Атомные орбитали. Форма атомных орбиталей

При обсуждении химических свойств атомов и молекул - строения и реакционной способности - большую помощь в качественном решении того или иного вопроса может оказать представление о пространственной форме атомных орбиталей. В общем случае АО записываются в комплексной форме, но, используя линейные комбинации комплексных функций, относящихся к одному и тому же уровню энергии с главным квантовым числом п и с одинаковым значением орбитального момента /, можно получить выражения в действительной форме, которые можно изобразить в реальном пространстве.

Рассмотрим последовательно ряд АО в атоме водорода.

Наиболее просто выглядит волновая функция основного состояния 4^. Она имеет сферическую симметрию

Величина а определяется выражением где величина

называется радиусом Бора. Боровский радиус говорит о характерных размерах атомов. Величина 1/ос определяет масштаб характерного спада функций в одноэлектронных атомах

Из (ЗЛО) видно, что размер одноэлектронных атомов сжимается по мере роста заряда ядра обратно пропорционально значению Z. Например, в атоме Не + волновая функция будет спадать в два раза быстрее, чем в атоме водорода с характерным расстоянием, равным 0,265 А.

График зависимости *F ls от расстояния приведен на рис. 3.3. Максимум функции *Fj находится в нуле. Нахождение электрона внутри ядра не должно вызывать большого удивления, так как ядро нельзя представлять в виде непроницаемой сферы.

Максимальная вероятность обнаружить электрон на некотором расстоянии от ядра в основном состоянии атома водорода приходится на г = а 0 = 0,529 А. Эту величину можно найти следующим образом. Вероятность найти электрон в некотором малом объеме А V равна |*Р| 2 ДЙ. Объем AV полагаем настолько малым, что значение волновой функции можно считать постоянным в пределах этого малого объема. Нас интересует вероятность нахождения электрона на расстоянии г от ядра в тонком слое толщиной Аг. Так как вероятность нахождения электрона на расстоянии г не зависит от направления и конкретное направление нас не интересует, то нужно найти вероятность пребывания электрона в очень тонком сферическом слое толщиной Аг. Так как значение | V F| 2 легко вычисляется, нам необходимо

Рис. 3.3. Зависимость *F 1s от расстояния. Значения функции нормированы на ее величину в при г = О

Рис. 3.4. Схема вычисления объема сферического слоя

найти объем сферического слоя, который обозначим через А К Он равен разности объемов двух шаров с радиусами г и г + Аг (рис. 3.4):

Так как А г мало по сравнению с г, то при вычислении величины (г + Аг) 3 можно ограничиться первыми двумя слагаемыми. Тогда для объема сферического слоя получим

Последнее выражение можно получить и более простым способом. Так как А г мало по сравнению с г, то объем сферического слоя можно принять равным произведению площади сферического слоя на его толщину (см. рис. 3.4). Площадь сферы равна 4кг 2 , а толщина А г. Произведение этих двух величин дает то же выражение (3.11).

Итак, вероятность W найти электрон в этом слое равна

Выражение для *P ls взято из приложения 3.1. Если считать величину Аг постоянной, то максимум приведенной функции наблюдается при г = а 0 .

Если хотят узнать, какова вероятность W обнаружить электрон в объеме V, то необходимо проинтегрировать плотность вероятности обнаружения электрона по этой области пространства в соответствии с выражением (3.6).

Например, какова вероятность обнаружить электрон в атоме водорода в сферической области пространства с центром в ядре и с радиусом й 0 . Тогда

Здесь величина d V в процессе вычислений заменена на 4кг 1 dr по аналогии с (3.11), так как волновая функция зависит только от расстояния и поэтому интегрировать по углам не нужно ввиду отсутствия угловой зависимости интегрируемой функции.

Качественное представление о распределении волновой функции в пространстве дает изображение атомных орбиталей в виде облаков, причем, чем интенсивнее цвет, тем выше значение Ч"-функции. Орбиталь будет выглядеть так (рис. 3.5):

Рис. 3.5.

Орбиталь 2p z B виде облака изображена на рис. 3.6.

