, что явилось основой пептидной теории строения белков. В 1926 г. американский биохимик Д. Самнер получил уреазу (фермент) и доказал, что он является белком. Дальнейшее изучение ферментов привело к открытию строения витаминов и определило превращение их в организме. Были изучены гликолиз (бескислородное расщепление углеводов) и цикл трикарбоновых кислот (циклические реакции, в ходе которых образуются вещества с большим запасом энергии). Открытие нуклеиновых кислот в составе белков и модели строения ДНК стало прорывом для биологии и медицины (биохимии, генетики). За это в 1953 г. английский врач и биолог Ф. Крик и американский биолог Д. Уотсон были удостоены Нобелевской премии.
Все эти открытия и достижения, а также дальнейшие биохимические исследования позволили описать обмен веществ в организме человека. При различных патологических состояниях происходят изменения химического состава в клетках, тканях, биологических жидкостях и выделениях. Наиболее часто биохимическому анализу подвергают кровь, мочу, кал, слюну, ликвор, желчь и желудочный сок. Реже исследуют химический состав красного костного мозга, околоплодной жидкости, пота, рвотных масс, волос, ногтей и спермы.
Химический состав биологического материала может изменяться как количественно (увеличение или понижение содержания каких-либо веществ, нарушение соотношения между ними), так и качественно (выявление отсутствующих или не определяющихся в норме веществ). В связи с этим биохимический анализ в некоторых случаях проводят прицельно, определяя уровень вещества в исследуемом материале или выявляя только его присутствие.
Многие наследственные заболевания связаны с нарушением обмена веществ. Часто это вызвано генетически обусловленным дефицитом каких-либо ферментов, в таком случае биохимические исследования помогают поставить точный диагноз. Иногда для этого подвергают анализу и кусочки тканей внутренних органов.
Биохимические исследования позволяют выявить некоторые нарушения обмена веществ уже в период внутриутробного развития или сразу после рождения ребенка, при этом возможно раннее начало лечения наследственных заболеваний, что дает возможность нормализовать состояние плода или ребенка, наилучшим образом обеспечить условия для его развития в соответствии с возрастом.
С помощью распространенных биохимических анализов можно выявить наличие нарушений обмена веществ, а для постановки точного диагноза проводят более детальные исследования. Многие биохимические анализы, позволяющие выявить наследственные нарушения обмена веществ, угрожающие жизни или развитию детей, в настоящее время проводят массово в форме скрининг-тестов. Например, всех новорожденных в роддоме обследуют на фенилкетонурию. Кроме того, с помощью биохимических тестов выявляют такие за
болевания, как энзимопатии, гликогенозы, муковисцидоз, адреногенитальный синдром. Исследованию в таких случаях подвергают наиболее доступный материал от больного (кровь и мочу).
После скринингового обследования делают уточняющие биохимические анализы, определяют количество вещества, свидетельствующего о заболевании, в единице исследуемого материала и следят за его уровнем в организме в дальнейшем.
Современные биохимические лаборатории оснащены компьютерами и анализаторами, которые делают возможным проводить одновременно большое число исследований с высокой точностью результатов и их расшифровкой. Биохимические анализы выполняют на основе таких методов, как хроматография, электрофорез и центрифугирование.

Хроматография

Хроматография - это метод установления химического состава смеси, основанный на определенном распределении веществ, находящихся в разном агрегатном состоянии (газ, жидкость, твердые частицы) между двумя фазами (подвижной или неподвижной). К подвижной фазе относятся газы и жидкости, а к неподвижной - твердые вещества. В определенных условиях вещества в смеси начинают распределяться по фазам: газы перемещаются вверх, твердые частицы осаждаются, между ними скапливается слой жидкости, некоторые жидкости тоже могут расслаиваться. Вещества подвижной фазы перемещаются с различной скоростью, что тоже позволяет судить о составе смеси. Распределяясь в анализаторе по фазам, компоненты смеси образуют цветовой столб, при этом для каждого вещества существуют свои цветовые характеристики.
Основоположник метода - русский биолог М. С. Цвет, который, пропуская смеси красящих веществ растительного происхождения через бесцветное впитывающее вещество, обнаружил, что оно окрашивается слоями с различными цветовыми характеристиками. Такой цветовой столбик был назван хромограммой.
В настоящее время существуют множество видов хроматографии. Например, адсорбционная хроматография основана на использовании адсорбентов (твердых впитывающих веществ). Разные вещества впитываются адсорбентами по-разному, именно выявление этих особенностей и позволяет оценить качественный состав исследуемой смеси. Распределительная хроматография основана на разной растворимости веществ, находящихся в разной фазе.
Ионообменная хроматография основана на проникновении ионов подвижной фазы (исследуемой жидкости) в вещество неподвижной фазы, которое происходит за счет электростатического взаимодействия между ионами этих веществ. Способность твердых веществ выпадать в осадок позволяет проводить осадочную хроматографию.
Существует еще эксклюзионная хроматография, при которой распределение веществ обеспечивается за счет разной проницаемости молекул жидкой фазы в гель (неподвижную фазу).

