Вредны ли ультрафиолетовые фонарики. Лазерная безопасность Безопасная мощность ик лазера для глаз

Существует несколько классификаций опасности лазеров, которые, однако, весьма похожи. Ниже приведена наиболее распространенная международная классификация.

● Класс 1. Лазеры и лазерные системы очень малой мощности, не способные создавать опасный для человеческого глаза уровень облучения. Излучение систем класс 1 не представляет никакой опасности даже при долговременном прямом наблюдении глазом. Во многих странах к классу 1 относятся также лазерные устройства с лазером большей мощности, имеющие надежную защиту от выхода луча за пределы корпуса.

● Класс 2. Маломощные видимые лазеры, способные причинить повреждение человеческому глазу в том случае, если специально смотреть непосредственно на лазер на протяжении длительного периода времени. Такие лазеры не следует использовать на уровне головы. Лазеры с невидимым излучением не могут быть классифицированы как лазеры 2-го класса. Обычно к классу 2 относят видимые лазеры мощностью до 1 милливатта.

● Класс 2a (в некоторых странах). Лазеры и лазерные системы класса 2a, расположенные и закрепленные таким образом, что попадание луча в глаз человека при правильной эксплуатации исключено.

● Класс 3a. Лазеры и лазерные системы с видимым излучением, которые обычно не представляют опасность, если смотреть на лазер невооружённым взглядом только на протяжении кратковременного периода (как правило, за счет моргательного рефлекса глаза). Лазеры могут представлять опасность, если смотреть на них через оптические инструменты (бинокль, телескоп). Обычно ограничены мощностью 5 милливатт. Во многих странах устройства более высоких классов в ряде случаев требуют специального разрешения на эксплуатацию, сертификации или лицензирования. Международные классы 2 и 3a примерно соответствуют российскому классу 2.

● Класс 3b. Лазеры и лазерные системы, которые представляют опасность, если смотреть непосредственно на лазер. Это же относится и к зеркальному отражению лазерного луча. Лазер относится к классу 3b, если его мощность более 5 милливатт. В Беларуси примерно соответствуют классу 3.

● Класс 4. Лазеры и лазерные системы большой мощности, которые способны причинить сильное повреждение человеческому глазу короткими импульсами (<0,25 с) прямого лазерного луча, а также зеркально или диффузно отражённого. Лазеры и лазерные системы данного класса способны причинить значительное повреждение коже человека, а также оказать опасное воздействие на легко воспламеняющиеся и горючие материалы.

Меры безопасности

Система классификации безопасности лазеров весьма облегчает выработку необходимых мер безопасности. На практике, стандарты и кодексы лазерной безопасности, обычно, требуют применения более жестких мер контроля для каждого более высокого класса лазеров.

Первое правило лазерной безопасности:

НИКОГДА НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ НЕ СМОТРИТЕ ГЛАЗАМИ НА ЛАЗЕРНЫЙ ЛУЧ!

Если вы сможете предотвратить попадание лазерного луча и его отражений в глаз, вы сможете избежать болезненные и, возможно, ослепляющее травмы.

На деле, всегда более желательно полностью закрыть лазер и траекторию прохождения луча для того, чтобы сделать недоступным потенциально опасное лазерное излучение. Другими словами, если на рабочем месте используются только лазерные устройства класса 1, то безопасность гарантирована. Однако во многих ситуациях это просто не реально, и поэтому требуется подготовка рабочих в области безопасного использования лазеров и мер контроля опасности.

Кроме соблюдения очевидного правила - не направлять лазер человеку в глаза - для лазерных устройств класса 2 не требуется других мер контроля. Для лазеров более высоких классов, несомненно, требуется применение мер безопасности.

Если общее загораживание лазера класса 3 или 4 невозможно, то использованием корпусов для лучей (например, труб), дефлекторов (экранов) и оптических заслонов можно в большинстве случаев, фактически, устранить риск опасной экспозиции глаз.

Когда загораживание лазера класса 3 или 4 невозможно, то необходимо создать контролируемый лазером участок с контролируемым входом. Использование средств анти-лазерной защиты глаз внутри зоны номинальной опасности (NHZ) лазерного луча является обязательным. Хотя в большинстве исследовательских лабораторий, где используются коллимационные лазерные лучи, NHZ включает в себя всю контролируемую лабораторию, для устройств со сфокусированным лучом NHZ может быть необычайно ограниченной и не охватывать всю комнату.

При работе с лазерами необходимо иметь очки, защищающие от лазерного излучения. Защитные очки нужны даже для лазера 15мВт, так как без них глаза сильно устают. Для защиты глаз нельзя использовать солнцезащитные очки!

Степень защиты очков от лазерного излучение измеряется в OD. OD значит Optical Density – оптическая плотность. Оптическая плотность показывает, во сколько раз очки ослабляют свет. Единица означает «в 10 раз». Соответственно, «оптическая плотность 3» означает ослабление в 1000 раз, а 6 - в миллион. Правильная оптическая плотность для видимого лазера такова, чтобы после очков от прямого попадания лазера осталась мощность, соответствующая классу II (максимум где-то 1 мВт). Для невидимого - чем больше, тем лучше.

От красного и некоторых инфракрасных лазеров защищают отечественные очки марки ЗН-22 С3-С22. Они похожи на очки сварщика, но имеют стекла голубого цвета.

Сегодняшняя статья будет несколько занудной, поскольку поднимает те вопросы, которые обычно никто обсуждать не любит. И речь в ней пойдет об основных, наиболее важных вопросов связанных с ТБ по работе с лазерами. Я постараюсь рассказать об этой неприятной, но очень важной теме с минимумом нудных букв и цифр, которые так любят приводить в разных «справочниках по правилам безопасной эксплуатации», разобрав основные вопросы с помощью наглядных и доступных примеров в духе «что будет, если». Какую опасность таит в себе лазер, все ли лазеры одинаково опасны? Будем разбираться.