Рис. 3.6. Изображение 2р г -орбитали атома водорода в виде облака

Аналогичным образом в виде облака будет выглядеть распределение электронной плотности, которое можно найти, умножив плотность вероятности I"Fj 2 на заряд электрона. В этом случае иногда говорят о размазывании электрона. Однако это ни в коей мере не означает, что мы имеем дело с размазыванием электрона по пространству - никакого реального размазывания электрона по пространству не происходит, и поэтому атом водорода нельзя представлять в виде ядра, погруженного в реальное облако отрицательного заряда .

Однако такие изображения в виде облаков используют редко, а гораздо чаще используют линии, чтобы создать представление об угловой зависимости Ч"-функций. Для этого рассчитывают значения Ч"-функций на сфере, проведенной на некотором расстоянии от ядра. Затем рассчитанные значения откладывают на радиусах с указанием знака Ч"-функций для наиболее информативного для данной Ч"-функций плоского сечения. Например, орбиталь Is обычно изображают в виде окружности (рис. 3.7).

Рис.

На рис. 3.8 2/> г -орбиталь построена на сфере некоторого радиуса. Для получения пространственной картины необходимо произвести вращение фигуры относительно оси z. Индекс «z» при записи функции указывает на ориентацию функции вдоль оси «г». Знаки «+» и «-» соответствуют знакам Ч"-функций. Значения 2/? г -функции положительны в той области пространства, где ^-координата положительна, и отрицательны в той области, где ^-координата отрицательна.

Рис. 3.8. Форма 2p z -орбитали. Построена на сфере некоторого радиуса

Аналогичная ситуация и в случае остальных /ьорбиталей. Например, 2/? х -орбиталь ориентирована вдоль оси х и положительна в той части пространства, где координата х положительна, и ее значения отрицательны там, где значения координаты х отрицательны (рис. 3.9).

Изображение волновых функций с указанием знака имеет важное значение для качественного описания реакционной способности химических соединений, и поэтому изображения типа приведенных на рис. 3.9 встречаются в химической литературе наиболее часто.

Рассмотрим теперь d-орбитали (рис. 3.10). Орбитали d xy , d xz , d yz , выглядят эквивалентным образом. Их ориентация и знаки определяются нижними индексами: индекс ху показывает,

Рис. 3.9. Форма 2р х - орбитали. Построена на сфере некоторого радиуса


что орбиталь ориентирована под углами в 45° по отношению к осям х и у и что знак У-функции положителен там, где произведение индексов х и у положительно.


Рис. 3.10.

Похожим образом дело обстоит и с остальными ^/-орбиталями. Изображение ^/-орбиталей, приведенное на рис. 3.10, наиболее часто встречается в литературе. Видно, что орбитали d , d x2 _ y2 , d z2 не являются эквивалентными. Эквивалентными являются только орбитали d , d xz , d yz . Если для описания структуры молекулы необходимо использовать пять эквивалентных ^/-орбиталей, то их можно построить, используя линейные комбинации орбиталей .

В связи с тем, что при описании элементов их подразделяют на группы с разными орбиталями, очень кратко напомним сущность этого понятия.

Согласно модели атома Бора, электроны вращаются вокруг ядра по круговым орбиталям (оболочкам ). Каждая оболочка имеет строго определенный энергетический уровень и характеризуется некоторым квантовым числом. В природе возможны только определенные энергии электрона, то есть дискретные (квантованные) энергии орбиталей («разрешенные»). Теория Бора приписывает электронным оболочкам К, L, М, N и далее в порядке латинского алфавита, в соответствии с повышающимся энергетическим уровнем оболочек, главное квантовое число п , равное 1, 2, 3, 4 и т.д. В последующем оказалось, что электронные оболочки расщеплены на подоболочки, и каждой свойствен определенный квантовый энергетический уровень, характеризующийся орбитальным квантовым числом l .