Электрофорез

Биохимические анализы, основанные на принципе электрофореза, в медицинской практике используют очень широко, так как одновременно информативны и экономичны. Метод электрофореза, разработанный в 1937 г. шведским биохимиком А. Тиселиусом, позволяет разделять макромолекулы по фракциям и основан на свойствах макромолекул при растворении в воде приобретать электрический заряд. При воздействии на раствор электрического поля молекулы притягиваются к электроду с противоположным зарядом.
Скорость перемещения молекул зависит от их размера и электрического заряда. Так, молекулы белка амфотерны, т. е. имеют положительный заряд на одном конце и отрицательный на другом, поэтому их скорость и направление перемещения зависят от среды (кислая или щелочная). На заряд белковых молекул в средах с одинаковой кислотностью влияют аминокислоты, входящие в их состав. При распаде белковой молекулы образуются цепи аминокислот с разным электрическим зарядом, которые под воздействием электрического поля притягиваются к противоположно заряженному электроду и таким образом разделяются.
Гель - это смесь нескольких веществ, обладающая свойствами твердых тел (сохраняет форму), но очень пластичных (деформируется). Одно вещество при этом всегда состоит из крупных молекул, образующих сетку (каркас), заполненную молекулами малого размера второго вещества.
Для упрощения разделения веществ электрофорез проводят на фильтровальной бумаге, целлюлозе, гелях и агарозе, в этом случае гели выступают в качестве ионного фильтра: мелкие ионы проникают в поры геля, а крупные - нет, что дает дополнительную информацию для исследования.
Наиболее часто электрофорез применяют для разделения белков по фракциям (все белки крови подразделяются на альбумины и несколько видов глобулинов). При многих заболеваниях изменяется не только общее количество белка в крови, но и соотношение его различных фракций. Результаты таких исследований важны для диагностики заболеваний печени, почек, злокачественных опухолей, нарушений иммунитета, инфекционных заболеваний и наследственных болезней.

Центрифугирование

С помощью центрифуги можно разделить жидкие смеси с компонентами разной удельной плотности, так как при очень быстром вращении смеси расслаиваются и частицы разных компонентов в центробежном поле осаждаются с разной скоростью, которая зависит от их
размера и плотности.
Например, при центрифугировании крови в пробирке образуются несколько слоев: верхний желтый слой - плазма, нижний темный слой - клетки крови (эритроциты, лейкоциты и тромбоциты). При этом у границы жидкости можно заметить тонкий сероватый слой тромбоцитов.
Вещества, имеющие диагностическое значение, могут находиться в клетках крови или в плазме, некоторые химические элементы и вещества определяются и там, и там, поэтому разделение крови по фракциям позволяет провести точную диагностику.
Центрифугированию можно подвергнуть любые неоднородные жидкие среды, при этом оно подразделяется на препаративное и аналитическое.
Препаративное центрифугирование
Проводят с целью получения определенных компонентов из биологического материала для дальнейшего биохимического анализа. Такими компонентами могут быть клетки, их органеллы (митохондрии, рибосомы, ядра и др.) и макромолекулы (белки, ДНК и др.). Этот вид подготовки материала к дальнейшему исследованию применяют более часто, чем последующий.
Аналитическое центрифугирование
Проводят для выявления характеристик однородного материала, например, макромолекул. Материал центрифугируют, вследствие чего под контролем оптических систем происходит осаждение частиц. При этом можно определить их однородность, молекулярную массу, структуру, так как форма и масса частиц оказывают влияние на скорость осаждения. Проводя расчеты по стандартным формулам, можно вычислить эти параметры и составить характеристики исследуемого материала.

