Выращивание искусственных органов. Искусственные органы: человек умеет все Базовая технология выращивания органов

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40 50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960 х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30 34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо очки, например, разработаны в научно внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все таки будут…»

100 великих чудес техники

Санкт-Петербургский Государственный Политехнический Университет

КУРСОВАЯ РАБОТА

Дисциплина: Материалы медицинского применения

Тема: Искусственное легкое

Санкт-Петербург

Перечень условных обозначений, терминов и сокращений 3

1. Введение. 4

2. Анатомия дыхательной системы человека.

2.1. Воздухоносные пути. 4

2.2. Легкие. 5

2.3. Легочная вентиляция. 5

2.4. Изменения объема легких. 6

3. Искусственная вентиляция легких. 6

3.1. Основные методы искусственной вентиляции легких. 7

3.2. Показания к применению искусственной вентиляции легких. 8

3.3. Контроль адекватности искусственной вентиляции легких.

3.4. Осложнения при искусственной вентиляции легких. 9

3.5. Количественные характеристики режимов искусственной вентиляции легких. 10

4. Аппарат искусственной вентиляции легких. 10

4.1. Принцип работы аппарата искусственной вентиляции легких. 10

4.2. Медико-технические требования к аппарату ИВЛ. 11

4.3. Схемы для подачи газовой смеси пациенту.

5. Аппарат искусственного кровообращения. 13

5.1. Мембранные оксигенаторы. 14

5.2. Показания к экстракорпоральной мембранной оксигенации. 17

5.3. Каннюляция для экстракорпоральной мембранной оксигенации. 17

6. Заключение. 18

Список использованной литературы.

Перечень условных обозначений, терминов и сокращений

ИВЛ – искусственная вентиляция легких.

АД – артериальное давление.

ПДКВ — положительное давление в конце выдоха.

АИК – аппарат искусственного кровообращения.

ЭКМО — экстракорпоральная мембранная оксигенация.

ВВЭКМО — веновенозная экстракорпоральная мембранная оксигенация.

ВАЭКМО – веноартериальная экстракорпоральная мембранная оксигенация.

Гиповолемия — уменьшение объёма циркулирующей крови.

Обычно под этим более конкретно подразумевается снижение объёма плазмы крови.

Гипоксемия — понижение содержания кислорода в крови в результате нарушения кровообращения, повышенной потребности тканей в кислороде, уменьшения газообмена в лёгких при их заболеваниях, уменьшения содержания гемоглобина в крови и др.

Гиперкапния — повышенное парциальное давление (и содержание) CO2 в артериальной крови (и в организме).

Интубация — введение в гортань через рот специальной трубки с целью устранения нарушения дыхания при ожогах, некоторых травмах, тяжёлых спазмах гортани, дифтерии гортани и её острых, быстро разрешающихся отёках, например аллергических.

Трахеостома — это искусственно сформированный свищ трахеи, выведенный в наружную область шеи, для дыхания, минуя носоглотку.

В трахеостому вставляется трахеостомическая канюля.

Пневмоторакс — состояние, характеризующееся скоплением воздуха или газа в полости плевры.

1. Введение.

Дыхательная система человека обеспечивает по-сту-п-ле-ние в ор-га-низм ки-сло-ро-да и уда-ле-ние уг-ле-ки-сло-го га-за. Транс-порт га-зов и дру-гих не-об-хо-ди-мых ор-га-низ-му ве-ществ осу-ще-ст-в-ля-ет-ся с по-мо-щью кро-ве-нос-ной сис-те-мы.

Функ-ция ды-ха-тель-ной сис-те-мы сво-дит-ся лишь к то-му, что-бы снаб-жать кровь дос-та-точ-ным ко-ли-че-ст-вом ки-сло-ро-да и уда-лять из нее уг-ле-кис-лый газ. Хи-ми-че-ское вос-ста-нов-ле-ние мо-ле-ку-ляр-но-го ки-сло-ро-да с об-ра-зо-ва-ни-ем во-ды слу-жит для мле-ко-пи-таю-щих ос-нов-ным ис-точ-ни-ком энер-гии. Без нее жизнь не мо-жет про-дол-жать-ся доль-ше не-сколь-ких се-кунд.

Вос-ста-нов-ле-нию ки-сло-ро-да со-пут-ст-ву-ет об-ра-зо-ва-ние CO2 .

Ки-сло-род, входящий в CO2 , не про-ис-хо-дит не-по-сред-ст-вен-но из мо-ле-ку-ляр-но-го ки-сло-рода. Ис-поль-зо-ва-ние O2 и об-ра-зо-ва-ние CO2 свя-за-ны ме-ж-ду со-бой про-ме-жу-точ-ны-ми ме-та-бо-ли-че-ски-ми ре-ак-ция-ми; тео-ре-ти-че-ски ка-ж-дая из них длят-ся некоторое вре-мя.

Об-мен O2 и CO2 ме-ж-ду ор-га-низ-мом и сре-дой на-зы-ва-ет-ся ды-ха-ни-ем. У выс-ших жи-вот-ных про-цесс ды-ха-ния осу-ще-ст-в-ля-ет-ся бла-го-да-ря ря-ду по-сле-до-ва-тель-ных про-цес-сов.

1. Об-мен га-зов ме-ж-ду сре-дой и лег-ки-ми, что обыч-но обо-зна-ча-ют как "ле-гоч-ную вен-ти-ля-цию".

Об-мен га-зов ме-ж-ду аль-ве-о-ла-ми лег-ких и кро-вью (ле-гоч-ное ды-ха-ние).

3. Об-мен га-зов ме-ж-ду кро-вью и тка-ня-ми. Га-зы пе-ре-хо-дят внут-ри тка-ни к мес-там по-треб-ле-ния (для O2) и от мест об-ра-зо-ва-ния (для CO2) (кле-точ-ное ды-ха-ние).

Вы-па-де-ние лю-бо-го из этих про-цес-сов при-во-дит к на-ру-ше-ни-ям ды-ха-ния и соз-да-ет опас-ность для жиз-ни человека.

2.

Ана-то-мия дыхательной системы человека.

Ды-ха-тель-ная сис-те-ма че-ло-ве-ка со-сто-ит из тка-ней и ор-га-нов, обес-пе-чи-ваю-щих ле-гоч-ную вен-ти-ля-цию и ле-гоч-ное ды-ха-ние. К воз-ду-хо-нос-ным пу-тям от-но-сят-ся: нос, по-лость но-са, но-со-глот-ка, гор-тань, тра-хея, брон-хи и брон-хио-лы.

Лег-кие со-сто-ят из брон-хи-ол и аль-ве-о-ляр-ных ме-шоч-ков, а так-же из ар-те-рий, ка-пил-ля-ров и вен ле-гоч-но-го кру-га кро-во-об-ра-ще-ния. К эле-мен-там ко-ст-но-мы-шеч-ной сис-те-мы, свя-зан-ным с ды-ха-ни-ем, от-но-сят-ся реб-ра, меж-ре-бер-ные мыш-цы, диа-фраг-ма и вспо-мо-га-тель-ные ды-ха-тель-ные мыш-цы.

Воз-ду-хо-нос-ные пу-ти.

Нос и по-лость но-са слу-жат про-во-дя-щи-ми ка-на-ла-ми для воз-ду-ха, в ко-то-рых он на-гре-ва-ет-ся, ув-лаж-ня-ет-ся и фильт-ру-ет-ся. По-лость но-са вы-стла-на бо-га-то вас-ку-ля-ри-зо-ван-ной сли-зи-стой обо-лоч-кой. Мно-го-чис-лен-ные же-ст-кие во-лос-ки, а так-же снаб-жен-ные рес-нич-ка-ми эпи-те-ли-аль-ные и бо-ка-ло-вид-ные клет-ки слу-жат для очи-ст-ки вды-хае-мо-го воз-ду-ха от твер-дых час-тиц.

В верх-ней час-ти по-лос-ти ле-жат обо-ня-тель-ные клет-ки.

Гор-тань ле-жит ме-ж-ду тра-хе-ей и кор-нем язы-ка. По-лость гор-та-ни раз-де-ле-на дву-мя склад-ка-ми сли-зи-стой обо-лоч-ки, не пол-но-стью схо-дя-щи-ми-ся по сред-ней ли-нии. Про-стран-ст-во ме-ж-ду эти-ми склад-ка-ми — го-ло-со-вая щель за-щи-ще-но пла-стин-кой во-лок-ни-сто-го хря-ща — над-гор-тан-ни-ком.

Тра-хея на-чи-на-ет-ся у ниж-не-го кон-ца гор-та-ни и спус-ка-ет-ся в груд-ную по-лость, где де-лит-ся на пра-вый и ле-вый брон-хи; стен-ка ее об-ра-зо-ва-на со-еди-ни-тель-ной тка-нью и хря-щом.

Час-ти, при-мы-каю-щие к пи-ще-во-ду, за-ме-ще-ны фиб-роз-ной связ-кой. Пра-вый бронх обыч-но ко-ро-че и ши-ре ле-во-го. Вой-дя в лег-кие, глав-ные брон-хи по-сте-пен-но де-лят-ся на все бо-лее мел-кие труб-ки (брон-хио-лы), са-мые мел-кие из ко-то-рых — ко-неч-ные брон-хио-лы яв-ля-ют-ся по-след-ним эле-мен-том воз-ду-хо-нос-ных пу-тей. От гор-та-ни до ко-неч-ных брон-хи-ол труб-ки вы-стла-ны мер-ца-тель-ным эпи-те-ли-ем.

2.2.

В це-лом лег-кие име-ют вид губ-ча-тых, по-рис-тых ко-ну-со-вид-ных об-ра-зо-ва-ний, ле-жа-щих в обе-их по-ло-ви-нах груд-ной по-лос-ти. Наи-мень-ший струк-тур-ный эле-мент лег-ко-го — доль-ка со-сто-ит из ко-неч-ной брон-хио-лы, ве-ду-щей в ле-гоч-ную брон-хио-лу и аль-ве-о-ляр-ный ме-шок. Стен-ки ле-гоч-ной брон-хио-лы и аль-ве-о-ляр-но-го меш-ка об-ра-зу-ют уг-луб-ле-ния — аль-ве-о-лы. Такая структура легких увеличивает их дыхательную поверхность, которая в 50-100 раз превышает поверхность тела.

Стен-ки аль-ве-ол со-сто-ят из од-но-го слоя эпи-те-ли-аль-ных кле-ток и ок-ру-же-ны ле-гоч-ны-ми ка-пил-ля-ра-ми. Внут-рен-няя по-верх-ность аль-ве-о-лы по-кры-та по-верх-но-ст-но-ак-тив-ным ве-ще-ст-вом сур-фак-тан-том. От-дель-ная аль-ве-о-ла, тес-но со-при-ка-саю-щая-ся с со-сед-ни-ми струк-ту-ра-ми, име-ет фор-му не-пра-виль-но-го мно-го-гран-ни-ка и при-бли-зи-тель-ные раз-ме-ры до 250 мкм.