Согласно принципу неопределенности Гейзенберга, точно определить местонахождение электрона в любой определенный момент времени невозможно. Однако можно указать вероятность этого. Область пространства, в которой вероятность нахождения электрона наиболее высока, называется орбиталью . Электроны могут занимать 4 орбитали разных типов, которые называются s- (sharp — резкая), р- (principal — главная), d- (diffuse — диффузная) и f- (fundamental — базовая) орбитали. Раньше этими буквами обозначали спектральные линии водорода, но в настоящее время их используют только в качестве символов, без расшифровки.

Орбитали можно представить в виде трехмерных поверхностей. Обычно области пространства, ограниченные этими поверхностями, выбирают так, чтобы вероятность обнаружения внутри них электрона составляла 95%. Схематическое изображение орбиталей представлено на рис. 1.

Рис. 1.

s-Орбиталь имеет сферическую форму, р-орбиталь — форму гантели, d-opбиталь — форму двух гантелей, перекрещивающихся в двух узловых взаимно перпендикулярных плоскостях, s-подоболочка состоит из одной s-орбитали, р-подоболочка — из 3 р-орбиталей, d-подоболочка — из 5 d-орбиталей.

Если не прикладывать магнитное поле, все орбитали одной подоболочки будут иметь одинаковую энергию; их в этом случае называют вырожденными . Однако во внешнем магнитном поле подоболочки расщепляются (эффект Зеемана ). Этот эффект возможен для всех орбиталей, кроме s-орбитали. Он характеризуется магнитным квантовым числом т . Эффект Зеемана используют в современных атомно-абсорбционных спектрофотометрах(ААСФ) для увеличения их чувствительности и снижения предела обнаружения при элементных анализах.

Для биологии и медицины существенно, что орбитали одной симметрии, то есть с одинаковыми числами l и т , но с разным значением главного квантового числа (например, орбитали 1s, 2s, 3s, 4s), различаются по своему относительному размеру. Объем внутреннего пространства электронных орбита-лей больше у атомов с большим значением п . Увеличение объема орбитали сопровождается ее разрыхлением. При комплексообразоваиии размер атома играет важную роль, поскольку определяет структуру координационных соединений. В табл. 1 приведено соотношение количества электронов и главного квантового числа.

Таблица 1. Количество электронов при разных значениях квантового числа п

Помимо трех названных квантовых чисел, характеризующих свойства электронов каждого атома, имеется еще одно — спиновое квантовое число s , характеризующее не только электроны, но и ядра атомов.

Медицинская бионеорганика. Г.К. Барашков

Как уже отмечалось, современная теория химической связи основана на квантово-механическом рассмотрении молекулы как системы из электронов и атомных ядер.

Из курсов неорганической химии и физики известно, что электроны представляют собой вид материи, обладающий одновременно свойствами частицы и электромагнитной волны.

Согласно квантовой теории состояние электронов в атоме описывается с помощью четырех квантовых чисел. п главное кван товое число, I - азимутальное квантовое число, т

славное кван-

маспитпое

квантовое число и л

спиновое квантовое число.

Электрон в атоме находится на определенной атомной орби-

тали. Атомная орбиталь (АО) - это область пространства, внутри которой наиболее вероятно нахождение электрона.

Состояние электрона определяется расстоянием электронного облака от ядра, его формой, ориентацией в пространстве и вращением электрона вокруг собственной оси.

В зависимости от расстояния электрона от ядра атома изменяется траектория его движения, то есть форма атомной орбитали (рис. 2.1). Существуют л, р, й, /-атомные орбитали, которые отличаются друг от друга запасом энергии, а следовательно, и формой электронного облака, то есть траекторией движения электрона.

в-орбиталь

/О-орбиталь

о<-орбиталь

±и^. 2.1. 1сим&1ричс^ьйл шиумй й-, и- и и-й!имп^1л иуии1^1&и

для атомных орбиталей ^-типа характерна сферическая симметрия, для электронов р-типа существуют три одинаковые по энергии гантелеобразной формы орбитали, которые отличаются

2. Химическая связь. Взаимное влияние атомов в органических соединениях

друг от друга лишь ориентацией в пространстве. рх, р_^, р^-атоданые

орбитали. В каждой из них существует узловая область р-орбита-ли, где вероятность нахождения электрона равна нулю. Для й-атомных орбиталей существуют пять более сложных геометрических форм.