Биохимические методы направлены на выявление биохимического фенотипа организма. Эти методы позволяют диагностировать наследственные болезни, обусловленные генными мутациями. Биохимические показатели (первичный белковый продукт гена, накопление патологических метаболитов внутри клетки) отражают сущность болезни более адекватно, чем клинические симптомы. С помощью биохимических методов описано более 1000 врожденных болезней обмена веществ. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектами ферментов, структурных и транспортных белков. Дефекты ферментов устанавливают путем определения содержания в биологических средах (например, моче и крови) продуктов метаболизма, являющихся продуктом функционирования данного белка.

Дефицит конечного продукта, сопровождающийся накоплением промежуточных и продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме. Биохимические методы многоступенчаты. Для их проведения требуется аппаратура разных классов. Объектами биохимической могут быть моча, пот, плазма и форменные элементы крови, культуры клеток (фибробласты, лимфоциты). В связи с многообразием биохимических методов, применяемых в лабораторной диагностике наследственных болезней, для эффективного их использования применяется определенная система. Биохимическую диагностику проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором — более точными и сложными методами уточняют диагноз заболевания. Первый этап включает качественные и количественные тесты с мочой и кровью на белок, кетокислоты, цистин и гомоцистин, креатинин и другие показатели. Фактически такие исследования можно проводить в каждой больнице. Показания их применения достаточно широкие, стоимость каждого анализа невысокая. Второй этап основан на более точных методах, позволяющих обнаружить большие группы биохимических аномалий. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушения обмена аминокислот, олигосахаридов и гликозаминогликанов (мукополисахаридов). Газовая хроматография применяется для выявления наследственных болезней обмена органических кислот.

С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий. Несмотря на сложность и дороговизну, биохимическим методам принадлежит ведущая роль в диагностике моногенных наследственных болезней. Современные высокоточные технологии (жидкостная хроматография, масс-спектрометрия, магнитная резонансная спектроскопия, бомбардировка быстрыми нейтронами) позволяют идентифицировать любые метаболиты, специфические для конкретной наследственной болезни. Показаниями для применения биохимических методов диагностики у новорожденных являются такие симптомы, как судороги, кома, рвота, гипотония, желтуха, специфический запах мочи и пота, нарушения кислотно-основного состояния, остановка роста. Например, в случае фенилкетонурии применение биохимических исследований позволяет своевременно выявить патологию и начать специфические медицинские мероприятия. У детей биохимические методы используются во всех случаях подозрения на наследственные болезни обмена веществ (задержка физического и умственного развития, потеря приобретенных функций, специфическая для какой-либо болезни клиническая картина). Биохимические методы применяются для диагностики наследственных болезней и гетерозиготных состояний у взрослых (гепатолентикулярная дегенерация, недостаточность глюкозо-6-фосфатдегидрогеназы).

Биохимический метод изучения генетики человека основан на изучении характера биохимических реакций в организме и обмена веществ для установления носительства аномального гена или уточнения диагноза.
В отличие от цитогенетического метода, который позволяет изучать структуру хромосом и кариотипа в норме и диагностировать наследственные болезни, связанные с изменением их числа и нарушением организации, наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по нормальным первичным продуктам генов изучают с помощью биохимических методов.
Эти методы позволяют определить место и характер мутации по изменениям в составе затронутых мутацией белков. Например, при мутации, ведущей к замене всего одной аминокислоты в огромной молекуле переносчика кислорода — гемоглобина, возникает наследственное заболевание, получившее название серповидной анемии, при котором эритроциты принимают форму полумесяца. Исследовав аминокислотный состав гемоглобина и обнаружив замену, можно сразу поставить диагноз.
Впервые эти методы стали применять для диагностики генных болезней еще в начале XX в. В последние 30 лет их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектностью ферментов, структурных, транспортных или иных белков. Установлено большое разнообразие гемоглобинов у человека, связанное с изменением структуры его пептидных цепей, что нередко является причиной развития заболеваний. Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.
Предметами современной биохимической диагностики являются специфические метаболиты, энзимопатии, различные белки. Объектами биохимического анализа могут служить моча, пот, плазма и сыворотка крови, форменные элементы крови, культуры клеток (фибробласты, лимфоциты). Для биохимической диагностики используются как простые качественные реакции (например, хлорид железа для выявления фенилкетонурии), так и более точные методы.
Биохимическую диагностику наследственных нарушений обмена проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором — более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии. Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.
Биохимические методы изучения наследственности человека помогают обнаружить ряд заболеваний обмена веществ (углеводного, аминокислотного, липидного и др.) при помощи, например, исследования биологических жидкостей путем качественного или количественного анализа.
С помощью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных типах заболеваний удается либо определить сам аномальный белок-фермент, либо установить промежуточные продукты обмена. По результатам биохимических анализов возможно поставить диагноз болезни и определить методы лечения. Ранняя диагностика и применение различных диет на первых этапах постэмбрионального развития позволяют излечить некоторые заболевания или хотя бы облегчить состояние больных с неполноценными ферментными системами.