При-ня-то счи-тать, что об-щая по-верх-ность аль-ве-ол, че-рез ко-то-рую осу-ще-ст-в-ля-ет-ся га-зо-об-мен, экс-по-нен-ци-аль-но за-ви-сит от ве-са те-ла. С воз-рас-том от-ме-ча-ет-ся умень-ше-ние пло-ща-ди по-верх-но-сти аль-ве-ол.

Ка-ж-дое лег-кое ок-ру-же-но меш-ком — плев-рой. На-руж-ный (па-рие-таль-ный) лис-ток плев-ры при-мы-ка-ет к внут-рен-ней по-верх-но-сти груд-ной стен-ки и диа-фраг-ме, внут-рен-ний (вис-це-раль-ный) по-кры-ва-ет лег-кое.

Щель ме-ж-ду ли-ст-ка-ми на-зы-ва-ет-ся плев-раль-ной по-ло-стью. При дви-же-нии груд-ной клет-ки внут-рен-ний лис-ток обыч-но лег-ко сколь-зит по на-руж-но-му. Дав-ле-ние в плев-раль-ной по-лос-ти все-гда мень-ше ат-мо-сфер-но-го (от-ри-ца-тель-ное).

Искусственные органы: человек умеет все

В ус-ло-ви-ях по-коя внут-ри-плев-раль-ное дав-ле-ние у че-ло-ве-ка в сред-нем на 4,5 торр ни-же ат-мо-сфер-но-го (-4,5 торр). Меж-плев-раль-ное про-стран-ст-во ме-ж-ду лег-ки-ми на-зы-ва-ет-ся сре-до-сте-ни-ем; в нем на-хо-дят-ся тра-хея, зоб-ная же-ле-за (ти-мус) и серд-це с боль-ши-ми со-су-да-ми, лим-фа-ти-че-ские уз-лы и пи-ще-вод.

Ле-гоч-ная ар-те-рия не-сет кровь от пра-во-го же-лу-доч-ка серд-ца, она де-лит-ся на пра-вую и ле-вую вет-ви, ко-то-рые на-прав-ля-ют-ся к лег-ким.

Эти ар-те-рии вет-вят-ся, сле-дуя за брон-ха-ми, снаб-жа-ют круп-ные струк-ту-ры лег-ко-го и об-ра-зу-ют ка-пил-ля-ры, оп-ле-таю-щие стен-ки аль-ве-ол. Воз-дух в аль-ве-о-ле от-де-лен от кро-ви в ка-пил-ля-ре стен-кой аль-ве-о-лы, стен-кой ка-пил-ля-ра и в не-ко-то-рых слу-ча-ях про-ме-жу-точ-ным сло-ем ме-ж-ду ни-ми.

Из ка-пил-ля-ров кровь по-сту-па-ет в мел-кие ве-ны, ко-то-рые в кон-це кон-цов со-еди-ня-ют-ся и об-ра-зу-ют ле-гоч-ные ве-ны, дос-тав-ляю-щие кровь в ле-вое пред-сер-дие.

Брон-хи-аль-ные ар-те-рии боль-шо-го кру-га то-же при-но-сят кровь к лег-ким, а имен-но снаб-жа-ют брон-хи и брон-хио-лы, лим-фа-ти-че-ские уз-лы, стен-ки кро-ве-нос-ных со-су-дов и плев-ру.

Боль-шая часть этой кро-ви от-те-ка-ет в брон-хи-аль-ные ве-ны, а от-ту-да — в не-пар-ную (спра-ва) и в по-лу-не-пар-ную (сле-ва). Очень не-боль-шое ко-ли-че-ст-во ар-те-ри-аль-ной брон-хи-аль-ной кро-ви по-сту-па-ет в ле-гоч-ные ве-ны.

10 искусственных органов для создания настоящего человека

Оркестрио́н (нем. Orchestrion) - название ряда музыкальных инструментов, принцип действия которых подобен орга́ну и гармонике.

Первоначально оркестрионом назывался переносной орган, сконструированный по замыслу Аббата Фоглера в 1790 году. Он содержал около 900 труб, 4 мануала по 63 клавиши в каждом из них и 39 педалей. «Революционность» оркестриона Фоглера заключалась в активном использовании комбинационных тонов, что позволило существенно уменьшить размеры лабиальных органных труб.

В 1791 году такое же название было дано инструменту, который создал Томас Антон Кунц в Праге. Этот инструмент был оснащён как органными трубами, так и струнами, подобными фортепианным. Оркестрион Кунца имел 2 мануала по 65 клавиш и 25 педалей, имел 21 регистр, 230 струн и 360 труб.

В начале XIX века под названием оркестрион (также оркестри́на ) появился ряд автоматических механических инструментов, приспособленных для имитации звучания оркестра.

Инструмент имел вид шкафа, внутри которого был помещён пружинный или пневматический механизм, который при вбрасывании монеты приводился в действие. Расположение струн или труб инструмента было подобрано таким образом, чтобы при работе механизма звучали определённые музыкальные произведения. Особую популярность инструмент приобрёл в 1920-е годы в Германии.

Позднее оркестрион был вытеснен проигрывателями граммофонных пластинок.

См. также

Примечания

Литература

  • Оркестрион // Музыкальные инструменты: энциклопедия. - М.: Дека-ВС, 2008. - С. 428-429. - 786 с.
  • Оркестрион // Большая российская энциклопедия. Том 24. - М., 2014. - С. 421.
  • Мирек А.М. Оркестрион Фоглера // Справочник к схеме гармоник. - М.: Альфред Мирек, 1992. - С. 4-5. - 60 с.
  • Оркестрион // Музыкальный энциклопедический словарь. - М.: Советская энциклопедия, 1990. - С. 401. - 672 с.
  • Оркестрион // Музыкальная энциклопедия. - М.: Советская энциклопедия, 1978. - Т. 4. - С. 98-99. - 976 с.
  • Herbert Jüttemann: Orchestrien aus dem Schwarzwald : Instrumente, Firmen und Fertigungsprogramme.

    Bergkirchen: 2004. ISBN 3-932275-84-5.

CC© wikiredia.ru

Эксперимент, проведенный в Университете Гранады стал первым в ходе которого искусственная кожа была создана с дермой на основе арагозо-фибринного биоматериала. До сих пор использовались другие биоматериалы вроде коллагена, фибрина, полигликолиевой кислоты, хитозана и т.д.

Была создана более стабильная кожа с функционалом похожим на функционал обычной человеческой кожи.

Искусственный кишечник

В 2006 году английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения.

Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Тогда была впервые в истории проведена работа, которая демонстрировала, как плюрипотентные стволовые клетки человека в чашке Петри могут быть собраны в ткань организма с трехмерной архитектурой и типом связей, свойственных естественно развившейся плоти.

Искусственная кишечная ткань может стать терапевтическим средством №1 для людей, страдающих некротическим энтероколитом, воспалением кишечника и синдромом короткого кишечника.

В ходе исследований группа ученых под руководством доктора Джеймса Уэллса использовала два типа плюрипотентных клеток: эмбриональные человеческие стволовые клетки и индуцированные, полученные путем перепрограммирования клеток человеческой кожи.

Эмбриональные клетки называют плюрипотентными, потому что они способны превращаться в любой из 200 различных типов клеток человеческого организма.

Индуцированные клетки подходят для «причесывания» генотипа конкретного донора, без риска дальнейшего отторжения и связанных с этим осложнений. Это новое изобретение науки, поэтому пока неясно, обладают ли индуцированные клетки взрослого организма тем же потенциалом, что и клетки зародыша.

Искусственная ткань кишечника была «выпущена» в двух видах, собранная из двух разных типов стволовых клеток.

Чтобы превратить отдельные клетки в ткань кишечника, потребовалось много времени и сил.

Ученые собирали ткань, используя химикаты, а также белки, которые называют факторами роста. В пробирке живое вещество росло так же, как и в развивающемся эмбрионе человека.

Искусственные органы

Сначала получается так называемая эндодерма, из которой вырастают пищевод, желудок, кишки и легкие, а также поджелудочная железа и печень. Но медики дали команду эндодерме развиться только лишь в первичные клетки кишечника. На их рост до ощутимых результатов потребовалось 28 дней. Ткань созрела и обрела абсорбционную и секреторную функциональность, свойственную здоровому пищеварительному тракту человека. В ней также появились и специфические стволовые клетки, с которыми теперь работать будет значительно легче.

Искусственная кровь

Доноров крови всегда не хватает – российские клиники обеспечены препаратами крови всего на 40 % от нормы.

Для проведения одной операции на сердце с использованием системы искусственного обращения требуется кровь 10 доноров. Есть вероятность, что проблему поможет решить искусственная кровь – ее, как конструктор, уже начали собирать ученые. Созданы синтетические плазма, эритроциты и тромбоциты. Еще немного, и мы сможем стать Терминаторами!

Плазма – один из основных компонентов крови, ее жидкая часть. «Пластиковая плазма», созданная в университете Шеффилда (Великобритания), может выполнять все функции настоящей и абсолютно безопасна для организма. В ее состав входят химические вещества, способные переносить кислород и питательные вещества. На сегодняшний день искусственная плазма предназначена для спасения жизни в экстремальных ситуациях, но в ближайшем будущем ее можно будет использовать повсеместно.

Что ж, впечатляет. Хотя и немного страшновато представить, что внутри тебя течет жидкий пластик, точнее, пластиковая плазма. Ведь чтобы стать кровью, ее еще нужно наполнить эритроцитами, лейкоцитами, тромбоцитами. Помочь британским коллегам с «кровавым конструктором» решили специалисты из Калифорнийского университета (США).

Они разработали полностью синтетические эритроциты из полимеров, способные переносить кислород и питательные вещества от легких к органам и тканям и обратно, то есть выполнять основную функцию настоящих красных кровяных клеток.

Кроме того, они могут доставлять к клеткам лекарственные препараты. Ученые уверены, что в ближайшие годы завершатся все клинические испытания искусственных эритроцитов, и их можно будет применять для переливания.

Правда, предварительно разбавив их в плазме – хоть в естественной, хоть в синтетической.

Не желая отставать от калифорнийских коллег, искусственные тромбоциты разработали ученые из университета Case Western Reserve штата Огайо. Если быть точным, то это не совсем тромбоциты, а их синтетические помощники, тоже состоящие из полимерного материала. Их главная задача – создать эффективную среду для склеивания тромбоцитов, что необходимо для остановки кровотечения.

Сейчас в клиниках для этого используют тромбоцитарную массу, но ее получение – дело кропотливое и довольно долгое. Нужно найти доноров, произвести строгий отбор тромбоцитов, которые к тому же хранятся не более 5 суток и подвержены бактериальным инфекциям.

Появление искусственных тромбоцитов снимает все эти проблемы. Так что изобретение станет хорошим помощником и позволит врачам не бояться кровотечений.

    Настоящая & искусственная кровь. Что лучше?

    Термин «искусственная кровь» немного неточен. Настоящая кровь выполняет большое количество задач. Искусственная кровь пока может выполнять только некоторые из них Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине.

    Искусственная кровь выполняет две основные функции:

    1) увеличивает объем кровяных телец

    2) выполняет функции обогащения кислородом.

    В то время как вещество, увеличивающее объем кровяных телец, уже давно используется в больницах, кислородная терапия пока находится в стадии разработки и клинических исследований.