Электроны 5-орбитали ближе находятся к атомному ядру и с большей силой притягиваются к нему, чем р-электроны, которые более удалены и имеют большую подвижность. Энергия электрона падает в следующем ряду.

/ > й > р > 5

Атомная орбиталь, не занятая электронами, называется в а-кантной и условно обозначается как □.

іі^іоггідгіоліцгіл /iv7iVII ііііл игош^іьи

Согласпо кваптово-мелапическим представлепиям о лимиче-

ской связи число образуемыл атомом ковалептпыл связей определяется количеством одпоэлектроппыл атомпыл орбиталей, то есть количеством песпареппыл электропов. идпако в действительпости атомы элемептов образуют большее число ковалептпыл связей, чем содержат песпареппыл электропов па впешпем эпергетическом уровпе. Например, атом углерода в осповпом (пе ^воізбуждеппом) состояпии имеет два песпареппыл электропа (І5 25 2р), а образует четыре ковалептпые связи. Это можпо объяспить возможпостью

перелода одпого 25-электропа па 2р-подуровепь (І5 25 2р).

іаким образом, па впешпем эпергетическом уровпе атома

углерода палодятся четыре песпареппыл электропа: одип - 5 и три - р. Поскольку лимические связи образуются валептпыми электропами, то связи, папример в молекуле метапа СИ4, должпы были бы быть перавпоцеппыми: одпа связь С-Н образовапа 5-электропом, а три остальпые - р. В действительпости в молекуле метапа все связи совершеппо равпоцеппы. Для объяспепия этого факта в кваптовой мелапике вводится попятие о гибридизации атомпыл орбиталей. Слово гибридизация озпачает взаимодействие,

2р 2р 2р 2р 2р 2р

перекрывание, перемешивание. При перекрывании одного 5-элек-тронного облака с тремя /-электронными облаками образуются четыре качественно новых гибридизированных электронных облака или атомные орбитали:

Таким образом, из нескольких различных по форме и близких по энергии АО путем комбинирования (смешивания, сочетания) образуется такое же количество одинаковых по форме и равных по энергии гибридизированных атомных орбиталей:

Гибридизированные орбитали по сравнению с негибридизи-рованными более выгодны геометрически, так как позволяют увеличить площадь перекрывания с орбиталями других атомов, что ведет к образованию более прочных связей. Результатом перекрывания большей доли гибридной орбитали с орбиталями других атомов является ковалентная связь.

Атом углерода может претерпевать три вида гибридизации с участием s- и р-орбиталей, каждому из которых соответствует определенное валентное состояние атома.

Первое валентное состояние углерода -гибридизация). Обра-

зование а-связи. Состояние вр -гибридизации - результат взаимодействия одной в- и трех р-атомных орбиталей (рис. 2.2).

1в + 3р = 4вр.

25-орбиталь 2р2-орбиталь 2ру-орбиталь 2р2-орбиталь

Рис. 2.2. Схема образования и расположение в пространстве гибридных 5р3-орбиталей

четыре ер -гибридные орбитали

2. Химическая связь. Взаимное влияние атомов в органических соединениях 21

Четыре равноценные орбитали между собой образуют угол 109° 28" и ориентированы в пространстве от центра правильного тетраэдра к его вершинам. Такое размещение связано со стремлением АО к максимальному удалению друг от друга за счет взаимного электростатического отталкивания. Расположение атомных орбиталей определяет название состояния 5р3-гибридизации как тетраэдрическое.

Доля s-облака в каждой из четырех гибридных sp3 -орбиталей равна 7.. В результате перекрывания таких орбиталей с другими ор-

биталями (s, p, d и гибридными sp , sp, sp) вдоль линии, соединяющей центры атомов, образуются только простые ковалентные, или ст-связи (греч. «сигма»). Перекрывание атомных орбиталей вдоль линии, соединяющей центры атомов, называют ст-п ерекрывани-е м, или о с е в ы м, так как максимальная электронная плотность при этом находится на оси, соединяющей два ядра (рис. 2.3).