Биохимический метод

Биохимические методы исследования применяют при подозрении на врожденные дефекты обмена. Они достаточно сложные и дорогостоящие, поэтому исследование проводится в два этапа. На первом этапе используют более дешевые и быстрые исследования. Это так называемые скринирующие (просеивающие) экспресс-методы, позволяющие обследовать большие группы населения. Сюда относится, например, микробиологический тест Гатри для обследования всех новорожденных на фенилкетонурию. Экспресс - методом диагностики фенилкетонурии можно считать также тест Феллинга. Таким тестом на галактоземию и фруктоземию является проба Бенедикта. Для проведения подобных тестов используют кровь и мочу.

На втором этапе диагностики пользуются более сложными методами биохимии и молекулярной биологии: методами фракционирования и количественного анализа, жидкостной и газовой хроматографией, иммунохимическими методами, изучают электрофоретическую подвижность белков. Возможно прямое измерение ферментативной активности. Применяются исследования мутантных белков с помощью меченых субстратов.

Популяционно-генетический метод

Данные, полученные при клинико-генеалогическом и близнецовом методах исследования, сравниваются с данными о частоте встречаемости признака (заболевания) в общей популяции. Частота того или иного гена в конкретной популяции определяет и особенности накопления больных в семьях.

Изучение генетической структуры популяции является необходимым этапом изучения распределения наследственных болезней в семьях.

Под популяцией в генетике понимается часть населения, занимающая одну территорию на протяжении многих поколений и свободно вступающая в брак между собой. В этой группе выполняется условие панмиксии, и нет изоляционных барьеров, препятствующих свободным бракам. В такой популяции соотношение частот доминантных и рецессивных аллелей при достаточно большом размере популяции сохраняется в ряду поколений без изменений. Закон генетической стабильности выражается формулой Харди-Вайнберга:

р 2АА: 2pqAa: q2aa, или + q)2 =1, тогда (p+q)=1,

т.е. частоты доминантного А и рецессивного гена а в сумме составляют единицу и являются постоянной величиной, а соотношение доминантных гомозигот, гетерозигот и рецессивных гомозигот определяется как квадрат встречаемости доминантного аллеля, произведение доминантного и рецессивного аллелей и квадрат встречаемости рецессивного аллеля соответственно.

Популяций, полностью отвечающих требованиям идеальной генетической стабильности по Харди - Вайнбергу, в природе не существует, т.к. для выполнения выше указанных условий должны отсутствовать мутационный процесс, естественный отбор и миграция. Однако как рабочая формула закон Харди - Вайнберга с успехом используется в популяционно-генетических исследованиях, ибо в больших популяциях перечисленные процессы протекают достаточно медленно (в отсутствие войн и гуманитарных катастроф) и не вызывают сколько-нибудь значительных изменений соотношения частот аллелей.

Популяционно-генетический метод позволяет установить частоты генов болезней в популяции и частоту гетерозиготного носительства. Встречаемость гетерозиготного носительства при некоторых врожденных нарушениях обмена с аутосомно-рецессивным типом наследования показана в табл. 3.

Таблuца 3.Встречаемость гетерозиготного носительства

По распространенности частот генов и связанных с ними фенотипов можно судить об адаптивной ценности отдельных генотипов.

Благодаря бракам внутри отдельных популяций определенные гены могут ограничиваться пределами конкретных популяций либо распределяться неравномерно между различными популяциями. Если вступление в брак для любых членов популяции равновероятно, то такая популяция называется панмиксной. Если имеются препятствия (этнические, социальные, религиозные), то группы населения, различающиеся по этим параметрам, могут образовывать изоляты внутри популяции. Неизбирательные по указанным признакам браки (аутбридинг) предполагают случайный подбор супругов. Отклонения от панмиксии возникают, когда браки ассортативны, т.е. супруги подбираются по какому-либо признаку, например, по общим дефектам сенсорной сферы, опорно-двигательного аппарата или по психическому недоразвитию.