      3.Предполагаемые достоинства и недостатки Искусственной крови

    Искусственные кости

    Медики из Империал колледжа в Лондоне утверждают, что им удалось псевдо-костный материал, который наиболее похож по своему составу на настоящие кости и имеет минимальные шансы на отторжение.

    Новые искусственные костные материалы фактически состоят сразу из трех химических соединений, которые симулируют работу настоящих клеток костной ткани.

    Медики и специалисты по протезированию по всему миру сейчас ведут разработки новых материалов, которые могли бы послужить полноценной заменой костной ткани в организме человека.

    Впрочем, на сегодня ученые создали лишь подобные костям материалы, пересаживать которые вместо настоящих костей, пусть и сломанных, до сих пор не доводилось.

    Основная проблема таких псевдо-костных материалов заключается в том, что организм их не распознает как «родные» костные ткани и не приживается к ним. В итоге, в организме пациента с пересаженными костями могут начаться масштабные процессы отторжения, что в худшем варианте может даже привести к масштабному сбою в иммунной системе и смерти пациента.

    Искусственное легкое

    Американские ученые из Йельского университета под руководством Лауры Никласон совершили прорыв: им удалось создать искусственное легкое и пересадить его крысам.

    Также отдельно было создано легкое, работающее автономно и имитирующее работу настоящего органа

    Надо сказать, что человеческое легкое представляет собой сложный механизм.

    Площадь поверхности одного легкого у взрослого человека составляет около 70 квадратных метров, собранных так, чтобы обеспечивать эффективный перенос кислорода и углекислого газа между кровью и воздухом. Но ткань легкого трудно восстанавливать, поэтому на данный момент единственный способ заменить поврежденные участки органа — пересадка. Данная процедура весьма рискованна в виду высокого процента отторжений.

    Согласно статистике, через десять лет после трансплантации в живых остаются лишь 10-20% пациентов.

    «Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит, в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь, и в других подобных устройствах используют мехи из гофрированного металла или пластика - сильфоны.

    Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

    Сменить руку? Не вопрос!..

    Искусственные руки

    Искусственные руки в XIX в.

    разделялись на «рабочие руки» и «руки косметические», или предметы роскоши.

    Для каменщика или чернорабочего ограничивались наложением на предплечье или плечо бандажа из кожаной гильзы с арматурой, к которой прикреплялся соответствующий профессии рабочего инструмент - клещи, кольцо, крючок и т.

    Косметические искусственные руки, смотря по занятиям, образу жизни, степени образования и другим условиям, бывали более или менее сложны.

    Искусственная рука могла иметь форму естественной, в изящной лайковой перчатке, способная производить тонкие работы; писать и даже тасовать карты (как известная рука генерала Давыдова).

    Если ампутация не достигла локтевого сустава, то при помощи искусственной руки возможно было возвратить функцию верхней конечности; но если ампутировано верхнее плечо, то работа рукой была возможна лишь через посредство объемистых, весьма сложных и требующих большого усилия аппаратов.

    Помимо последних, искусственные верхние конечности состояли из двух кожаных или металлических гильз для верхнего плеча и предплечья, которые над локтевым суставом были подвижно соединены в шарнирах посредством металлических шин. Кисть былa сделана из легкого дерева и неподвижно прикреплена к предплечью или же подвижна.

    В суставах каждого пальца находились пружины; от концов пальцев идут кишечные струны, которые соединялись позади кистевого сустава и продолжались в виде двух более крепких шнурков, причем один, пройдя по валикам через локтевой сустав, прикреплялся на верхнем плече к пружине, другой же, также двигаясь на блоке, свободно оканчивался ушком.

    При произвольном сгибании локтевого сустава пальцы смыкались в этом аппарате и совершенно закрывались, если плечо согнуто под прямым углом.

    Для заказов искусственных рук достаточно было указать меры длины и объема культи, а равно и здоровой руки, и объяснить технику цели, которым они должны служить.

    Протезы для рук должны обладать всеми нужными свойствами, к примеру, функцией закрытия и открытия кисти, удержания и выпускание из рук любой вещи, и у протеза должен быть вид, который как можно точнее копирует утраченную конечность.

    Существуют активные и пассивные протезы рук.

    Пассивные только копируют внешний вид руки, а активные, которые делятся на биоэлектрические и механические, выполняют гораздо больше функций. Механическая кисть довольно точно копирует настоящую руку, так что любой человек с ампутацией сможет расслабиться среди людей, а также сможет брать предмет и выпускать его.

    Бандаж, который крепится на плечевом поясе, приводит кисть в движение.

    Биоэлектрический протез работает благодаря электродам, считывающим ток, который вырабатывается мускулами во время сокращения, сигнал передаётся на микропроцессор и протез движется.

    Искусственные ноги

    Для человека с физическим повреждением нижних конечностей, конечно же, важны качественные протезы для ног.

    Именно от уровня ампутации конечности и будет зависеть правильный выбор протеза, который заменит и сможет даже восстановить множество функций, которые были свойственны конечности.

    Существуют протезы для людей, как молодых, так и пожилых, а также для детей, спортсменов, и тех, кто, несмотря на ампутацию, ведёт такую же активную жизнь. Протез высокого класса состоит из системы стоп, коленных шарниров, адаптеров, сделанных из материала высокого класса и повышенной прочности.

    Страницы:← предыдущая1234следующая →

Евсеева Екатерина Андреевна

Глава 1. История создания искусственных органов и развитие современной биологической науки в данном направлении

Глава 2. Современные искусственные органы, материалы для их создания

Глава 3. Отношение общественности к искусственным органам

Глава 4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Скачать:

Подписи к слайдам:

Муниципальное общеобразовательное учреждение -Средняя общеобразовательная школа № 3 г. Аткарска
Автор: Евсеева Екатерина учащаяся 11 класса
средней общеобразовательной школы № 3 г. Аткарска
Научный руководитель: Кузнецова Наталья Владимировна учитель биологии и химии общеобразовательной школы № 3 г. Аткарска
Аткарск 2012
или
Лечить
заменить орган? Выяснить, кода появились первые попытки воссоздания человеческих органов. Рассказать о современных искусственных органах.Показать «плюсы» и «минусы» искусственных органов. Раскрыть принцип практического применения искусственных органов. Провести социологические опросы и выявить отношение современных людей к внедрению в организм искусственных органов. Выявить тенденции развития биологической науки в направлении создании искусственных органов в России.
Разработка приборов, способных брать на себя функции органов человеческого тела - одно из передовых направлений современной медицины.
История развития искусственных органов насчитывает не один десяток лет. Создать «запасные части» - заменители естественных органов - люди стремились уже с давних времен.
Первые научные разработки в данной области относятся к 1925, когда С. Брюхоненко и С. Чечулин (советские ученые) провели опыт со стационарным аппаратом, способным заменить сердце
Рисунок 2.Брюхоненко Сергей Сергеевич
1925 год принято считать началом отсчета в истории разработок искусственных органов.
В 1936 году ученый С. Брюхоненко самостоятельно разрабатывает оксигенатор – аппарат заменяющий функцию легких.
В начале 1937 г. В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке.
В 1943 году нидерландский ученый В. Кольф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку.
В 1953 г. Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие.
В 1969 Д. Лиотта и Д. Кули впервые испытывают в теле человека имплантируемое искусственное сердце.
В 2007 поставлен рекорд по продолжительности жизни пациента с полностью искусственными (но стационарными) лёгкими: 117 дней.
В 2008 врачи впервые в истории поддерживают жизнедеятельность пациента с одновременным искусственным восполнением функции сердца и лёгких в течение 16 дней в ожидании донорского сердца.
Современная биологическая индустрия достигла своего пика. Появляются все новые и новые аппараты и приборы, на разработки которых уходит не десятки лет, а месяцы. Если раньше создание киборгов, было только сказкой, то современные изобретения позволяют в этом усомниться.
Профессор Университета Южной Каролины после длительных исследований создал чип, способный заменить гиппокампус - часть мозга, ответственную за кратковременную память, а также ориентацию в пространстве.
Немецким ученым из Института биохимии имени Макса Планка после длительных исследований удалось совместить живые клетки головного мозга с полупроводниковым чипом.
А калифорнийской компанией Neuropace был разработан электростимулирующий прибор для эпилептиков, названный «нейростимулятором ответных реакций»
Группа специалистов консорциума Bionic Vision Australia презентовали свой бионический глаз в Университете Мельбурна
А вот подход британцев, разработавших технологию BrainPort, принципиально отличается от всех вышеописанных в части метода передачи информации.
Первая группа – лица от 16 до 25 лет. Вторая группа – от 26 до 45 лет. Количество участников в каждой группе 30 человек. Опрос состоял из следующих вопросов: Как вы относитесь к искусственным органам? Считаете ли вы, что искусственные органы способны продлить жизнь человеку? Как бы вы ответили на вопрос: «Лечить или заменить орган»?
Разработка и создание искусственных органов в ведущих западных странах относится к главным государственным программам.
Все эти годы работы по созданию и клиническому применению искусственных органов в ведущих странах и, в особенности, в России не только не прекращались, но обеспечивались приоритетным финансированием. Сегодня это направление объединяет последние мировые медико-биологические и технические разработки и технологии, в том числе, с привлечением к их созданию новейших достижений военно-промышленного комплекса. Стимулом являются невероятные рыночные прибыли и неограниченная востребованность разработок на медицинском рынке. К основным медицинским направлениям, для которых осуществляются разработки, являются сердечно - сосудистые заболевания, сахарный диабет, онкология, травматология.
заменить орган?
или
Лечить
Я считаю, что в будущем человечество либо усовершенствует ныне существующие органы, либо найдет альтернативный путь решения этой проблемы. И кто знает, может, к концу 21 века люди будут иметь неограниченные возможности, и киборги станут не сказкой, а самой настоящей реальностью. Задачи, поставленные мной в начале проекта, достигнуты. Открыто новое научное знание. Получены практические, полезные результаты. Данный проект может быть применен при проведении уроков, семинаров, в качестве учебного пособия.
Вывод:
Список используемой литературы: Брюхоненко С.С., Чечулин С.И. (1926), Опыты по изолированию головы собаки (с демонстрацией прибора) // Труды II Всесоюзного съезда физиологов. - Л.: Главнаука.Демихов В.П. (1960), Пересадка жизненно важных органов в эксперименте. - М.: МедгизГришманов В.Ю., Лебединский К.М. (2000). Искусственное питание: концепции и возможности // Мир Медицины (3-4). Шутов ЕВ (2010). Перитонеальный диализ – М.http://ru.wikipedia.org/wikihttp://medi.ru/doc/http://itc.ua/articles/iskusstvennye_organy_na_puti_k_kiborgamhttp://novostinauki.ru/news/19118/

Предварительный просмотр:

Введение

Глава 1. История создания искусственных органов и развитие современной биологической науки в данном направлении

Глава 2. Современные искусственные органы, материалы для их создания

Глава 3. Отношение общественности к искусственным органам

Глава 4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Заключение

Приложения

Введение

В 20 веке научная индустрия приобрела новые приоритеты. Современный мир требует решения множества проблем: лечения смертельных болезней, возобновлению клеток человеческого тела, расшифрования генетического кода. Однако есть еще одна проблема - способность к «изнашиванию» человеческих органов. Искусственные органы – альтернативный путь решения данного вопроса. Сейчас вопрос: «Лечить или заменить орган?» - стоит ребром в биологической науке. Мой проект направлен на изучение данной проблемы и в связи с этим я ставлю для себя следующие задачи:

  1. Выяснить, кода появились первые попытки воссоздания человеческих органов
  2. Рассказать о современных искусственных органах
  3. Объяснить принцип подбора материалов для их создания
  4. Показать «плюсы» и «минусы» искусственных органов
  5. Раскрыть принцип практического применения искусственных органов
  6. Провести социологические опросы и выявить отношение современных людей к внедрению в организм искусственных органов
  7. Выявить тенденции развития биологической науки в направлении создании искусственных органов в России.