о-перекрывание

Рис. 2.3. Образование а-связей в молекуле этана

Состояние 5р3-гибридизации характерно для алканов. Рассмотрим образование ст-связей на примере этана.

В молекуле этана в результате осевого s-sp -перекрывания образуются шесть ст-связей СПН, а за счет перекрывания sp -sp -орбиталей - одна СП С-связь.

ст-Связи во многих органических соединениях образуются преимущественно за счет перекрывания гибридизированных орби-талей.

Второе валентное состояние углерода (sp -гибридизация). Образование п-связи. Состояние sp2-гибридизации - результат взаимодействия одной s- и двух р-орбиталей (рис. 2.4).

Образованные три эквивалентные sp -гибридные орбитали находятся в одной плоскости под углом 120°, поэтому sp -гибридизация называется тригональной. Негибридизированная р^-орбиталь

2з-орбиталь 2рх-орбиталь 2/з^-орбиталь

три зр -гибридные орбитали и р2-орбиталь

три ер -гибридные орбитали

±и^. 2.4. ^1риспиь й!имй углерода

в ^р2-гибридизации

расположения гибридных орбиталей. Усливни доля я-облака в каж-дий из трех яр2 -гибридных ирбиталей равна 1/у Такая гибридизация характерна для сиединений с двойными связями, например для этилена (рис. 2.5).

яр -АО углерода

о-перекрывание (о-связь)

Образование л-связи в молекуле атилена

Атомггы углерода в милекуле этилена находятся в яр -гибридизации. За счет перекрывания трех гибридных АО каждиго из атимив ибразуются ст-связи (четыре С-Н и идна С-С); а перекрывание двух негибридизириванных р-орбиталей в плоскости, перпендикулярний плоскости ст-связи (п-перекрывание), приводит к образованию п-связи. Ее максимальная электронная плотность сконцентрирована в двух областях - выше и ниже оси, соединяющей центры атомов. п-Связь менее прочна, чем ст; она образуется только между атомами, которые находятся в яр2- или яр-гибридизации.

2. Химическая связь. Взаимное влияние атомов в органических соединениях 2

Л;/-1ИирИДИ^йЦИШ называют СЩС JIUneUnUU HU1UMJ, ни две

sp-гибридные орбитали расположены под углом 180°. Остальные две негибридизированные р^- и р^-орбитали находятся в двух взаимно перпендикулярных плоскостях и расположены под прямым углом к sp-гибридным АО. Доля s-облака в каждой из двух гибридных sp-орбиталей равна 1/2. Такой тип гибридизации характерен для соединений с тройной связью, например для ацетилена (рис. 2.7).

В молекуле ацетилена sp-гибридизированные атомы образуют две простые ст-связи С-Н и одну ст-связь между двумя атомами углерода, а негибридизированные p-АО образуют две п-связи, расположенные во взаимно перпендикулярных плоскостях.

Для описания химической связи с позиций квантовой механики пользуются двумя основными методами: методом валентных связей (МВС) и методом молекулярных орбиталей (МО).

Метод валентных связей был предложен в 1927 году В. Гайтле-ром и Ф. Лондоном. Основные положения метода заключаются в следующем. Химическая связь представлена в виде пары электронов с противоположными спинами. Она образуется в результате перекрывания атомных орбиталей.

л-перекрывание (я-связь)

а-перекрывание (а-связь)

оира^ивание л-свя:зи в молекуле ацетилена

при иирй^исап^1^1 милсАулш атоммные ирииюли и^1йЮ1СЛ ии^

изменений, а пара связывающих электронов локализована между двумя атомами.

В отличие от метода валентных связей метод молекулярных орбиталей рассматривает молекулу не как совокупность атомов, сохраняющих свою индивидуальность, а как единое целое. Предполагается, что каждый электрон в молекуле движется в суммарном поле, создаваемом остальными электронами и всеми ядрами атомов. Иначе говоря, в молекуле различные АО взаимодействуют между соиой с оиразованием нового типа орииталей, называемых молекулярными орииталями.

Перекрывание двух атомных орииталей приводит к оиразова-нию двух молекулярных орииталей (рис. 2.8).