ВНИМАНИЕ: Данная статья может содержать ошибки и неточности, так как я не специалист в медицинских вопросах.

Как известно, основное свойство лазера – это очень высокая направленность и монохроматичность излучения, значительная мощность светового потока сконцентрирована в очень тонком пучке. В свою очередь каждый из нас снабжен очень чувствительным аппаратом для восприятия света – нашими глазами. Глаза, напротив, спроектированы так, чтобы использовать самые малые уровни интенсивности света для обеспечения их хозяина необходимой зрительной информацией. Уже становится понятно, что сочетание высококонцентрированного и мощного светового пучка с чувствительным зрительным органом уже слабосовместимо, соответственно такой пучок будет представлять опасность. Это, в общем-то, очевидно, если на Солнце нельзя смотреть дольше нескольких секунд, то в луч мощного лазера, который прожигает дырки в бумаге – и подавно. Но не всё так просто. Опасность лазерного излучения сильно зависит от его характера (импульсное или непрерывное), мощности, длины волны. Также очень многие установки основанные на газовых или твердотельных\жидкостных с ламповой накачкой лазерах содержат цепи и элементы, находящиеся под высоким напряжением – трансформаторы, радиолампы, коммутационные разрядники и тиратроны, мощные конденсаторы, которые являются источником электрической опасности. Но на них я заострять внимание не буду, об электробезопасности написана масса литературы и это набившая оскомину тема среди тесластроителей. Здесь я ограничусь лишь рассмотрением опасности только оптической – которую несет непосредственно лазерное излучение.

При варьировании параметров лазера будут также варьироваться механизмы повреждения глаза, которые детально описаны в специализированной литературе. Эффекты, производимые лазерным излучением, безотносительно его мощности описаны на картинке:

Эти данные не стоит принимать за истину в последней инстанции, это лишь версия одной из книг. Описанные эффекты могут комбинироваться в любых соотношениях, в зависимости от остальных параметров – мощности и длины волны. Строго говоря импульсный режим работы лазера можно разделить ещё на два – импульсный режим свободной генерации и импульсный режим с модулированной добротностью. Во втором случае лазер переводится в т.н. «режим гигантского импульса», когда вся накопленная при накачке энергия из рабочей среды выбрасывается коротким (единицы-десятки наносекунд) импульсом. Мощность в импульсе при этом достигает многих десятков и сотен мегаватт при скромных субджоульных энергиях. При воздействии «гигантского импульса» повреждения имеют в первую очередь взрывной механизм, так как образовавшееся при поглощении тепло не может отвестись никуда за столь короткое время. При действии импульса свободной генерации повреждения идут больше по термическому механизму, поскольку тепло частично успевает отводиться и распределиться в толще поглощающего слоя, так как импульс имеет меньшую пиковую мощность из-за сравнительно большой длительности (миллисекунды).

Особенно характерна роль длины волны, поскольку прозрачность глазных сред неодинакова для разных длин волн. В качестве отступления от темы отмечу, что для рентгеновского или гамма-излучения принято считать, что биологический эффект не зависит от длины волны, меняется только проникающая способность. И в целом в профильной литературе на вопросах защиты от рентгеновского излучения задерживаются лишь на нескольких страницах, тогда как вопросам, связанным с безопасностью при работе с лазерным излучением могут посвящать целые разделы. Но вернемся к зависимости эффектов от длины волны. Тут обратимся к ещё одной таблице из той же книжки. В ней описаны механизмы повреждения в зависимости от длины волны, опять же безотносительно мощности.

Понятно, что наиболее очевидной будет опасность излучения видимого диапазона, так как именно оно достигает сетчатки и воспринимается ей. Но если это очевидно – это не значит что наиболее опасно. В том-то и дело, что луч видимого диапазона можно заметить, да и мигательный рефлекс глаза в этом случае работает безотказно, в ряде случаев он может сильно уменьшить повреждения. Тогда как луч из ближнего инфракрасного диапазона уже заметить нельзя, но он тоже достигнет сетчатки и мигательного рефлекса нет. Именно сетчатка является наиболее чувствительной деталью глаза к повреждениям, и что самое печальное – неспособной к регенерации.

Таким образом, если известны режим излучения и длина волны, остается последний, по сути, решающий фактор – это мощность излучения. Именно она решает, сгорят у Вас глаза под лучом полностью, частично или не сгорят совсем. В зависимости от длины волны меняется лишь величина этой мощности, если луч непрерывный, или энергии импульса, если луч импульсный.

Именно по мощности излучения было принято разделение лазеров на существующие сейчас классы опасности. Рассмотрим их подробнее, заглянув на сайт Sam’s Laser FAQ. Для удобства приводится русский перевод с английского, выполненный модератором форума laserforum.ru Gall’ом. А кто найдет ошибку на картинке – тот молодец.

Итак, классы опасности.

Лазерные изделия класса I
Нет известных биологических угроз. Излучение закрыто от любого возможного рассматривания человеком, а лазерная система имеет блокировки, не позволяющие включить лазер в открытом состоянии. (Большие лазерные принтеры, такие как DEC LPS-40, работают на гелий-неоновых лазерах в 10 мВт, являющихся лазерами класса IIIb, но принтер имеет блокировки для исключения любого соприкосновения с открытым лазерным пучком, поэтому устройство не представляет биологической опасности, хотя собственно лазер относится к классу IIIb. Это же относится и к проигрывателям CD/DVD/Blu-ray и маленьким лазерным принтерам, так как они являются лазерными изделиями класса I).

Лазерные изделия класса II
Выходная мощность до 1 мВт. Такие лазеры не считаются оптически опасными устройствами, так как рефлексы глаз предупреждают любое происходящее повреждение. (Например, когда в глаз попадает яркий свет, веко автоматически моргает или человек поворачивает голову так, чтобы яркий свет пропал. Это называется рефлекторным действием или временем реакции. Лазеры класса II не создают повреждений глаза за такое время. Также никто не захочет смотреть на него в течение более продолжительного времени.) На лазерном оборудовании должны быть размещены предупреждающие знаки (желтые). Нет известных опасностей воздействия на кожу и нет пожарной опасности.