Разработка приборов, способных брать на себя функции органов человеческого тела - одно из передовых направлений современной медицины. У организма есть множество функций: моторная, сенсорная, интеллектуальная и другие.

Но особое место среди функций человеческого организма занимает функция собственного жизнеобеспечения. Если она не выполнена, то нет смысла говорить и о реализации других функций. Критически важные для жизни органы - это лёгкие, сердце, почки, сосудистая и пищеварительная системы, печень, а также некоторые другие компоненты. Уже сегодня существует оборудование, способное восполнять функции большинства основных органов жизнеобеспечения в течение продолжительного времени. Например, максимальный срок жизни человека со вспомогательным искусственным сердцем составляет 9 лет, максимальный срок жизни с использованием искусственных почек – 40 лет, максимальное время жизни пациента, питающегося от капельницы (минуя желудочно-кишечный тракт) – более 30 лет. Результаты, касающиеся других органов, пока более скромны, но и по ним есть прогресс

Данной темой я заинтересовалась по нескольким причинам. Во-первых, у одного из моих родственников, попавшего в автомобильную катастрофу, полностью функционирует только одна почка. Ему сообщили, что в будущем ему может быть имплантирована искусственная почка. Однако для этого потребуется несколько лет исследований. Меня заинтересовал принцип замены настоящих органов на искусственные. Во-вторых, в этом году я собираюсь поступать в МГМСУ на «кафедру трансплантологии и искусственных органов» и связать свою жизнь с данным типом деятельности. В-третьих, данная тема достаточно актуальна в наши дни. Ведь, создание искусственных органов позволяет продлить и сохранить жизнь человека.

1. История создания искусственных органов и развитие современной биологической науки в данном направлении.

История развития искусственных органов насчитывает не один десяток лет. Создать «запасные части» - заменители естественных органов - люди стремились уже с давних времен. Еще 2000 лет назад греческий историк Геродот рассказывал о воине, который отрубил прикованную ступню, чтобы бежать из плена, и многие годы потом ходил с деревянной ногой. А при раскопках у итальянского города Капуи археологи нашли бронзовую ногу римского легионера, заменившую потерянную им в одном из сражений более 1500 лет назад. В средние века искусственные конечности - протезы стали делать подвижными.

Первые научные разработки в данной области относятся к 1925, когда С. Брюхоненко и С. Чечулин (советские ученые) провели опыт со стационарным аппаратом, способным заменить сердце (приложение 1). Вывод из этого опыта состоял в следующем: голова собаки, отделённая от туловища, но подключенная к донорским лёгким и новому аппарату способна сохранять жизнеспособность в течение нескольких часов, оставаясь в сознании и даже употребляя пищу. 1925 год принято считать началом отсчета в истории разработок искусственных органов.

В 1936 году ученый С. Брюхоненко самостоятельно разрабатывает оксигенатор – аппарат заменяющий функцию легких. С этого момента существует теоретическая возможность поддерживать полный цикл жизнеобеспечения отделённых голов животных до нескольких суток. Однако на практике этого достичь не удаётся. Выявляется множество недостатков оборудования: разрушение эритроцитов, наполнение крови пузырьками, тромбы, высокий риск заражения. По этой причине, первое применение аналогичных аппаратов на человеке затягивается ещё на 17 лет.

В начале 1937 г. В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке. Но низкие технические характеристики нового прибора позволяют непрерывно использовать его в течение лишь полутора часов, после чего собака погибает.

В 1943 году нидерландский ученый В. Кольфф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку. Через год он уже применяет аппарат во врачебной практике, в течение 11 часов поддерживая жизнь пациентки с крайней степенью почечной недостаточности.

В 1953 г. Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие. Начиная с этого времени, стационарные аппараты искусственного кровообращения становятся неотъемлемой частью кардиохирургии.

В 1963 Р. Вайт в течение примерно 3 суток поддерживает жизнеспособность отдельного мозга обезьяны.

В 1969 Д. Лиотта и Д. Кули впервые испытывают в теле человека имплантируемое искусственное сердце. Сердце поддерживает жизнь пациента в течение 64 часов в ожидании человеческого трансплантанта. Но вскоре после трансплантации пациент погибает.

В течение последующих десятилетий разработки новых аппаратов не производятся. Устраняются ошибки предыдущих изобретений.

В 2007 поставлен рекорд по продолжительности жизни пациента с полностью искусственными (но стационарными) лёгкими: 117 дней.

В 2008 врачи впервые в истории поддерживают жизнедеятельность пациента с одновременным искусственным восполнением функции сердца и лёгких в течение 16 дней в ожидании донорского сердца. В том же году учёные Калифорнийского университета заявляют о выпуске первого в мире образца портативной искусственной почки. Помимо этих результатов, в 2008 году происходят знаковые события в области разработки и других искусственных органов и частей тела. Так, компанией Touch Bionics был создан революционный высокореалистичный протез руки.

В 2010 в Калифорнийском университете разработана первая, имплантируемая бионическая почка, пока что не доведённая до серийного производства (приложение 2).

2. Современные искусственные органы, материалы для их создания.

Современная биологическая индустрия достигла своего пика. Появляются все новые и новые аппараты и приборы, на разработки которых уходит не десятки лет, а месяцы. Если раньше создание киборгов, было только сказкой, то современные изобретения позволяют в этом усомниться.

Первая область развития искусственных органов касается области человеческого мозга, возможности которого до конца не изучены. Тем не менее, определенные манипуляции с мозгом проводятся, в основном с целью излечения болезней. Профессор Университета Южной Каролины после длительных исследований создал чип, способный заменить гиппокампус - часть мозга, ответственную за кратковременную память, а также ориентацию в пространстве. Поскольку гиппокампус зачастую подвергается нарушениям при нейродегеративных заболеваниях, то данный чип, ныне проходящий лабораторные испытания, может стать незаменимой вещью в жизни многих больных.

Немецким ученым из Института биохимии имени Макса Планка после длительных исследований удалось совместить живые клетки головного мозга с полупроводниковым чипом. Важность открытия заключается в том, что данная технология дает возможность выращивать очень тонкие полоски тканей на чипе, в результате чего он позволит очень подробно наблюдать взаимодействие всех нервных клеток между собой путем выявления сигналов, посылаемых клетками через синапсы.

А калифорнийской компанией Neuropace был разработан электростимулирующий прибор для эпилептиков, названный «нейростимулятором ответных реакций» (приложение 3). Принцип работы заключается в том, что устройство сдерживает поток неконтролируемых импульсов во время припадков с помощью электрических разрядов из внешнего источника. Испытания Neuropace проводились на сотне пациентов, удовлетворительный результат просматривался практически у половины.

Еще одной областью внедрения искусственных органов является глазной аппарат. Существует множество вариантов создания искусственных глаз.

Группа специалистов консорциума Bionic Vision Australia презентовали свой бионический глаз в Университете Мельбурна (приложение 4). Лабораторные испытания уже проводятся, а более массовое внедрение ожидается к 2013 году.

Ученым Калифорнийского университета удалось создать протез, который способен выполнять функции сетчатки глаза. На данном этапе тестирования человек способен видеть только размытую картинку, но дальнейшие перспективы достаточно позитивны. Данный протез устроен так: на оправе очков закрепляется камера, через которую изображение передается прямо на уцелевшие нейроны в сетчатке глаза. Для перевода входящего видеосигнала в импульсы, которые способны воспринять нервные клетки, пришлось разработать специальный программно-аппаратный конвертер.

Стоит отметить, что качество зрения, которое предлагает используемая во всех вышеупомянутых устройствах технология напрямую зависит от количества светочувствительных электродов в имплантанте. Если на нынешнем этапе их всего 60, то в скором будущем это число планируют довести до 1000, что радикально улучшит восприятие – не просто передавая пятна света, но гораздо полноценнее сообщая человеку о происходящем вокруг.

А вот подход британцев, разработавших технологию BrainPort, принципиально отличается от всех вышеописанных в части метода передачи информации. Идея в том, что человек должен начать видеть с помощью языка (приложение 5).

Внешняя часть устройства, как обычно, включает в себя небольшую видеокамеру, вмонтированную в оправу очков и конвертер, преобразующий сигнал. Однако, вместо электродов, вживляемых в сетчатку и передающих данные на зрительные нервы, BrainPort оборудован небольшой трубкой с прямоугольным передатчиком, который необходимо положить на язык. Электрические импульсы передаются на него и в зависимости от их интенсивности, человек может распознавать наличие препятствий на пути.

Следующая область, в которой искусственные органы применяются достаточно часто, это слуховой аппарат человека. К счастью, в отличие от зрения, частичное и даже полное восстановление слуха реализуется проще, поэтому уже достаточно давно существуют слуховые аппараты или, по научному, кохлеарные имплантанты. Принцип их работы прост: с помощью микрофона, расположенного за ухом, аудиосигнал передается на вторую часть аппарата, стимулирующую слуховой нерв – по сути, слуховой аппарат увеличивает громкость воспринимаемого звука.

Так, например, профессором Мириам Фарст-Юст из Школы электротехники Тель-авивского университета был разработан новый вид прикладного программного обеспечения «Clearcall». Данная программа предназначена сугубо для кохлеарных имплантантов и слуховых аппаратов и позволяет более четко слышать в шумных местах звуки, распознавать речь, а также отфильтровывать фоновые шумы. Для того, что бы человек воспринимал нормально звуки, Clearcall работает с собственной базой данных звуков, в результате чего идет максимально точное отфильтровывание посторонних шумов и усиление «полезных» сигналов.

Что касается материалов для создания искусственных органов, то в основном используются полимеры. Например, полиэтилен низкой плотности и поликапролактам используется для создания изделий, контактирующих с тканями организма. Поликарбонат используется для создания корпуса и деталей желудочков и стимуляторов сердца. Флоропласт-4 используется для протезов сосудов и клапанов сердца. Полиметилметакрилат применяют для создания деталей аппаратов «искусственная почка», «сердце - легкие». А для создания бесшовных соединений используется цианакрилатный клей. Что касается плюсов и минусов современных искусственных органов, то можно сказать следующее:

Плюсы:

  1. Возможность сохранения человеческой жизни в случаях ожидания донорского органа
  2. Большое количество разработок и усовершенствование ныне существующих искусственных органов
  3. Возможность сохранения человеческой жизни в случае потери настоящего органа (имплантаты, протезы)
  4. Возможность замены нефункционирующего органа с рождения (слепота)

Минусы:

  1. Большой риск при внедрении нового органа
  2. Дорогая стоимость искусственных органов
  3. Отсутствие достаточного уровня развития современной биологической науки в данном направлении

Таким образом, подводя итог вышесказанного, можно сказать, что современная биологическая наука активно развивается в данном направлении.