□"-разрыхляющая МО

АО------АО^^)-

а-связывающая МО

ст*-разрыхляющая МО

а-связывающая МО

Одна из них имеет иолее низкую энергию, чем исходные АО,

ігі паошоасі^л юлошои^шси и^^ншилнш, диуіал ииладасі и^лъъ г>х>і-

2. Химическая связь. Взаимное влияние атомов в органических соединениях 2:

ШАиИ ЛПС^ІИСИ, ЧСМ образующая ее ЛЛ^, И ИйЛМВйСІСИ разрылляю-

щей, или антисвязывающей орбиталью. Заполнение молекулярных орбиталей электронами происходит аналогично заполнению атомных, то есть по принципу Паули и в соответствии с правилом Гунда. Молекулярная разрыхляющая орбиталь в основном состоянии остается вакантной. Ее заполнение электронами происходит при возбуждении молекулы, что ведет к разрыхлению связи и распаду молекулы на атомы.

ОРБИТАЛЬ - область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).

К настоящему моменту описано пять типов орбиталей: s, p, d, f и g.
Названия первых трех сложились исторически, далее был выбран алфавитный принцип. Формы орбиталей вычислены методами квантовой химии.

s-Орбитали - имеют сферическую форму и одинаковую электронную плотность в направлении каждой оси трехмерных координат
s- орбиталь - орбиталь сфера

Каждая р-орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р-орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:
p- орбиталь - орбиталь гантель

d- орбиталь - орбиталь сложной формы

Энергия электронных уровней


Квантовые числа электронов

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел:

n - энергетический уровень электрона (удаленность уровня от ядра)
l - по какого вида орбитали он движется (s,p,d...)
m- магнитного (на какой из p (из трех возможных), d (из 5-ти возможных) и т.д.
s - спинового (движение электрона вокруг собственной оси).

Принципы заполнения орбиталей

1. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами) (принцип Паули).

2. В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной.
Энергия орбиталей возрастает в ряду:
1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s.
Нет никакой необходимости запоминать эту последовательность. Ее можно извлечь из Периодической таблицы Д.И.Менделеева

3. Электроны предпочитают расселяться на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одиночке, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Когда орбиталь заселяется двумя электронами, такие электроны называют спаренными .(правило Хунда)

Полная электронная формула элемента

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

1. Число n минимально
2. Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально)
3. Один подуровень содержит наибольшее число неспаренных электронов.
4. При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n2 электронов, расположенных на n2 подуровнях.

Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так.

Орбитали атома вододрода.

Когда рассматриваются волновые функции для электронов в отдельных атомах, эти функции называют атомными орбиталями (сокращенно АО). Экспериментальные доказательства существования атомных орбиталей можно получить из атомных спектров. Например, при электрическом разряде в газообразном водороде молекулы Н 2 диссоциируют на атомы, а атомы испускают свет строго определенных частот, которые группируются сериями: в видимой области (так называемая серия Бальмера), ультрафиолетовой (серия Лаймана), инфракрасной (серия Пашена). Еще в доквантовый период было замечено, что все серии удовлетворяют одному простому уравнению:

атомный молекулярный орбиталь квантование

Атом водорода трехмерен, поэтому уравнение Шредингера должно включать кинетическую энергию во всех трех измерениях и будет иметь несколько более сложный вид, чем представленное в разделе 1.1 этой главы уравнение для одномерного движения. При его решении с наложением граничных условий, которые вытекают из вероятностной интерпретации волновой функции, были получены следующие выводы.

1. Необходимо принять, что существуют три безразмерных квантовых числа, которые обозначают символами п, / и т. Появление квантового числа п вызвано тем, что электрон может менять свое расстояние от ядра. Квантовые

числа / и т связаны с угловым моментом количества движения электрона, который может вращаться вокруг ядра в трех измерениях. Число / характеризует величину углового момента, а число т - ориентацию углового момента в пространстве, так как угловой момент - векторная величина. Допустимыми значениями квантовых чисел, которые вытекают из граничных условий, являются n - 1, 2, 3.;

2. Энергия электрона, вообще говоря, должна зависеть от всех трех квантовых чисел, или, по крайней мере, от двух, однако уникальной особенностью атома водорода (но не других атомов) является то, что энергия электрона зависит только от п. По этой причине п называется главным квантовым числом. (Так, для п = 3l может принимать значения 0, 1 и 2, но энергия электрона остается постоянной.) Разрешенными энергиями будут энергии, имеющие вид Еп = R/п2.