В наше время браки между индивидами, страдающими нарушениями слуха или зрения, являются скорее правилом, чем исключением. Отклонения от панмиксии происходят и тогда, когда в брак вступают родственники. Такой брак называется кровнородственным (инбридинг). Близкородственные браки между родственниками 1 степени родства (между родителями и детьми и родными братьями и сестрами) называются инцестными. Примеры таких браков можно привести лишь из истории. Так, царица Египта Клеопатра родилась от инцестного брака и состояла в браках с родными братьями. Это было связано со стремлением сохранить свою "голубую" кровь. В настоящее время такие браки повсеместно, запрещены. Запрет связан с повышенным риском выявления рецессивной и полигенной патологии. Браки между родственниками П степени родства (дядя - племянница, тетя племянник) распространены, в частности, в арабских странах, что обусловлено экономическими соображениями. В России частота кровнородственных браков не превышает 1 % и в основном в такой брак вступают двоюродные сибсы либо родственники более отдаленных степеней родства. Таким образом, степень родства между индивидуумами в различных популяциях неодинакова. Для ее оценки пользуются коэффициентом инбридинга F (Райт, 1885), определяющим вероятность идентичности по происхождению двух любых аллелей данного локуса. Например, нужно установить вероятность того, что у супругов - дяди и племянницы имеется по одному рецессивному гену фенилкетонурии, полученному от общего предка. Таким общим предком для них является бабушка или дедушка племянницы. Вероятность того, что бабушка (дедушка) передали свой ген (ФКУ) одному из своих детей, составляет 1/2. Вероятность того, что оба ребенка бабушки (дедушки) получили этот ген, составляет 1/2 х 1/2 = 1/4. Вероятность двух независимых событий равна произведению их вероятностей. Вероятность того, что один из детей бабушки передал этот ген своему ребенку, составляет также 1/2. Следовательно, коэффициент инбридинга составит 1/4 х 1/2 = 1/8. Рассуждая так, можно рассчитать, что коэффициент инбридинга для браков двоюродных сибсов составит 1/16, троюродных - 1/32, четвероюродных -1/64.

В небольших популяциях в связи с ограниченностью выбора нарастает инбредность, возникает явление "инбредной депрессии": число гетерозигот по рецессивной болезни снижается, а гомозигот (больных) повышается. Коэффициент инбридинга может быть рассчитан как для популяций, так и для пары индивидов. Еще один близкий показатель, называемый коэффициентом родства (Ф), можно рассчитать только для двух индивидов. Коэффициент родства Фху - это вероятность того, что любой ген, принадлежащий индивиду Х, идентичен гену того же локуса, у индивида У. Коэффициент родства определяет долю общих генов у пары родственников. Так, у монозиготных близнецов 100% общих генов, у родственников 1 степени родства (родитель-ребенок, родные сибсы) - 50% общих генов, у родственников 11 степени родства (дяди, тети, племянники, бабушки (дедушки), внуки) - 25% общих генов у родственников 111 степени родства (двоюродные сибсы, прадедушки (прабабушки), правнуки) - 12,5% общих генов. Таким образом, долю общих генов у родственников можно определить по формуле (1j2n), где п - степень родства.

Для определения врожденного гипотереоза в крови ребенка на 3 день жизни определяют уровень тироксина. Просеивающая программа массовой диагностики наследственных болезней применяются не только среди новорожденных. Они могут быть организованны для выявления тех болезней которые распространены в каких либо группах населения. Например с США организована просеивающая биохимическая программа по выявлению гетерозиготнвх носителей идиотии Тей-Сакса (она чаще встречается среди евреев-ашкенази). На Кипре и в Италии организовано биохимическое исследование гетерозиготных несителей талассемии .

Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни.

В селективных программах могут использоваться простые качественные реакции (например, тест с хлоридом железа для выявления фенилкетонурии или тест с динитрофенилгидрозином для выявления кетокислот в моче) или более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов. С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий .

На сегодняшний день в нашей стране внедрена программа обязательного селективного скрининга на определение наследственных болезней обмена веществ, с проведением 14ти тестов анализов мочи и крови: на белок, кетокислоты , цистин и т.д. На втором этапе, применяя методы тонкослойной хроматографии мочи и крови, можно выявить более 140 наследственных болезней обмена веществ, такие как болезни углеводного обмена, лизосомальные болезни накопления, болезни обмена металлов, аминоацидопатии и т.д.