3. Отношение общественности к искусственным органам

Как вы знаете, отношение к науке никогда не было однозначным. В истории развития человечества никогда не было единой точки зрения, как на происхождение человека, так и на пользу научных инноваций. Мною был проведен опрос среди 2-х социологических групп. Первая группа – лица от 16 до 25 лет. Вторая группа – от 26 до 45 лет. Количество участников в каждой группе 30 человек. Опрос состоял из следующих вопросов:

  1. Как вы относитесь к искусственным органам?
  2. Считаете ли вы, что искусственные органы способны продлить жизнь человеку?
  3. Как бы вы ответили на вопрос: «Лечить или заменить орган»?

Результаты опроса я представила в виде диаграмм (приложение 6)

Таким образом, исходя из данных диаграмм, мы видим, что люди старшего поколения наиболее презрительно относятся к искусственным органам. А молодое поколение, наоборот, считает, что искусственные органы – это будущее человечества. Отношение к развитию биологической науки в этом направлении неоднозначно. Однако я, проделав множество исследований этой проблемы, считаю, искусственные органы со временем помогут продлить жизнь человека, помогут справиться с врожденными дефектами и заболеваниями.

4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Разработка и создание искусственных органов в ведущих западных странах относится к главным государственным программам. В США эта программа постоянно находится под патронажем президентов страны. Суммарные инвестиции в этих странах только частного капитала по разным направлениям программы составляют ежегодно миллиарды долларов. При этом они обеспечивают инвесторам непосредственную стабильную прибыль и гарантируют надежные политические и экономические перспективы.

Большинство искусственных органов в настоящее время достаточно большая роскошь. Исключение этому составляют протезы и слуховые аппараты. Поэтому большинство опытов и разработок искусственных органов в настоящее время происходит за рубежом, в странах Европы, в США. Но, тем не менее, современная Россия пытается идти в ногу со временем. В нашей стране все чаще финансируются биологические разработки в данной области науки, открываются все новые и новые кафедры, направленные на подготовку высококвалифицированных ученых в данном направлении. В России это направление получило государственную поддержку в 1974 году после заключения Межправительственного соглашения о сотрудничестве между СССР и США в области создания искусственного сердца.

При Государственном комитете СССР по науке и технике была создана Межведомственная комиссия, которая разработала комплексную программу НИР и ОКР на два года, полностью обеспеченную финансированием.

К сожалению, неудачное завершение сотрудничества по программе создания искусственного сердца, последующее сокращение финансирования, ослабление интереса руководства страны к его продолжению и наступившие в стране экономические и политические перемены 90-х годов практически полностью остановили работы по этому направлению. Развивавшиеся в России на начальном этапе дикие рыночные отношения переориентировали интересы специалистов на пересадку жизненно важных органов. При этом не был принят во внимание западный опыт современной трансплантологии, где, наряду с хорошо организованной (например, система «Евротрансплант») и законодательно защищенной клинической практикой пересадки жизненно важных органов (сердце, почка, печень, поджелудочная железа, легкие) нуждающимся больным, наблюдалось развитие криминального сектора трансплантологии.

Все эти годы работы по созданию и клиническому применению искусственных органов в ведущих странах и, в особенности, в США не только не прекращались, но обеспечивались приоритетным финансированием. Сегодня это направление объединяет последние мировые медико-биологические и технические разработки и технологии, в том числе, с привлечением к их созданию новейших достижений военно-промышленного комплекса. Стимулом являются невероятные рыночные прибыли и неограниченная востребованность разработок на медицинском рынке. К основным медицинским направлениям, для которых осуществляются разработки, являются сердечно - сосудистые заболевания, сахарный диабет, онкология, травматология.

5. Заключение

Подводя итог вышесказанного, мне хочется сказать, что вопрос о развитии и применении искусственных органов – достаточно спорный. Не существует единой точки зрения на данную проблему. Нет единой технологии производства и разработок в данной сфере, что положительно сказывается на развитии биологической науки. Вопрос о будущем применении искусственных органов остается спорным. Но лично я считаю, что в будущем человечество либо усовершенствует ныне существующие органы, либо найдет альтернативный путь решения этой проблемы. И кто знает, может, к концу 21 века люди будут иметь неограниченные возможности, и киборги станут не сказкой, а самой настоящей реальностью. Задачи, поставленные мной в начале проекта, достигнуты. Открыто новое научное знание. Получены практические, полезные результаты. Данный проект может быть применен при проведении уроков, семинаров, в качестве учебного пособия.

Список использованной литературы

  1. Брюхоненко С.С., Чечулин С.И. (1926), Опыты по изолированию головы собаки (с демонстрацией прибора) // Труды II Всесоюзного съезда физиологов. - Л.: Главнаука, - С. 289-290
  2. Демихов В.П. (1960), Пересадка жизненно важных органов в эксперименте. - М.: Медгиз
  3. Гришманов В.Ю., Лебединский К.М. (2000). Искусственное питание: концепции и возможности // Мир Медицины (3-4), 26-32 С.
  4. Шутов ЕВ (2010). Перитонеальный диализ – М - 153 с
  5. Интернет-ресурсы:

В прошлом году создали эмбрион - помесь свиньи и человека, в этом году - поместили человеческие клетки в эмбрион овцы . Стволовые клетки перепрограммируют в разные другие, делают из кожи сетчатку глаза, мышцы и вообще что угодно, выращивают модели органов на крохотных чипах - зачем все это нужно? Какую пользу такие исследования могут принести обычному пациенту?

Будущее трансплантации

Польза на самом деле огромная. Никто из нас не застрахован от болезней и травм, результатом которых может стать отказ того или иного органа. Люди не саламандры и не черви и даже хвост-то себе отрастить не способны, не говоря уже о новой голове.

Рыбки данио-рерио могут восстановиться после травм сердца, а мы - не они, наша регенерация, увы, заставляет желать лучшего, поэтому для сотен тысяч человек единственный способ сейчас получить работающие сердце, легкие или печень - это пересадка органа от донора.

Реципиентов - сотни тысяч. Доноров - намного меньше, подходящих конкретному человеку - критически мало. Если в случае с почкой донор может быть живым (и, скажем, родственником, таких случаев полно), то с сердцем, например, такого уже не получится. Сотни человек ежедневно умирают только потому, что нужного донора не успели найти. Именно поэтому исследования в области выращивания искусственных органов критически важны.

При чем тут эмбрионы животных?

До выращивания новых органов прямо внутри пациентов науке еще очень и очень далеко, а вот модификация эмбрионов животных уже доступна. Первые живые химеры (так называют организмы, в которых сосуществует генетический материал из разных зигот, а зигота - это то, что получается после встречи половых клеток) показали, что в теле животного вполне могут расти человеческие клетки.

У эмбрионов свиней начали формироваться органы, в том числе сердце и печень. Получается, что при точной настройке вырастить человеческий орган внутри животного реально не только теоретически, но и практически, а теперь выяснилось, что и с овцами такое тоже может получиться. Таким образом, искусственные органы - это вопрос времени.

Правда, довольно отдаленного, потому что пока еще специалисты не разобрались, как дирижировать этим клеточным оркестром, да и этические вопросы, возникающие в процессе таких модификаций, довольно сложны. Специалистам приходится думать не только собственно об органах, но и о том, как удержаться на грани и не сделать свинью или овцу слишком человеком.

Разумеется, это не будет гибрид типа Минотавра (такого просто никто не будет выращивать, дураков нет, а если есть - им быстро настучат по рогам), но сейчас концентрация человеческих клеток в эмбрионах (которых, разумеется, после исследования уничтожили как раз во избежание эксцессов) - одна на 10 тысяч, а надо - 1 на 100 или, может быть, даже больше. В общем, непонятно пока, как настроить тонкую механику, но уже ясно, что это в принципе возможно.

Нынешние биотехнологии позволяют очень многое. Известно, например, что одни специалисты создали потенциально полезную для искусственных органов систему сосудов, «обесклетив» лист шпината . Все растительные клетки вычистили, а оставшуюся основу населили человеческими.

Другие исследователи сделали материал, из которого в будущем возможно будет делать, например, заплатки для сердца после инфаркта: искусственная ткань и сокращаться может, и электричество проводит. Здесь уже, наверное, ничего объяснять не надо - и так понятно, зачем нужна такая заплатка.

Впрочем, не единой трансплантацией будет жив человек. У искусственных органов или даже их мини-версий - полностью функциональных уменьшенных копий - есть и другая важнейшая функция. На них можно проверять действие новых препаратов и моделировать процесс течения заболеваний, не привлекая к исследованиям людей.

Работа в этом направлении ведется колоссальная - например, из крысиных сердец уже умеют делать уменьшенные модели человеческих, очищая их от животных клеток и заселяя, соответственно, клетками Homo sapiens , создавали мини-желудки, мини-легкие, мини-почки и даже модель женской репродуктивной системы, которую после определенной доработки потенциально можно использовать для персонифицированной медицины - заселять ее клетками конкретной пациентки и смотреть, как будут у нее работать лекарства.

Все это звучит довольно футуристично, но вспомните - всего лет 30 назад нельзя было и помыслить о смартфонах и мощных компьютерах, а сейчас? В начале прошлого века не было антибиотиков - сейчас их множество видов. Да что там говорить, люди уже и на пересадку головы замахнулись - правда, пока безуспешно, но раньше это даже представить нельзя было. Так что будущее уже наступает - сегодня.

Ксения Якушина

Фото istockphoto.com

Спецпроект о проблемах старения мы продолжим рассказом о самых выдающихся и знаменитых исследователях, положивших начало работам по созданию искусственных органов. Большинство из них и сейчас продолжает работу над новыми амбициозными проектами.

Цикл статей, задуманных в рамках спецпроекта «биомолекулы» для фонда «Наука за продление жизни ».

В этом цикле рассмотрим общие проблемы старения клеток и организмов, научные подходы к долголетию и продлению здоровой жизни, связь сна и старения, питания и продолжительности жизни (обратимся к нутригеномике), расскажем про организмы с пренебрежимым старением , осветим темы (эпи)генетики старения и анабиоза.

Конечно, феномен старения настолько сложен, что пока рано говорить о радикальных успехах в борьбе с ним и даже о четком понимании его причин и механизмов. Но мы постараемся подобрать наиболее интересную и серьёзную информацию о нащупанных связях, модельных объектах, разрабатываемых и уже доступных технологиях коррекции возрастзависимых нарушений.

Следите за обновлениями!

Линда Гриффит и Чарльз Ваканти

Линда Гриффит - профессор биоинженерии и механической инженерии . В 2006 году получила стипендию Мак-Артура, также известную как «грант для гениев». Соавтор пионерской работы по выращиванию хряща в форме человеческого уха. На данный момент развивает технологии культивации 3D-культур клеток, а также участвует в проекте «Человек на чипе».