Атомные орбит али атома водорода имеют очень важное значение, так как они показывают, как распределен электрон (или электронная плотность) в пространстве. Амплитуда АО ш (r) различна в разных местах пространства, а вероятность нахождения электрона в некоторой бесконечно малой области dф вокруг точки r составляет. Пространственное распределение электрона можно изобразить путем указания величины с помощью разной плотности штриховки на диаграмме. Распределение плотности в некоторых АО водорода представлено на рис.1.1

Орбиталь основного состояния атома водорода очень проста: она сферически симметрична и ее плотность экспоненциально спадает по мере удаления от ядра. Следовательно, наиболее вероятно найти электрон около ядра, где ц/ и, таким образом, у? ^ максимальны. Это согласуется спред став легшем, что электрон для достижения наименьшей потенциальной энергии должен стремиться к ядру. Однако орбнталь не совсем "прижата" к ядру, а распространяется и на области, достаточно удаленные от него. Такая ситуация возникает вследствие того, что большое значение имеет не только потенциальная, но и кинетическая энергия электрона. Последнюю нельзя представить как кинетическую энергию движения по орбите вокруг ядра, которая приводит к появлению центробежной силы, удерживающей электрон вдали от ядра, поскольку угловой момент электрона в основном состоянии атома водорода равен нулю. (При п= 1 может быть только одно квантовое число величины углового момента: /=0, и, следовательно, равна нулю.) Таким образом, в классическом понимании электрон в основном состоянии атома водорода как бы не вращается вокруг ядра, а просто качается вдоль радиуса. С этим и связана его кинетическая энергия. С точки зрения квантовой теории, кинетическая энергия электрона связана с длиной волны электрона, распространяющейся в радиальном направлении. Если орбнталь "поджимается" к ядру, длина волны в радиальном направлении неизбежно уменьшается, и поэтому кинетическая энергия возрастает (разд.1.1). Реальная орбнталь является результатом компромисса между умеренно низкой потенциальной энергией и умеренно высокой кинетической энергией. Ближе к ядру электронная плотность выше, но она имеется и на удаленном от ядра расстоянии.

Рис.1.1

Все орбитали с нулевым угловым моментом называются s-орбиталями. Орбиталь низшей энергии называется 1s-орбиталью. Если п= 2 и 7=0, то это 2s-орбиталь. Ее энергия выше, чем энергия 1s-орбитали, по двум причинам. Во-первых, она имеет радиальный узел (рис.1.2), представляющий собой сферическую поверхность, внутри и снаружи которой волновая функция имеет разные знаки, и на самой этой поверхности электронная плотность равна нулю. Появление узлов на любой орбитали повышает энергию электрона, занимающего эту орбиталь, и чем больше узлов, тем энергия орбитали выше.

Это связано с тем, что с увеличением числа узлов длина волны электрона становится короче, т.е. большее число полуволи приходится на одну и ту же область пространства и поэтому его кинетическая энергия возрастает. Во - вторых, повышение энергии 2s-орбитали по сравнению с 1s-орбиталью связано с тем, что 2s-орбиталь простирается на расстояние, более далекое от ядра, и поэтому потенциальная энергия электрона на ней выше, чем на 1s-орбитали. Аналогичные замечания можно сделать и относительно более высоко лежащих s-орбиталей: и т.д.

Рис.1.2

Орбиталь с п= 1 не имеет узлов. Орбитали с п=2 имеют один узел, с п=3 - два узла и т.д. Относительно операции симметрии инверсии (центр инверсии совпадает с центром ядра) все s-орбитали симметричны, все s-орбитали антисимметричны, все s-орбитали симметричны и т.д.