Лазерные изделия класса IIIa
Выходная мощность от 1 мВт до 5 мВт. Такие лазеры могут приводить к частичной слепоте при определенных условиях и к другим повреждениям глаз. Изделия, содержащие лазер класса IIIb, должны иметь индикатор лазерного излучения, показывающий, когда лазер работает. Они также должны иметь знак «Danger» («опасность») и знак, показывающий выходное отверстие лазера, закрепленные на лазере и/или оборудовании. СЛЕДУЕТ установить выключатель питания в виде замка с ключом, чтобы предотвратить несанкционированное использование. Нет известных опасностей для кожи и пожарной опасности.

Лазерные изделия класса IIIb
Выходная мощность от 5 мВт до 500 мВт. Такие лазеры считаются определенно угрозой для зрения, особенно на больших мощностях, которые ПРИВЕДУТ к повреждению глаз. Такие лазеры ОБЯЗАНЫ иметь замок с ключом против несанкционированного использования, индикатор наличия лазерного излучения, задержку включения от 3 до 5 секунд после подачи питания, чтобы оператор мог успеть уйти с пути луча, и механический затвор, позволяющий перекрывать луч во время использования. Кожа может быть обожжена на больших уровнях выходной мощности, а кратковременное направление на некоторые материалы может приводить к возгоранию. (Я видел аргоновый лазер на 250 мВт, воспламеняющий кусок красной бумаги менее чем за 2 секунды воздействия!) Красный знак «DANGER» («ОПАСНОСТЬ») и знак выходного отверстия ОБЯЗАНЫ быть размещены на лазере.

Лазерные изделия класса IV
Выходная мощность >500 мВт. Такие лазеры МОГУТ повредить и ПОВРЕДЯТ глаза. Мощности уровня IV-го класса МОГУТ зажечь и ЗАЖГУТ горючие материалы при попадании, в том числе обожгут кожу и прожгут одежду. Такие лазерные изделия ОБЯЗАНЫ иметь:
Замок с ключом для предотвращения несанкционированного использования, блокировки для предотвращения использования системы со снятыми крышками, индикаторы наличия излучения, показывающие, что лазер работает, механические затворы для блокировки луча и красные знаки «DANGER» («ОПАСНОСТЬ») и знаки выходного отверстия, закрепленные на лазере.
Отраженный луч должен считаться таким же опасным, как первоначальный луч. (И снова, я видел 1000-ваттный лазер на CO2, прожигающий дыру в стали, так что представьте, что он сделает с вашим глазом!)

Конец цитаты.

Примечание: да, мои лазеры в основном относятся к 4ому классу опасности, и не содержат многих аппаратных мер защиты, поскольку с ними имею дело только я. Поэтому попрошу воздержаться в комментариях от вопросов, почему нет замка-выключателя или крышек с блокировками на моих лазерах. Указанные требования относятся в первую очередь к коммерчески выпускаемым установкам.

Теперь посмотрим, так сказать, наглядно, как выглядит травма глаза лазерным излучением. Я уже упоминал, что в поисках новых лазеров и их компонентов я посещаю различные организации. И однажды я посетил лазерное отделение местного центра лечения глазных болезней. В ходе общения со специалистами, я поинтересовался, попадались ли в их практике травмы, вызванные лазерным излучением. Ответ меня удивил. Дело в том, что за более чем 20летнюю практику работы, непосредственно лазерных травм было всего несколько штук. На мой вопрос, типа как так, если сейчас у каждого ребенка есть лазерная указка от 50 до 2000 мВт, лишь ответили, что людей с ожогами от указок не поступало. Зато было много людей именно с солнечными, нелазерными, ожогами сетчатки. Мне показали документы по наиболее примечательной лазерной травме – сильному повреждению центральной ямки сетчатки, вызванному зеркально отраженным импульсом из лазерного дальномера, построенном на импульсном неодимовом лазере (Nd:YAG) работавшем в режиме модуляции добротности. Энергия импульса составляла по разным оценкам от 20 до 100 мДж, при длительности импульса порядка 20 нс. Именно из-за модуляции добротности повреждение вышло столь тяжелым – так как в точке фокуса излучения был оптический пробой, вызвавшим гидравлический удар, который в свою очередь привел к центральному разрыву сетчатки и отеку последней совместно с гемофтальмом (кровоизлиянием в стекловидное тело). Мне разрешили просканировать документы на условиях их полной анонимизации. С помощью оптической когерентной томографии можно рассмотреть сетчатку в разрезе, в различных плоскостях. Так выглядел разрез на момент обращения за медицинской помощью. Видна четкая «пробоина» с «отогнутыми наружу» краями (на самом деле это отек).

Более крупным планом:

И в разных плоскостях:

Из текста предоставленных мне документов стало известно, что курс лечения длился 10 дней, по ходу которого решался вопрос об операции, в случае отслоения сетчатки. В качестве оперативного вмешательства по устранению возможной отслойки и закрытия разрыва предлагалась пневморетинопексия (ПРП). Консервативное лечение было направлено на рассасывание отека и предотвращение воспалительного процесса. По ходу наблюдения делалось также несколько фотографий глазного дна, а по окончанию курса было решено, что операция не понадобится, так как разрыв самостоятельно закрылся и зарос рубцовой тканью.

Фотографии глазного дна размещены в хронологическом порядке.

В кучке этих же документов лежала ещё одна распечатка оптической когерентной томографии после окончания лечения.