Чарльз Ваканти - профессор медицинской школы Гарварда . Соавтор пионерских работ по выращиванию хряща в форме человеческого уха, а также первой искусственной кости анатомической формы (для пациента с травмой большого пальца). Убежден в существовании способа переключения специализированных клеток в состояние стволовых, не использующего генетические модификации. Его убежденность не поколебал даже скандал с его бывшей аспиранткой, Харуко Обоката, сфабриковавшей результаты эксперимента по получению стволовых клеток. Чарльз Ваканти до последнего момента утверждал, что протоколы Харуко Обоката должны работать. В сентябре прошлого года, после того, как фальсификация данных японской исследовательницей была доказана, ушел в годовой академический отпуск. Судя по всему, после его окончания Чарльз Ваканти планирует продолжать поиски простого способа получения стволовых клеток.

В конце 1990-х годов по интернету разошлась жуткая картинка - мышь с человеческим ухом на спине (рис. 1). Картинку рассылали в основном по электронной почте, и подписи к ней со временем терялись. Многие люди не верили, что картинка настоящая, а другие начинали активно протестовать против генетической инженерии, в результате которой, по мнению этих людей, уродливая мышь появилась на свет. Картинка была настоящей. Человеческое ухо на спине у мыши вырастили, разумеется, без применения генетических модификаций (уже в те времена было понятно, что органы формируются при сложном взаимодействии многофункциональных генов, и никакого «гена человеческого уха» существовать не может). А работа, для которой была получена несчастная мышь, была одной из пионерских в области инженерии искусственных органов человека .

Рисунок 1. Знаменитая фотография из работы, сделанной в 90-х годах. Животное, вопреки предположениям многих напуганных людей, не подвергалось генетическим модификациям, а всего лишь служило средой, в которой синтетическая основа уха заселялась нанесёнными на нее клетками. Биореакторов, более подходящих для инкубации искусственного органа, в то время просто не существовало.

Ухо, по правде говоря, было человеческим лишь по форме, а составляющие его клетки были взяты у теленка. Тем не менее авторы работы, в числе которых были Линда Гриффит и Чарльз Ваканти, сделали первый шаг к созданию таких пугающе сложных структур как человеческие органы. Донорских органов настолько мало, и с ними так много проблем (и иммунологических, и психологических), что робость перед созданием искусственных частей человеческого тела было просто необходимо преодолеть.

Стратегия, которую применили Линда Гриффит и Чарльз Ваканти, до сих пор популярна в биоинженерии искусственных органов со сложной структурой. Сначала получают каркас из деградируемого полимера, а потом заселяют его клетками, которые постепенно разъедают каркас, делятся и осваивают освободившееся пространство. В менее «чистом» варианте того же метода используют основы органов, полученные от других животных или доноров, уничтожают их клетки, и заселяют полученный матрикс клетками реципиента. Такой орган нельзя считать полностью искусственным, и все же, он лучше донорского, так как не содержит его клеток и не вызывает отторжения иммунной системой. Такой вариант метода применяют, когда каркас сложно получить искусственно из-за его сложной структуры или состава и когда этот каркас должен войти в состав получившегося органа, а не разъедаться в процессе заселения клетками.

Заселение каркаса должно происходить в условиях, максимально приближенных к условиям внутри организма - с правильной температурой и течением питательных растворов через его части. Сейчас для этого используют специальные реакторы, которые приходится настраивать на форму определенного органа. А в первых работах 90-х годов в качестве биореакторов использовали мышей и крыс, которым заселенные клетками основы органов просто вживляли под кожу. Выглядели такие животные пугающе, зато цель - первые искусственные хрящи в форме человеческого уха - была достигнута.

Линда Гриффит продолжила работу в области инженерии искусственных тканей. Сейчас под ее руководством в специальном биореакторе поддерживают трехмерную культуру клеток печени. Такой культуре далеко до искусственной печени - она не похожа на нее по структуре, но тем не менее подходит для исследований лекарств и метаболизма гепатоцитов в условиях, близких к природным. Занимается исследовательница и разработкой органов на чипах, которые изобрел в 2010 году Дональд Ингбер (о нем речь пойдет позже).

Чарльз Ваканти заинтересовался другой стороной вопроса о выращивании искусственных органов - исследованиями стволовых клеток. Дело в том, что клетки, необходимые для выращивания нового органа, не всегда удобно (если вообще возможно) брать у донора. Поэтому, прежде чем учиться выращивать из подходящих клеток сложные структуры, сначала разумнее научиться получать эти подходящие клетки. Чарльза Ваканти интересовало преобразование клеток, которые легко взять у донора (например, с поверхности кожи), в клетки требуемого типа. Для этого нужно было научиться превращать специализированные клетки в стволовые - то есть способные приобрести любую специализацию. И, конечно, для биоинженеров важно, чтобы способ перепрограммирования клеток был не слишком сложным, иначе выгоды от его применения сойдут на нет. Чарльз Ваканти был убежден, что у организма должен быть способ переключать клетки в стволовое состояние , если это необходимо, - такая способность казалась ему слишком выгодной.

Возможно, решение кроется в ИПСК - индуцированных плюрипотентных стволовых клетках, которые можно получать из клеток различной специализации. О проблемах их получения и рисках использования читайте в статьях «В поисках клеток для ИПСК - шаг за шагом к медицине будущего » и «Предохранитель ИПСК » , .

Организму могут понадобиться стволовые клетки, если он испытывает сильный стресс, поэтому Чарльз Ваканти считал, что именно стресс может заставить клетки переключиться в стволовое состояние. Убедительных доказательств этой гипотезы ученому найти не удавалось. Зато ему удалось заинтересовать своими идеями японскую аспирантку Харуко Обоката . Поработав в лаборатории Ваканти в Гарварде, молодая исследовательница вернулась в институт RIKEN , где продолжила искать тот самый тип стресса, который заставит специализированные клетки стать стволовыми. Через Харуко Обоката история Чарльза Ваканти переплелась с судьбой еще одного выдающегося биоинженера - Ёсики Сасаи.

Ёсики Сасаи

Ёсики Сасаи - выдающийся биоинженер, пионер в области получения мини-органоидов методом воспроизведения первых этапов эмбрионального развития человека. Воспроизвел начальные этапы развития коры головного мозга, а также глазного бокала и гипофиза зародыша. В его лаборатории молодая исследовательница Харуко Обоката вела поиски простого метода превращения специализированных клеток в стволовые. Данные об успехе ее исследований Харуко Обоката сфабриковала. Устав от внимания прессы и обвинений научной общественности в недостаточном контроле за ходом работ под его руководством, Ёсики Сасаи в августе 2014 года повесился на перилах лестницы своего института .

Все живые организмы проходят долгий и трудный путь развития, прежде чем приобретают окончательную, зачастую очень сложную структуру. Если мы хотим получить копию искусственного органа, стоит вспомнить, как именно этот орган образуется в природе. Воспроизведение эмбрионального развития органа - очень перспективный путь для биоинженеров. Работами именно в этой области и прославился Ёсики Сасаи. В 2008 году были опубликованы результаты работы по воспроизведению первых этапов развития ни много ни мало человеческого мозга . А в 2011 году японские исследователи под руководством Сасаи получили зачатки гипофиза и глазных бокалов (рис. 2) . «В пробирке» (точнее, на чашке Петри) удается вырастить только мини-органоиды, потому что дальнейшие этапы их развития требуют сложного трехмерного окружения, которое, в свою очередь, тоже должно развиваться с ростом органа. Тем не менее, подбор условий, стимулирующих клетки повторять хотя бы первые стадии развития органа, уже дает много полезных данных для эмбриологии. Кроме того, на мини-органоидах, выращенных из клеток с генетическими мутациями, можно проследить становление патологии. И конечно, мини-органоиды подходят для тестирования лекарств и особенно для изучения их влияния на ранние стадии развития организма.

К несчастью для Ёсики Сасаи, под его руководством шли работы и на другие темы. В начале 2014 года в журнале Nature была опубликована статья, первым автором которой была Харуко Обоката, а последним - Ёсики Сасаи. В статье был описан на удивление простой метод перепрограммирования специализированных клеток в стволовые - с помощью непродолжительной инкубации в растворе лимонной кислоты. Стволовые клетки, полученные таким способом, назвали STAP (stimulus-triggered acquisition of pluripotency ). STAP-клетки могли бы вызвать настоящую революцию в регенеративной медицине - таким простым методом, как описали японские ученые, стволовые клетки можно было бы получать в огромных количествах. К сожалению, никаким другим исследователям, кроме Харуко Обоката, получить STAP-клетки не удалось. На японских ученых посыпались вопросы от разочарованных коллег и прессы, и Харуко Обоката пришлось повторить эксперименты в собственной лаборатории, чтобы доказать, что метод может работать. Ей это не удалось. В ходе расследования под эгидой института RIKEN выяснилось, что Харуко Обоката подтасовала данные скандальной публикации, а руководитель исследования - Ёсики Сасаи - об этом не знал. В августе 2014 ученый, тяжело переживавший скандал вокруг исследования, покончил жизнь самоубийством. Харуко Обоката не стала оспаривать решение экспертной комиссии о подтасовке результатов.

Интересно, что в ходе скандала Чарльз Ваканти (бывший руководитель Харуко Обоката) активно выступал в защиту японских ученых. В конце концов ему пришлось признать, что статья была отозвана обоснованно, но, несмотря на это, он не отказался от своей любимой идеи о возможности получить стволовые клетки из специализированных без трудоемких генетических модификаций. В сентябре прошлого года Чарльз Ваканти ушел в годовой академический отпуск, который к настоящему моменту как раз закончился.

Неизвестно, будет ли найден однажды простой способ получения стволовых клеток. Как бы то ни было, другое направление исследований Ёсики Сасаи - получение органоидов - оказалось очень плодотворным. В последующие годы ученым разных групп удалось получить мини-органоиды кишечника, желудка и почек . Последнее достижение в этой области - органоиды сердца - принадлежит знаменитому специалисту по созданию искусственных органов Энтони Атала .

Энтони Атала

Энтони Атала - директор . Научился получать из собственных клеток пациентов искусственный мочевой пузырь, уретру и влагалище. Сейчас во всем мире живут десятки людей с такими искусственными органами, созданными под руководством Энтони Атала. Сейчас знаменитый биоинженер работает над созданием искусственного пениса, который подошел бы жертвам несчастных случаев и мужчинам с врожденными патологиями репродуктивной системы.