Если n=0, единственным значением, разрешенным для l , является нуль, но если n=2, квантовое число орбитального углового момента может принимать значения 0 (2л-орбит аль) или 1. Если n= 1, атомные орбитали носят название р- орбнгалей. При n= 2 и l = 1 мы имеем 2р-орбнталь. Она отличается от 2s-орбнтали тем, что занимающий ее электрон обладает орбитальным угловым моментом величиной (2) Угловой момент является следствием наличия углового узла (рис.1.2), который, как говорят, "вводит кривизну в угловое изменение волновой функции" (шар превращается в гантель). Наличие орбитального углового момента оказывает сильное влияние на радиальную форму орбитали. В то время как все 5-орбит али у ядра имеют ненулевое значение,1s-орбитали там отсутствуют. Это можно представить как отбрасывание электрона от ядра орбитальным угловым моментом. Сила кулоновского притяжения электрона к ядру пропорциональна 1 /г где г - расстояние от ядра, а центробежная сила, отталкивающая электроны от ядра, пропорциональна r 3 (3 - угловой момент). Поэтому, если угловой момент ^0, при очень малых г центробежная сила превосходит кулоновскую. Этот центробежный эффект проявляется также в АО с l =2, которые называются 1s-орбиталями, l =3 (s-орбитали) и более высоких орбиталях (Ј-, /? - , у-орбитали). Все эти орбит али, из-за того, что /^0, имеют нулевую амплитуду у ядра и, следовательно, вероятность обнаружить там электроны равна нулю.

У 2/? - орбнтали нет радиального узла, но зато 3/? - орбиталь его имеет. Эскизы нижних атомных орбит алей, иллюстрирующие свойства и симметрию АО (но не вероятностное распределение электрона внутри орбитали, как на рис.1.1), приведены на рис.1.2 Светлые и затемненные области - это места, где волновая функция имеет разные знаки. Поскольку выбор знака произволен, безразлично, будем ли мы соотносить затемненные области с положительным, а светлые области с отрицательным знаком волновой функции, или наоборот. Граница между светлой и темной областями орбнталей - это узел, т.е. то место, где волновая функция равна нулю, или, другими словами, место, где волновая функция меняет знак на противоположный. Чем больше узлов, тем выше энергия электрона, занимающего данную АО.

Поскольку для орбиталей l=0, квантовое число т может принимать значения +1, 0 и - 1. Разные значения т соответствуют орбнталям с различными ориеитациями орбитального углового момента, р-Орбиталь с т=0 имеет нулевую проекцию углового момента на ось 2 (рис.1.2), и по этой причине ее называют р 2 -орбиталью. Вид р 2 - орбнтали (см. рис.1.1 и 1.2) говорит о том, что электронная плотность "собрана в заводи" вдоль оси 2. В этом случае существует горизонтальная узловая плоскость, проходящая через ядро, и вероятность найти электрон в этой плоскости равна нулю. Две другие р - орбнтали можно представить аналогичными картинами с ориентацией "лопастей" вдоль осей хну (см. рис.1.1), поэтому они называются р х и р у - орбнталями.

Если /? =3, то / может принимать значения 0, 1 и 2. Это прнаоднг к одной 3^-орбнгали, трем 3/? - орбнгалям и пяти 3^-орбнгалям.3б/-Орбнталей пять, поскольку при / =2 т может принимать значения 2, 1, 0, - 1 и - 2. Все Ъй - орбнтали имеют нулевую амплитуду у ядра. У них нет радиальных узлов (у 4с1 - орбнталей радиальные узлы появляются), но у каждой есть две узловые плоскости (см. рис.1.2).

Выше было сказано, что энергия электрона в атоме водорода зависит от главного квантового числа орбнтали, которую он занимает и не зависит от его орбитального углового момента. Таким образом, в атоме водорода электрон на 2л-орбнтали имеет ту же энергию, что и на любой из 2р-орбит алей. Если различные орбнтали имеют одинаковую энергию, они называются вырожденными . Вырождение атома водорода представляет собой нечто исключительное и в физике объясняется особой формой его кулоновского потенциала.