Как можно видеть, канал пробоя исчез, а края того места, которое было центральной ямкой приняли более сглаженные формы. На момент травмы острота зрения по табл. Сивцева составляла 0%, после окончания лечения было достигнуто улучшение до 30%. На мой вопрос, как это воспринимается субъективно, мне показали ещё одну картинку, на которой наглядно показано, что такое «центральная скотома». Это слепое пятно, из которого просто выпадает часть изображения. Мозг же способен «закрасить» его под цвет окружающего фона, но никаких деталей изображения видно не будет, так как нечем их видеть – светочувствительные клетки в этом месте уничтожены. Для данной статьи картинка взята из гугла. Также мне объяснили, что при наличии второго здорового глаза это слепое пятно не влияет на качество жизни.

Позже, мне удалось раскопать ещё одну таблицу со сравнительными клиническими данными, где рассматриваются исходы лазерных травм в зависимости от типа лазера и режима его работы. Как можно видеть, наиболее неблагоприятные исходы – в случае травм от лазеров, работавших в режиме модулированной добротности, так как повреждение сетчатки шло по взрывному механизму, тогда как лазерный импульс в режиме свободной генерации приводит только к термическому ожогу, который до некоторых пределов обратим, не смотря на гораздо большую энергию излучения. Строго говоря, локализация повреждения играет бОльшую роль, нежели параметры лазера, повреждение центральной ямки во всех случаях необратимо.

Вот ещё пример фотографии глазного дна с лазерным ожогом сетчатки, вызванным импульсом лазера на красителях. Лазеры на красителях сопоставимы с импульсными лазерами с модуляцией добротности по длительности импульса и энергии.

А теперь давайте посмотрим, как это происходит в динамике. Yun Sothory провел эксперимент «что будет если посмотреть в лазер», использовав в качестве подопытной жертвы дешевую веб-камеру, а в качестве лазера – самодельный лазер на растворе красителя, который накачивался самодельным азотным лазером. Результат на видео. И это при том, что у неё совершенно неживая и дубовая кремниевая «сетчатка». Что будет с глазами вполне очевидно.

Вот ещё один пример пострадавшей матрицы фотоаппарата - на 1:06 появляется линия выжженых пикселей вверху во время сценического лазерного шоу. Кстати, безопасность лазерных шоу это отдельная очень холиварная тема, о которую было сломано очень много копий в СНГ и на западе. Мощность лазерного излучателя до оптической системы разбивки и развертки луча порой достигает десятков Ватт.

Разберем теперь вопрос, а все ли лазеры одинаково опасны?
Можно однозначно сделать вывод, что наиболее опасными являются лазеры, работающие в импульсном режиме с малой длительностью импульса видимого и ближнего ИК-диапазона, особенно последние. И это действительно так. Однако, правила которые обычно пишутся занудным тоном для малоподговтоленных людей, заявляют что опасны все без исключения лазеры и любой лазер нужно жестко огораживать, запихивать под землю и никого к нему не подпускать. Тут нужны некоторые оговорки, поскольку все должно быть в пределах разумного. Не все лазеры одинаково опасны. Есть те, которые более опасны, есть те, которые менее опасны. Дальше следует моё жёсткое ИМХО, которое не претендует на истинность. А именно, оно состоит в том, что с любым лазером любой длины волны, кроме ближнего ИК-диапазона можно работать без средств защиты, если он работает в непрерывном или квазинепрерывном режиме, его средняя мощность не превышает 10-20 миллиВатт, и если не пялиться в луч. А если хочется пялиться, если есть риск попадания луча в глаза, например при визуальной настройке оптических систем, то абсолютный верхний предел мощности – 0.5-1 мВт, как написано в описании 2 класса опасности. Можно удовлетворить свое любопытство заглянув на 1-2 секунды в луч маленького гелий-неонового или диодного лазера мощностью 1 мВт и понять что это крайне неприятно, сравнимо с взглядом на Солнце. Но это мой личный опыт. Я бы все же рекомендовал никогда не пренебрегать средствами защиты глаз во всех случаях обращения с лазерами. Особняком среди мощных лазеров 4го класса стоят, опять же, лазеры на парах меди, так как из-за очень широкого пучка, энергетическая плотность у них маленькая. Так, к примеру, плотность мощности в пучке составляет 16 мВт\мм2. Если предположить случайное попадания такого луча в глаз, то повреждения будут сравнимы с таковыми от вполне рядовой лазерной указки на 100 мВт, при условии что диаметр зрачка на этот момент будет порядка 3 мм. Но это лишь мои предположения, никому не советую проверять на практике. Средства защиты глаз при работе с таким лазером совершенно необходимы.

Если снова обратиться к таблице зависимости повреждений от длины волны, показанной в начале статьи, то может создаться впечатление, что для лазеров с излучением вне видимого и ближнего ИК-диапазонов защита не нужна, так как излучение не достигнет сетчатки, поскольку глазные среды непрозрачны на длинах волн короче 400 нм и длиннее 3 мкм. Отчасти это правильно. Действительно, сетчатка не пострадает, так как излучение с длиной волны больше 3 мкм поглощается слезной пленкой, и при небольших мощностях\энергиях это не опасно. Именно поэтому маломощные лазерные источники вроде лазерных дальномеров как раз переводят на длину волны порядка 3 мкм (эрбиевые лазеры). С другой стороны, есть серьезный риск сжечь роговицу, если мощность будет достаточной. При воздействии УФ излучения большой мощности повреждения идут в основном по фотохимическому механизму, а в случае дальнего ИК – по термическому. Но мощность нужна большая, на порядки бОльшая чем для лазеров видимого диапазона. Фигурально выражаясь, лазеры можно сравнивать с разными видами змей, среди которых есть ядовитые, убивающие одним своим кратким укусом, и удавы, убивающие с помощью большой и грубой силы долго и нудно, пока жертва не задохнется. Лазеры из невидимых УФ и дальних ИК-диапазонов можно сравнить именно с удавами, так как их мощность и есть та самая «грубая сила», особенно это касается СО2-лазеров излучающих сотни и тысячи Вт на длине волны 10.6 мкм. Вот пример ожога роговицы излучением СО2 лазера.