Энтони Атала - директор целого института регенеративной медицины. Под руководством ученого в этой области было сделано много замечательных работ, все более и более сложных. В основном Энтони Атала занимается созданием искусственных органов мочеполовой системы. Начал он с самого простого - мочевого пузыря . По сути дела, мочевой пузырь - это просто мешок из клеток, и операции, в которых мочевые пузыри делают из тканей кишечника, проводятся уже довольно давно. Конечно, у этих органов очень разные функции - стенки кишечника всасывают питательные вещества, а мочевой пузырь просто служит резервуаром для мочи перед ее выведением. Поэтому, конечно, хотелось научиться получать этот несложный орган из более подходящего материала. Энтони Атала использовал для этого уже упомянутый метод - выращивание клеток на специальном каркасе анатомической формы. Такие искусственные мочевые пузыри вживили нескольким мальчикам с патологиями этого органа в 1999 году. Спустя 5 лет наблюдений Энтони Атала с коллегами доложили, что искусственные органы прижились хорошо, и не вызвали осложнений у реципиентов . После этого ученый перешел к более сложной задаче - созданию искусственных влагалищ. В отличие от мочевых пузырей, эти органы никогда не пытались получить искусственно. В то же время, устройство влагалища тоже не очень сложное - это трубка из клеток. В 2005-2009 годах четырем девочкам с редкими патологиями, при которых половая система развивается неправильно, были вживлены такие искусственные влагалища. В 2014 году ученый доложил об успехе всех операций, благодаря которым подросшие пациентки смогли жить нормальной половой жизнью . Параллельно ученые под руководством Энтони Атала научились получать другой орган трубчатой структуры - уретру (мочеиспускательный канал) . Такие искусственные органы вживили пяти мальчикам, и операции также прошли успешно и не вызвали осложнений.

На очереди оказался самый сложный орган мочеполовой системы - пенис. Современная хирургия уже позволяет пришивать пациентам, потерявшим пенис из-за несчастных случаев, орган донора. Первая такая операция была проведена еще в 2006 году. Однако спустя две недели после этой сложнейшей операции пациент попросил удалить донорский пенис . Такое решение кажется странным лишь на первый взгляд. Пенис относится к органам, которые жертвуют лишь посмертно, а привыкнуть к жизни с пенисом умершего человека явно сложнее, чем к жизни с донорской почкой. От первой в мире пересаженной руки, к примеру, реципиент также отказался вскоре после операции . Так что инженерия наружных органов - вопрос, в определенном смысле, даже более срочный, чем инженерия жизненно важных частей тела. Ведь, пока хирургам в качестве материала предоставляют только донорские органы, многие сложнейшие операции будут проходить напрасно. К тому же, помимо психологических проблем, с донорскими органами возникают еще и проблемы иммунологической совместимости - пациентам часто приходится принимать препараты, подавляющие деятельности иммунной системы, чтобы она не начинала атаковать чужеродную часть тела.

Пенис сконструировать намного труднее, чем просто пузырь или трубку из клеток, ведь для функционирования этого органа необходима правильная структура во всем его объеме. Совершенно необходимо воспроизвести губчатую ткань пещеристых тел, которые разбухают при эрекции, а также структуру сосудов, по которым к этой ткани поступает кровь. И, само собой, нужно разместить в нем уретру, которая не должна пережиматься при набухании пещеристых тел. С нуля воспроизвести такую структуру очень сложно, поэтому Энтони Атала использует для получения искусственных пенисов коллагеновые основы донорских органов, которые очищают от клеток с помощью ферментов. Потом ее заселяют клетками человека, которому орган впоследствии можно будет без проблем пересадить (пока такие операции не проводили). По словам Энтони Атала, какой бы тяжелой не была травма пениса, благодаря тому, что этот орган продолжается и внутри таза, у человека всегда можно взять клетки на выращивание нового .

Человеческие искусственные пенисы пока в разработке - чтобы их можно было пересаживать реципиентам, они должны пройти много сложных тестов. Зато уже есть успешные результаты для кроликов - животные с пенисами, полученными методом Энтони Атала, успешно спариваются и обзаводятся потомством. Однако перейти от кроликов к людям оказалось не так просто - чтобы получить орган большего размера, недостаточно просто пропорционально увеличить количество клеток, время инкубации и прочие параметры. К тому же с увеличением объема органа становятся выше и требования к его внутренней структуре - ведь каждая клетка живого организма должна находиться от ближайшего капилляра на расстоянии не больше 200 микрометров (что примерно равно толщине человеческого волоса). Поэтому вырастить крупный объемный орган всегда сложнее, чем плоский (как фрагмент кожи), трубчатый (как искусственная уретра) или мешковидный (как мочевой пузырь).

Интересы Энтони Атала не ограничиваются мочеполовой системой. В его лаборатории идут работы по получению искусственных тканей печени, сердца и легких. В 2011 году во время конференции TED знаменитый ученый взбудоражил общественность, продемонстрировав полученный методом 3D-печати прототип искусственной почки . Ключевым словом, на которое многие не обратили внимания, было «прототип» - искусственная почка имела правильную форму, а также доказывала, что с помощью 3D-печати можно получить нечто, хотя бы внешне сходное с желаемым объектом. Но структура прототипа почки даже близко не приближалась к сложности настоящего органа, которая совершенно необходима, чтобы почка выполняла свою функцию. Этот орган должен состоять из тончайших канальцев, опутанных сосудами, для того, чтобы выделять с мочой только ненужные вещества, а все полезное возвращать в кровь. К такой сложности биоинженерам до сих пор не удалось подойти, и, конечно, ее невозможно было достичь в 2011 году. Однако, по-видимому, именно метод биопечати со временем позволит ученым получать точно те биологические структуры, которые ему необходимы. Этот метод разработал и активно развивает еще один знаменитый биоинженер - Габор Форгач.

Габор Форгач

Габор Форгач - знаменитый биоинженер и предприниматель от науки. Под его руководством был создан первый коммерческий 3D-биопринтер, на котором уже напечатаны образцы многих тканей. Вместе со своим сыном Андрасом основал компанию Modern Meadow , производящую искусственную кожу и искусственное мясо для употребления в пищу.

В 1996 году Габор Форгач обратил внимание на факт, уже давно известный ученым -клетки, образовавшиеся в ходе деления зародыша, могут двигаться по нему, но, попав в окончательное место назначения, склеиваются с другими клетками. Это навело его на мысль, что клетки можно использовать в качестве элементарных единиц для конструирования - если подобрать правильные условия, то клетки, уложенные в желаемые структуры, сами склеятся между собой. Однако, идея о том, что для такого укладывания клеток можно применять специальный принтер, ему в голову не пришла.

Первым додумался печатать биологические объекты Томас Боланд . Он модифицировал обычный принтер таким образом, что на нем стало возможным печатать биологическими материалами, например, белками или бактериями. Для 3D-печати прибор не подходил. Идея, тем не менее, оказалась здравой, и со временем привела к разработке биопринтеров, способных печатать сложные объемные структуры.

Форгачу потребовалось много времени, чтобы развить свою идею о самостоятельном склеивании клеток в технологию получения трехмерных искусственных тканей. Несколько лет потребовалось и на разработку принтера, способного применить эту технологию. Устройство должно было стать достаточно точным и деликатным по отношению к чувствительным клеточным «чернилам». Такой прибор под названием Organovo компании Форгача удалось создать только в 2009 году . В 2010 году на этом первом биопринтере напечатали человеческий сосуд, и, что с самого начала было важно для Форгача, без всяких дополнительных каркасов. Благодаря этому появляется уверенность, что в органе не будет содержаться абсолютно ничего, вызывающего иммунологическое отторжение у реципиента (если орган выращивать из его собственных клеток).

Чтобы сделать из клеток аналог чернил принтера, их помещают в специальный гель, который не позволяет клеткам слипаться раньше времени. Принтер печатает, как правило, не единичными клетками, а их шарообразными скоплениями - сфероидами (хотя метод позволяет использовать для печати и отдельные клетки, что необходимо для некоторых структур), идея которых также принадлежит Габору Форгачу . Каждый напечатанный слой клеток отделяют слоем геля, а уже готовый орган отправляют дозревать в инкубатор. При этом гель, использованный для печати, растворяется, а внутри органа развивается его сосудистая сеть - от сосудов отрастают тончайшие капилляры. Это очень удобно для биоинженеров, потому что получать такие мелкие сосуды они пока не умеют. Кроме того, если орган пересадить реципиенту, то в новую часть тела обязательно проникнет сосудистая сеть хозяина. Однако такая практика скорее подходит для животных, а не для человека - в его случае слишком опасно полагаться на то, что нужные сосуды врастут в орган сами. К тому же надеяться на то, что сосуды сами вырастут как нужно, совершенно точно нельзя в случае органов со сложной структурой - таких, как уже обсуждавшиеся почки. Так что остается надеяться на повышение точности 3D-печати в будущем.

3D-биопечать продолжает развиваться уже во всем мире: в 2010 году впервые удалось напечатать фрагмент кожи , а в 2014 - сердечный клапан (рис. 3) и фрагмент ткани печени . Такие ткани прекрасно подходят для предварительных испытаний прототипов лекарственных препаратов, а кожа - еще и для тестов косметических средств (компания L’Oreal, к примеру, уже использует для тестов искусственную кожу, напечатанную Organovo ). Такие тесты проще организовать, чем тесты на животных, которые требуют согласования с биоэтическими комиссиями. Кроме того, тесты на человеческих, пусть и выращенных в лаборатории, органах и коже, дают более достоверные результаты о влиянии продукта на человеческий организм, чем исследования на лабораторных животных.

О том, как в России развивается 3D-печать, рассказано в статье «Органы из лаборатории » .

Последнее достижение биопечати на данный момент - фрагмент нервной ткани человека с точно позиционированными нейронами, полученный в этом году под руководством австралийского биоинженера Гордона Уэлласа (тот самый случай, когда необходимо печатать ткань отдельными клетками, а не сфероидами) .

Габор Форгач не только положил начало 3D-печати органов человека для больных людей или переживших несчастный случай. Он еще и первым понял, что искусственные ткани и органы могут пригодиться всем людям без исключения. Некоторые продукты животного происхождения - такие как мясо и кожа - настолько хороши, что им трудно создать полноценную замену. Но теперь, благодаря биоинженерии, их можно будет получать этичным образом - без убийств животных. Габору Форгачу первому пришло в голову, что мы уже знаем достаточно для выращивания искусственного бифштекса или куска кожи. Получать их значительно проще, чем многие искусственные органы, над разработкой которых бьются ученые, а потребность в мясе и коже значительно выше, чем в человеческих органах. Также переход на мясо и кожу искусственного происхождения благоприятно сказался бы на экологической ситуации - ведь биореакторы не вытаптывают огромные пастбища и не выделяют в атмосферу такое количество метана, какое может существенно усилить парниковый эффект.

Поэтому вторая компания Форгача, которую он основал вместе со своим сыном Андрасом - Modern Meadow - выращивает мясо и кожу в лабораторных условиях . Важный аспект деятельности компании - это оптимизация методик, поскольку сейчас искусственные копии продуктов животного происхождения обходятся дороговато. Другая проблема состоит в том, что общественность с недоверием относится к выращенным в лаборатории продуктам. Согласно опросу, проведенному в 2014 году, лишь 20% американцев готово попробовать полученное лабораторными методами мясо . Поэтому сам Форгач старается доказать людям, что его продукты безопасны, в том числе на собственном примере. Например, в 2011 году на конференции TedMed Форгач собственноручно приготовил, а затем съел выращенное в лаборатории мясо . Кроме того, биоинженер уверяет, что его лаборатории открыты для потенциальных клиентов, и каждый может увидеть, как делается сосиска, в то время как «бойни никогда не приглашают посетителей понаблюдать за их работой» .