Широкое применение нашел биохимический метод в пренатальной диагностике врожденных пороков развития. Биохимические методы включают определение уровня альфа- фетопротеина, хорионического ганадотропина в сыворотке крови беременной. Эти методы являются просеивающими для выявления врожденных пороков развития. Например, при дефектах невральной трубки повышается уровень альфа-фетопротеина.

Цитогенетический метод.

Цитогенетический метод, основанный на изучении количества и структуры хромосом в норме и при патологии.

Основными показаниями для цитогенетического исследования являются:

1) пренатальная диагностика пола плода в семьях, отягощенных заболеваниями, сцепленными с Х-хромосомой;

2) недифференцированная олигофрения (слабоумие);

3) привычные выкидыши и мертворождения;

4) множественные врожденные пороки развития у ребенка;

5) бесплодие у мужчин;

6) нарушение менструального цикла (первичная аменорея);

7) пренатальная диагностика при возрасте матери старше 35 лет.

Этот метод стал широко применяться в медицинской практике с 1956 года, когда Тио и Леван определили, что у человека 46 хромосом. Первая классификация хромосом человека, предложенная в Денвере заложила основу для последующих номенклатур хромосом.

Наиболее современной считается Международная система цитогенетической номенклатуры хромосом человека сокращенно ISCN , принятая в Вашингтоне в 1995 году.

Согласно последней номенклатуре в хромосоме длинное плечо обозначают q , а короткое p. В каждом районе хромосомы полосы и сегменты пронумерованы последовательно от центромеры к теломере. Использование метода дифференциального окрашивания хромосом позволяет выделять индивидуальный рисунок каждой хромосомы вследствие того, что в хромосоме участки эу- и гетерохроматина по-разному окрашиваются красителями.

Объектами для цитогенетического исследования служат метафазные хромосомы, которые можно изучать с помощью прямых и непрямых методов.

Прямые - это методы получения препаратов делящихся клеток без культивирования, их используют для изучения клеток костного мозга и клеток опухолей. Непрямые методы - это методы получения препаратов хромосом из культивированных в искусственных питательных средах, например, при культивировании лимфоцитов периферической крови человека.

С помощью непрямых методов возможно проводить: кариотипирование - определение количества и качества хромосом; генетический пол организма; диагностику геномных мутаций и хромосомных аберраций. Например, синдром Дауна (трисомия по 21-й хромосоме), синдром Патау (трисомия по 13-й хромосоме), синдром Эдвардса (трисомия по 18-й хромосоме), синдром «кошачьего крика» (делеция 5-й хромосомы), синдром Вольфа-Хиршхорна (частичная моносомия 4-й хромосомы).

Для изучения половых хромосом, в частности Y-хромосомы, используют специальную окраску акрихиниприт (флюоресцирующая) и исследование проводят в ультрафиолетовом свете. Y-хроматин - это сильно светящаяся точка, обнаруживается в ядрах клеток мужского организма, и число Y-телец соответствует числу Y-хромосом в кариотипе. Окончательный диагноз хромосомной болезни выставляется только после исследования кариотипа.

Чтобы быстро определить изменения числа половых хромосом применяют экспресс-метод определения полового хроматина. Половой хроматин или тельце Барра представляет собой одну из двух X-хромосом, причем в инактивированном виде. Оно выявляется в виде сгустка треугольной или овальной формы около внутренней мембраны ядерной оболочки. В норме половой хроматин обнаруживается только у женщин. При увеличении числа Х-хромосом увеличивается и количество телец Барра. При уменьшении числа Х-хромосом (синдром Шерешевского-Тернера, кариотип 45 ХО) тельце Барра отсутствует. В норме у мужчин половой хроматин не обнаруживается, его наличие может свидетельствовать о синдроме Клайнфельтера (кариотип 47 ХХY).

Цитогенетический метод применяют для пренатальной диагностики наследственных заболеваний. Для этого проводят амниоцентез, получают амниотическую жидкость с клетками кожи плода, затем клеточный материал исследуют для дородовой диагностики хромосомных аберраций и геномных мутаций, а также пола плода. Обнаружение изменение количества и структуры хромосом дает возможность своевременного прерывания беременности с целью предупреждения потомства с грубейшими аномалиями развития.