С вопросом «кто виноват» разобрались, теперь переходим к вопросу «что делать». Или, какие меры защиты стоит выбирать при работе с лазерным излучением. Основной мерой защитой от лазерного излучения является в первую очередь ограждение пути движения луча, ограничение его распространения поглотителями в конце оптического пути. Если ограждение организовать невозможно – то обязательно нужны защитные очки для глаз. Лучше когда обе меры защиты дополняют друг друга. Тем не менее, универсальных защитных очков не существует, кроме, разве что, таких. Посему прежде чем выбирать очки нужно точно знать, с какими лазерами предстоит иметь дело.

Все защитные очки проектируются для защиты от конкретных длин волн излучаемых лазерами, и для хороших очков всегда нормируется оптическая плотность на каждой длине волны. Оптическая плотность это коэффициент ослабления очков, в англоязычных стандартах он называется OD-X, где Х – цифра обозначающее количество порядков ослабления. Так, например, OD-6 означает, что очки ослабляют излучение на 6 порядков, т.е. в 1000000 раз на данной длине волны. Ослабление в 1000 раз будет обозначаться как OD-3 итд. Хорошие очки всегда имеют инструкцию к ним, в которой написано от каких длин волн излучения они защищают, и какие OD для каждой длины волны. Также, хорошие очки всегда имеют закрытую конструкцию и плотно прилегают к лицу, чтобы блики от излучения не могли пройти под очками, минуя фильтры. Вот примеры действительно ХОРОШИХ очков. Например, советские ЗНД-4-72-СЗС22-ОС23-1, которыми пользуюсь я. Это пример попытки сделать более-менее универсальные очки, рассчитанные на работу с распространенными типами лазеров. Для этого они имеют два вида светофильтров. Очки сделаны из мягкой резины, хорошо прилегающей к лицу, и имеют инструкцию.

Синие светофильтры предназначены для защиты от лазеров, работающих на длине волны 0.69 мкм и 1.06 мкм (рубиновый и неодимовый лазеры). На этих длинах волн гарантируется плотность OD-6. Эти же фильтры дают защиту от излучения в диапазоне длин волн 630-680 нм (гелий-неоновый, криптоновый лазеры) и в диапазоне 1.2-1.4 мкм, для них заявлено OD-3. Оранжевые фильтры дают защиту от длин волн в диапазоне от 400 до 530 нм (синие и зелёные лазеры) с OD-6 и также в диапазоне 1.2-1.4 мкм с OD-3. Сами по себе оранжевые фильтры не могут дать никакой защиты от излучения красных лазеров – для них нужны синие фильтры. Для удобства синие фильтры сделаны откидывающимися.

Такие очки я всегда использую при работе со всеми своими мощными лазерами, и они могут гарантировать защиту, при условии соблюдения инструкции. К сожалению, они имеют брешь для жёлтых лазеров, т.е. не дают гарантированной инструкцией защиты и ввиду этого полной универсальностью не обладают. У этих очков есть в продаже современный аналог, но он менее универсален, так как не имеет оранжевых фильтров.

Вот ещё один пример ХОРОШИХ очков иностранного производства. Они имеют сплошное прямоугольное стекло, не затрудняющее обзор, и прямо на корпусе очков отлит текст с параметрами по длинам волн и OD на них.

Теперь глянем не примеры ПЛОХИХ очков, которые я КАТЕГОРИЧЕСКИ не рекомендую. Это весь тот пластиковый китайский шлак, продаваемый на алиэкспрессе за 1-2-10 долларов. Эти очки не имеют ни полного прилегания к лицу, ни инструкций с заявленной оптической плотностью на разных длинах волн, ни сертификатов, ничего. И сделаны они из довольно нежного пластика. Готовы ли Вы доверить сохранность своих глаз какому-то безымянному китайцу, работающему за тарелку риса? Я не готов. Не покупайте китайский шлак, показанный ниже.

Единственное исключение – СО2 лазеры. Их излучение, вообще говоря, «тепловое» - длина волны слишком большая, и не проходит даже через простое прозрачное стекло и через простой прозрачный пластик. Т.е. показанные выше ХОРОШИЕ очки пригодны и для защиты от СО2 лазеров. Показанные здесь ПЛОХИЕ очки тоже обеспечат достаточную защиту от рассеянного излучения СО2 лазера, но не более того. Я бы все же рекомендовал стеклянные, так как прямой луч такого лазера просто прожжет пластик.

Отдельно я бы хотел остановиться на мерах безопасности, к которым прибегают производители лазерных технологических установок. В принципе, в случае если на нашем лазерном станке стоит СО2 лазер, то защита, полностью закрывающая поле обработки не обязательна при небольших уровнях мощности, типа до 50 Вт. А так достаточно ограждения из обыкновенного стекла или пластика. В принципе даже на лазерных станках с СО2 лазером мощностью на много киловатт не всегда можно встретить ограждение от рассеянного излучения, так как оно не представляет большой опасности, так как это излучение тепловое и воспринимается просто как поток тепла, когда Вы смотрите на открытую спираль электроплитки или ИК-обогревателя. Чувствуется дискомфорт – можно и отойти подальше. Отсутствие защиты на станках с СО2 лазерами вполне допустимо. Но оно категорически запрещено на установках с получающими большое распространение волоконными лазерами! Волоконный лазер работает на длине волны порядка 1 мкм, которое, как говорилось выше, легко достигает сетчатки, на уровнях мощности уже в единицы Вт рассеянное излучение очень опасно для глаз, и для таких лазерных установок ограждение рабочего поля с блокировкой ОБЯЗАТЕЛЬНО!!! Вот пример, где это сделано правильно. Все рабочее поле этих станков для резки закрыто стеклом, которое не пропускает рассеянное излучение.

Лазерные маркировщики, граверы также должны иметь обязательно закрытое поле, так как это тоже или волоконные лазеры, или неодимовые лазеры, работающие в режиме модуляции добротности, очень опасные для глаз. Пример, как это должно быть правильно.