Габор Форгач уловил, что в биотехнологиях не хватает собственно технологичности - многие методы, использовавшиеся при попытках воспроизвести сложнейшую структуру органов, были старомодными по своей сути. Биология остается не очень точной наукой, но при создании искусственных органов для живых людей, по мнению Форгача, неприемлемо рассчитывать на то, что правильная структура образуется как-нибудь сама. 3D-биопринтеры следуют веяниям времени и воплощают в жизнь мечты о точном контроле над тем, что кажется полностью хаотичным и загадочным, - жизнью. И только одно направление биоинженерии, возможно, еще более технологично и футуристично - органы на чипах.

Дональд Ингбер

Дональд Ингбер - биолог, знаменитый своим инженерным взглядом на живые объекты, благодаря которому ученый сделал несколько открытий в области биологии клетки (например, о влиянии механических воздействий на активность генов). Автор идеи «органа на чипе» - простейшей клеточной системы, расположенной на пластинке стандартного размера и воспроизводящей основные функции моделируемого органа. Создал множество органов на чипах, и сейчас работает над объединением десяти таких органов в «человека на чипе».

До начала двухтысячных Дональд Ингбер исследовал биологию рака - параметры, влияющие на развитие опухолей и метастазирование раковых клеток. При этом ученый смотрел на живую клетку как инженер. На подход ученого к исследованиям клеточной биологии повлияла, как ни странно, одна необычная скульптура, которую Дональд Ингбер увидел в середине 70-х годов. Скульптура была сконструирована по принципу тенсегрити . Такие конструкции состоят из прочных балок, которые не касаются друг друга благодаря системе натянутых тросов. Вся структура поддерживается за счет точно сбалансированных натяжений гибких элементов. Дональд Ингбер предположил, что и структура живой клетки может поддерживаться благодаря тем же принципам. И действительно, ему удалось показать, например, что приложенные к поверхности клетки механические воздействия могут повлиять на форму ее ядра и даже на экспрессию генов. Глубокое понимание того, как механические силы влияют на структуру и функцию клеток, помогло ученому продвинуться в исследовании биологии рака .

Вероятно, такое стремление ввести исследования клетки в более понятную, «механическую» плоскость, в конце концов и привело Дональда Ингбера к идее органов на чипах. Орган на чипе - это пластинка размером не более кредитной карточки. В пластинке есть ячейки, заселенные клетками определенных типов. Ячейки соединяются каналами, имитирующими кровоток или обмен тканевой жидкости между группами клеток органа. Разумеется, такое устройство не отражает форму природного органа, но зато в максимально компактной и контролируемой форме моделирует саму суть его работы. Жизнедеятельность клеток в органе на чипе нужно поддерживать, помещая чип в специальный реактор, который прогоняет по каналам чипа питательные растворы под правильным давлением и поддерживает определенную температуру и содержание растворенных газов в этих жидкостях.

Важнейшее преимущество органов на чипах соответствует технологическим трендам: это модульность - возможность составлять из таких устройств разные комбинации. Чипы, изображающие различные органы, можно соединять между собой, чтобы изучать влияние этих органов друг на друга, моделировать передвижения болезнетворных микробов по различным системам организма или же изучать, что происходит с молекулами лекарства, когда оно попадает в организм.

Первое устройство такого типа - легкое на чипе - Дональд Ингбер с коллегами разработали в 2010 году . Каналы этого устройства разделены на две части пористой мембраной, с одной стороны которой располагается слой клеток легкого, а с другой - слой клеток стенки сосуда. В той части каналов, где располагались клетки сосуда, циркулирует кровь, а та, где находятся клетки легкого, заполнена воздухом. В обе части каналов ведут специальные отверстия - туда можно добавлять лекарства или, к примеру, болезнетворных микроорганизмов, чтобы смоделировать их попадание в легкое из воздуха или с током крови.

С тех пор на чипах удалось воспроизвести работу почки , печени , а также кишечника с микробиомом и перистальтикой (рис. 4) . Особенно интересной для клинических исследований оказалась разработка чипа, отражающего устройство гематоэнцефалического барьера . Разработчики воспроизвели и плотные контакты между клетками сосудов мозга, и расположение глиальных клеток - особенности, благодаря которым многие молекулы из крови не могут легко проникнуть в мозг. При тестировании прототипов лекарств очень полезно узнать, способны ли они проникать сквозь гематоэнцефалический барьер, и если да, то с какой эффективностью. Кроме этого, на чипе удалось воспроизвести устройство гематопоэтической ниши костного мозга, что крайне полезно для исследований болезней, при которых нарушается нормальное развитие клеток крови .

Рисунок 4. «Кишечник на чипе». а . Схема устройства. Гибкая пористая мембрана, выстланная эпителиальными клетками кишечника, расположена горизонтально по центру микроканала, по бокам которого находятся вакуумные камеры. б . Фотография «кишечника на чипе», состоящего из прозрачного ПДМС-эластомера (эластомера из полидиметилсилоксана). По направлению стрелок насосом заливают красную и синюю жидкости в нижний и верхний отсеки микроканала, соответственно, чтобы их визуализировать.


Искусственные механические органы - пожалуй, наиболее реалистичный на сегодня способ починить порядком износившееся тело, которому уже не поможет традиционный терапевтический «ремонт». Что касается других методов, то пересадка органов осложняется дефицитом доноров и биологической несовместимостью. А стволовые клетки, о которых так много говорят, к сожалению, пока слишком далеки от практического применения.

Первыми искусственными органами, видимо, стоит считать зубные протезы. Позднее хирурги стали вживлять металлические суставы и связки, а затем появились и электронные протезы конечностей. Но назвать эти аппараты «революцией в искусственных органах» можно лишь с натяжкой. Конечно, они улучшают качество жизни, но прожить можно и без них. Для создания таких аппаратов главное - подобрать прочный, легкий и безопасный материал, изготовить из него нужную деталь и разработать технологию «установки» в человеческое тело.

Другое дело - наши внутренние органы. Миллионы людей ежегодно умирают от тяжелых болезней сердца, легких, печени и почек, и помочь им зачастую нет никакой возможности. Почти все изобретенные аппараты для поддержания жизни - искусственное легкое, печень или почки - занимают места не меньше, чем холодильник и рассматриваются лишь как временная мера. Как правило, пациент находится около такой машины постоянно и ожидает органа для пересадки. Но подходящих доноров удается найти далеко не всегда.

Но не все так безнадежно. Самым «простым» из этих органов является сердце. Еще в 1938 году американские хирурги впервые использовали аппарат искусственного кровообращения. Не так давно было создано искусственное сердце AbioCor, которое позволяет человеку не просто «доживать», а ходить и даже заниматься спортом. А последняя разработка - австралийский прибор VentrAssist - вовсе должна работать 50 лет. Но об этом аппарате мы расскажем позднее, потому что его технические характеристики будут выглядеть слишком блекло без теоретического вступления.

Параметры искусственного тела

Идеальные искусственные органы - это машины, которые будут работать десятки лет под большими нагрузками и не требовать какого-либо технического обслуживания. Скажем, мощность сердца человека в покое составляет чуть больше 3 ватт. Это значит, что за день оно совершает работу почти в 90 килоджоулей. То есть «поднимает» тонну груза на четвертый этаж. При физической нагрузке, естественно, его производительность должна значительно возрастать. А теперь представьте, что такой аппарат еще должен умещаться в груди, иметь запас энергии, и не останавливаться ни на минуту в течение всей жизни.

Искусственные легкие - не менее сложная задача. Поверхность «оригинальных» дыхательных органов примерно равна теннисному корту. За одну минуту на ней двадцать раз равномерно «разливается» и убирается стакан крови. Кроме того, постоянно происходит самоочищение легких от сажи, пыли и других вредных частиц, которые мы вдыхаем. Если добавить, что такой орган по объему не должен превышать пяти литров, становится понятно, что работа над таким аппаратом еще очень далека от завершения.

Печень - тоже довольно маленький орган, в котором умещается «химический завод» и мощная система фильтрации. Только за одну минуту через нее проходит полтора литра крови, которую нужно очистить от продуктов жизнедеятельности, не нарушив при этом электролитный, гормональный и белковый баланс. Многие вещества, например - алкоголь, лекарства, жиры, не просто задерживаются в печени, но и перерабатываются в форму, наиболее удобную для выведения из организма. Кроме того, этот орган отвечает за синтез примерно литра желчи - эмульгатора пишевых жиров.

Еще один орган, без которого человек прожить не может - это почка. Аппарат, его замещающий должен, как и печень, фильтровать всю кровь организма. Но на этом функция почек не заканчивается: их биологический «компьютер» анализирует состав крови и на основании этих данных поддерживает в очень узких пределах содержание практически всех растворенных в ней веществ.

Беспроводное сердце

Теперь, когда мы оценили масштабы задачи, посмотрим, как она решается в отношении сердца. Аппарат AbioCor денверской компании Abiomed - это настоящее искусственное сердце, которое заменяет оба желудочка и обеспечивает поступление крови в легкие и остальные органы человека. В приборе размером с грейпфрут и весом 900 граммов находятся титановый насос, блок управления и батарея. Ее емкости хватает на 30 минут автономной работы, а зарядка происходит через кожу: то есть на поверхность тела не выходит никаких проводов. Внешняя батарея, носимая на поясе, позволяет оставаться без подзарядки несколько часов.

Такой аппарат предназначен для пациентов с конечной стадией сердечной недостаточности и неблагоприятным прогнозом. Причем, создатели аппарата заявляют, что он позволяет больным не просто «доживать», но гарантирует им вполне приемлемое качество жизни.

Первое сердце AbioCor было пересажено в 2001 году. С тех пор было установлено не более 20 аппаратов, однако в компании смотрят на перспективы аппарата оптимистично и оценивают рынок в 100000 операций в год.

Сердце AbioCor

Аппарат VentrAssist, созданный австралийскими исследователями, в отличие от сердца AbioCor, не может полностью заменить природный орган. VentrAssist лишь помогает перекачивать кровь левому желудочку - самому нагруженному отделу сердца.

Внутрь тела помещается лишь титановый роторный насос. Его ресурс австралийцы оценивают как 50 лет непрерывной работы. Контроллер и батарею, емкости которой хватает на 8 часов, больной носит на поясе.

По замыслу разработчиков, такой прибор должен помочь многим людям с сердечной недостаточностью. Однако в медицинской практике он появится лишь после соответствующего разрешения лицензирующих органов.

Сердце AbioCor сейчас стоит чуть меньше 100 тысяч долларов, VentrAssist обойдется примерно в 50. Однако эта цена значительно меньше затрат, связанных с каждой пересадкой донорского сердца.

Если учесть еще и те средства, которые уходят на медицинское обслуживание больных с сердечной недостаточностью, станет понятно: искусственное сердце не только полезно, но и выгодно для медицинской индустрии. А финансовые стимулы, как известно - самые сильные. В том числе и для технического прогресса.

Остается только уточнить, что поддерживать этот прогресс ценой собственной жизни совершенно необязательно. При своевременной профилактике сердечных заболеваний ваше собственное сердце может прослужить значительно дольше, чем 50 лет. И главное, практически бесплатно.