А теперь, наглядная картинка как китайцы относятся к нашему здоровью. За такое исполнение лазерного гравера нужно бить по голове палкой, выписывать многомиллионный штраф и лишать права производить эти станки. Ведь покупатель, увидев такой станок без защиты рабочего поля, решит что она и не нужна, раз производитель её не установил. При работе все рассеянное и отраженное излучение, особенно во время гравировки по металлу будет лететь ему прямо в глаза. Если конечно он не надел очки. А я не уверен, что он их наденет. И если он при работе с таким станком получит повреждение сетчатки – то будет иметь полное право подавать иск в суд на производителя и запросто выиграет его, слупив большую сумму денег.

Так что, не покупайте китайский шлак, пользуйтесь правильными средствами защиты и не смотрите в луч оставшимся глазом!

При написании статьи были использованы материалы из следующих источников, помимо бездонных глубин интернетов:

1. Гранкин В. Я. Лазерное излучение, 1977


В бархатный сезон вопрос о безопасном загаре становится особенно актуальным, так как многие предпочитают отправляться отдыхать на морские курорты именно в это время. Все знают о том, что солнцезащитное средство – это самая необходимая вещь в чемодане отдыхающего, и полки супермаркетов, косметических магазинов и даже аптек пестрят разнообразными спреями, маслами и кремами против солнца. Однако безопасный загар может гарантировать только подобранная с помощью опытного специалиста индивидуальная схема защиты от солнца..

Красивый и безопасный загар – задача для косметолога

Прежде всего, каждый человек должен понимать, что даже самое эффективное солнцезащитное средство – это не стопроцентный гарант безопасного загара.

Как бы много крема или масла человек не нанес на свою кожу – вред от многочасового нахождения под палящими ультрафиолетовыми лучами оно не сможет предотвратить.

Поэтому о безопасном загаре можно говорить только в том случае, если пациент придерживается всех рекомендаций косметолога, пользуется правильным средством, но, при этом, не подвергает свою кожу чрезмерному влиянию солнечных лучей .

Безопасный загар:

  • свойства солнцезащитных средств для безопасного загара;
  • основные ингредиенты в составе солнцезащитных средств;
  • 5 важных правил красивого и безопасного загара летом.

Свойства солнцезащитных средств для безопасного загара

Использование солнцезащитных средств для безопасного загара дает возможность уменьшить интенсивность воздействия солнечных лучей , но не исключить его полностью. Ультрафиолетовые лучи бывают двух типов:

  • лучи типа А отвечают за потемнение кожи, то есть за сам загар;
  • лучи типа Б вызывают покраснение кожи и болевые ощущения.

Большинство солнцезащитных средств защищают кожу от ультрафиолетовых лучей типа Б, и только некоторые из них уменьшают воздействие лучей типа А. Кроме загара, последние также являются главной причиной патологического перерождения клеток кожи. Именно поэтому безопасный загар подразумевает подбор солнцезащитного средства, уменьшающего влияние на кожу ультрафиолетовых лучей обеих типов.

Основные ингредиенты в составе солнцезащитных средств

Косметологи также должны знать о том, что солнцезащитные средства могут содержать химические вещества, поглощающие ультрафиолет, и физические – отражающие его. Первые называются фильтрами, а вторые – экранами. К физическим экранам относятся оксид цинка и диоксид титана, которые уже через несколько часов после нанесения солнцезащитного средства легко удаляются с кожи, поэтому при использовании кремов и масел с физическими экранами следует наносить новую порцию средства после каждого купания, контакта кожи с тканью либо через каждых 2 часа. Химические фильтры отличаются нестабильностью после воздействия ультрафиолета. Поглощая солнечные лучи, молекулы химических веществ через некоторое время меняют свою структуру и могут превращаться в опасные для кожи свободные радикалы. Поэтому химические фильтры в большинстве случаев не обеспечивают безопасный загар и не рекомендуются для применения на пляже.

5 важных правил красивого и безопасного загара летом

Есть еще несколько правил безопасного загара, которые косметолог должен обсудить со своим пациентом до начала пляжного сезона:

  • не рекомендуется использовать солнцезащитные средства в форме спреев, так как они могут попадать в дыхательные пути, вызывая их повреждение и аллергические реакции;
  • во время пребывания на солнце нельзя использовать косметику с ретиноидами и гидроксильными кислотами – это повышает чувствительность кожи и снижает ее защиту;
  • применение средств на основе растительных и косточковых масел одновременно с солнцезащитными средствами на основе физических экранов уменьшает эффективность последних;
  • солнцезащитные средства с эффектом репеллента действуют слабее обычных и не могут обеспечить безопасный загар, так же, как и средства с SPF меньше 15;
  • оптимальный вариант для эффективной защиты кожи – это солнцезащитные средства с уровнем SPF 50, которые необходимо регулярно обновлять.

Красивый, ровный и, главное, безопасный загар – это целая наука, которую должен освоить каждый специалист эстетической медицины.

Некрасивые пятна на коже пациента после отдыха – это пятна и на репутации косметолога..

Оружие для игры оснащено инфракрасным излучателем. (На картинке он выполнен в виде глушителя).

Стреляет это ружье лазерными лучами в безопасном инфракрасном диапазоне. Луч примерно такой же как от пульта к телевизору, только более узкий. И к сожалению такой же невидимый. Для усиления эффекта реалистичности оружие издает звуки и мигает в районе излучателя. Как известно с расстоянием луч имеет свойство расширяться и световое пятно уже накрывает противника почти полностью, однако меткость не вырастет - фигура противника с расстоянием тоже уменьшается и целиться точно в нее сложнее.

Это все было про лазер, скажу пару слов и о приемнике. Нет-нет это не ошейник).

В неАренном лазертаге ик-приемники крепят на голову. Да-да на всех коротких расстояниях (до 50 метров) чтобы попасть в противника, целиться нужно только в голову.

Вообще Лазертаг идеально подходит для игры в естественной местности, инфракрасный сигнал не страдает от помех ламп, электродвигателей, щеток стартера и прочих електрических девайсов, дождь и снег на проходимость сигнала влияют очень слабо (несколько снижают дальность).

Похуже обстоит дело с ветками и листьями, но как правило сигнал все равно проходит. Здесь будет действовать простое правило: если вы оптически (своими глазами) видите приемник противника, то и луч выстрела добежит до него. В большинстве своем помехи проявляются на максимальной дистанции срабатывания оружия (ближе к 200 метрам), поэтому гарантированной дальностью называют что-то около 120 метров.

Как правило, бой ведется на еще меньшей дистанции, потому что это более азартно и интересно.

LaserTag начинал свою карьеру не как игра, а как средство тренировки бойцов регулярных армий в условиях максимально приближенных к боевым. И используется в этом качестве по сей день многими армиями. Большая часть оружия исполняется в максимально идентичном реальному виде (в том числе и по весу). Количество выстрелов без перезарядки совпадает с количеством в реальном магазине, а сама перезарядка выносится либо на кнопку в районе магазине оружия, либо на затвор. Облегченные (по весу) образцы оружия тоже выпускаются производителями, чтобы сделать игру более комфортной для девушек и детей.

Безопасно ли это?

Лазертэг разработан довольно давно и безопасен для человека. Но я хочу рассказать, что потенциальная опасность ИК-излучения все же существует. Вредное действие инфракрасных лучей может проявится на органы зрения в виде теплового эффекта. Если нам приходиться долго смотреть на солнце или яркие предметы, то мы рефлекторно сужаем зрачок и отводим взгляд, но в данном случае напоминаю, что ИК излучение невидимо, и наши рефлексы не сработают.

Для безопасности человека нужно рассчитать такое воздействие тепла на сетчатку глаза, которое даже при перманентном воздействии не способно нанести вред здоровью человека. Поэтому была ограничена частота выстрелов в очереди (3 выстрела/сек) и максимально укорочена длительность инфракрасного сигнала, до минимальной которую может воспринять приёмное оборудование (16мс). Кстати это положительно повлияло на расход пальчиковых аккумуляторых батарей.

Всем приятной игры.

P.S. и капельку юмора.

Основы лазерной безопасности.

Лазер – оптический квантовый генератор, а само слово является аббревиатурой слов английской фразы Light Amplification by Stimulated Emission of Radiation – усиление света в результате вынужденного усиления. Нам кажется, что свет (например, от лампы) непрерывен, но на самом деле он состоит из множества фотонов со случайной длиной волны и случайной фазой. Это приводит к тому, что излучение, образуемое этими фотонами, распространятся в разные стороны, в результате чего оно имеет незначительную интенсивность, убывающую в пространстве, и свет является “белым”, т.е. в нем присутствуют самые различные волны. К особенностям же лазерного излучения можно отнести его интенсивность, направленность, когерентность и узкий диапазон длин волн.

1. Интенсивность. Свет от обычной лампы рассеивается в большой области пространства, и его интенсивность убывает, по мере удаления от источника излучения. Лазерный же луч так сильно сфокусирован, что значительное количество фотонов одновременно попадает в незначительную по размерам точку. И поскольку сечение лазерного луча очень мало, в этой области концентрируется огромная энергия. Таким образом, даже незначительный по мощности источник света создает высочайшую плотность энергии в малом объеме пространства, а, значит, луч лазера обладает высокой интенсивностью.

2. Направленность. Направленность лазерного луча создается оптической системой, точнее сказать двумя зеркалам, образующими оптический канал. Чаще всего в лазерах имеется два зеркала: полностью отражающее и полупрозрачное, между которыми находится источник света и возбужденная среда. Лазерный луч проходит через возбужденную среду лазера, его амплитуда увеличивается при сохранении синфазности излучения, попадает на полностью отражающее зеркало и меняет свое направление на обратное. Отраженный луч снова проходит через возбужденную среду, еще больше усиливаясь. Далее попадает на полупрозрачное зеркало, и так как интенсивность луча пока еще незначительная, отражается от полупрозрачного зеркала, снова проходит через возбужденную среду и т.д. Когда луч будет достаточно усилен, и его мощность станет высокой, полупрозрачное зеркало пропускает луч наружу, после чего он может проходить значительные расстояния без особой потери энергии, так как лучи являются практически параллельными.

Особенности лазерного излучения приводят к тому, что луч лазера поособому воздействует на сетчатку человеческого глаза. Вся энергия лазерного луча фокусируется в одну точку , в то время как свет от обычного некогерентного источника воздействует на относительно большую площадь сетчатки. Поэтому источник лазерного излучения с мощностью в десяток милливатт может привести к разрушению сетчатки и полной потере зрения, в то время как свет от лампы мощность в сотню Ватт (в тысячу раз мощнее лазерного источника) спокойно переносится человеком.

В современной электронной технике применяются в основном полупроводниковые лазеры. Их световой поток может быстро переключаться с высокой частотой без прекращения вынужденного излучения, что делает их пригодными и особенно удобными для применения в средствах связи, в средствах считывания информации и в печатающих устройствах. Все эти области применения лазеров характеризуются высокими частотами повторения световых импульсов.

В принципе, лазеры применяются в самых различных отраслях человеческой деятельности: медицине, электронике, металлургии, телекоммуникациях, в военной области. Каждая область применения лазера накладывает свои отпечатки на требуемые характеристики и параметры лазерных излучателей. Ввиду того, что физические особенности лазерного излучения приводят к возникновению опасности получения человеком травм различной тяжести, разнообразные правительственные агентства, службы сертификации и санитарного контроля разрабатывают системы классификации и нормативы безопасности при работе с лазерами.

Наиболее известной и чаще используемой является классификация, состоящая из четырех классов безопасности лазерных систем.

Класс безопасности I (лазеры сверхмалой мощности). Лазеры этого класса считаются полностью безопасными для человека. К этому классу относятся лазеры и лазерные системы, которые ни при каких условиях облучения, присущих данному лазерному прибору, не могут излучать световой поток c уровнем, превышающим предельные величины облучения для глаз, т.е. лазерные системы класса I не могут причинить вреда человеку. К этому классу относятся лазеры мощностью менее 0.39 мВт. Но стоит обратить внимание на то, что приборам класса безопасности I могут соответствовать изделия, в которых используются лазеры с большей мощностью. В этом случае более опасный лазер размещают в защитном корпусе, который проектируется таким образом, что опасное излучение ни при каких условиях не должно выйти за пределы этого корпуса. Так, например, если просмотреть руководство пользователя или технические характеристики лазерных принтеров, можно найти ссылку, что данное изделие (лазерный принтер) относится к устройствам класса I. В то же самое время при описании характеристик блока лазера указывается, что данное изделии соответствует классу IIIB. Вот такое противоречие, которое объясняется довольно легко. Сам лазер относится в группе IIIB, а весь блок лазера к группе I. Это возможно, так как лазер находится внутри модуля и закрыт различными блокировочными крышками. Однако во время проведения ремонтных работ крышки блока лазера могут быть удалены, что приводит к возможности облучения сервисного инженера лазером класса IIIB, что может привести к определенным травмам. Подавляющее большинство разработчиков устройств на основе лазеров проектируют свои изделия таким образом, чтобы они относились к классу I. Но при ремонте, когда специалисты, производящие работы получают доступ непосредственно к лазеру, вся безопасность системы нарушается, и устройство смело можно относить уже к другой, более опасной, группе.

Класс безопасности II (лазеры малой мощности). Лазеры и лазерные системы этого класса должны генерировать видимый лазерный луч, слишком яркий для того, чтобы можно было смотреть на него (пусть даже короткий период времени). Не считается опасным мгновенный взгляд на луч. Если луч лазера этого класса попадает в глаз, то, быстро закрыв глаз, можно избежать любого, даже малейшего повреждения зрения. Мощность лазеров этого класса составляет менее 1 мВт. Как правило, при попадании лазерного луча в глаз человек инстинктивно стремится закрыть глаза, что в случае лазеров класса II защитит от травм. Однако если намеренно продолжать смотреть на лазер, то луч класса безопасности II может вызвать повреждение зрения (обычно временное).

Хочется сказать, что большинство лазерных указок, свободно продаваемых на прилавках детских игрушек относится именно к лазерам этого класса. Так что стоит присматривать за детьми, играющими с такими далеко не безопасными игрушками.

Класс безопасности III (лазеры средней мощности). Лазеры и лазерные системы этого класса могут излучать любые длины волн, но не могут создавать опасное рассеянное отражение (отражение во многих направлениях), если только они не сфокусированы или их действие не наблюдается в течение продолжительного времени в ограниченной области. Эти лазеры и лазерные системы не считаются пожароопасными и не опасны для кожного покрова человека. Мощность лазеров класса III составляет менее 0.5 Вт. Смотреть прямо на луч опасно

Класс безопасности III разделяется на два подкласса: IIIA IIIB. К подклассу IIIA относятся лазеры и лазерные системы, которые при обычных условиях не представляют опасности, если смотреть на них без защиты только мгновенно. Они могут представлять опасность, если смотреть не них через оптические фокусирующие системы. К подклассу IIIB относятся лазеры и лазерные системы, которые могут вызвать травмирование зрения при прямом взгляде на луч. Травму может вызвать и направленное отражение луча, например от зеркала. Как уже говорилось выше, подавляющее большинство лазеров для лазерных принтеров относится именно к этому классу безопасности.

Класс безопасности IV (лазеры большой мощности). Лазеры этого класса создают прямую опасность здоровью человека как при направленном, так и при рассеянном отражении луча. Кроме того, лазеры этого класса могут быть пожароопасными и могут вызывать ожоги кожного покрова человека. Мощность лазеров каждого класса представлена в итоговой таблице 1.

Таблица 1

Меры безопасности включают наличие предупреждающих знаков, меры защиты и обучение технике безопасности при работе с лазерами. Такие правила требуют наличия предупреждающих знаков и надписей на самом оборудовании, представляющем определенную опасность. Предупреждающие знаки должны быть продублированы и в технической документации, описывающей процедуры ремонта и настройки лазерных систем.

В иностранных руководствах по работе с лазерными устройствами сервисным инженерам рекомендуется придерживаться следующих правил и положений.

1. Проводить техническое обслуживание оборудования, содержащего лазерную систему должны только специалисты, прошедшие обучение по курсу техники безопасности при работе с лазерами.

2. Ремонт и регулировка лазерной системы должны производиться строго в соответствии с процедурами, приведенными в документации и в руководстве по обслуживанию.

3. При работе сервисный инженер не должен отключать различные блокировки и защиты, предусмотренные конструкцией аппарата.

4. Сервисный инженер при работе не должен пользоваться зеркалами, оптическими приборами и инструментами с отражающей поверхностью.

5. Желательно все работы по ремонту (или их большую часть) осуществлять при выключенном питании аппарата.

6. Никто не должен смотреть прямо в лазерный луч или на предмет, его отражающий.

7. Сервисный инженер не должен допускать выхода луча лазера из ремонтируемого устройства.

8. Сервисный инженер должен быть уверен, что никто не смотрит прямо в лазерный луч.

9. Если представитель обслуживающей организации узнает, что кто-либо мог получить облучение лазером (прямым лучом или отраженным), то он должен незамедлительно проинформировать об этом руководство обслуживающей организации. При этом руководитель организации должен будет составить протокол происшествия, в котором будут отражены все детали подобного ЧП.

Рис. 1.

Предупреждающий знак «DANGER» (Опасно) (рис.1а) красного цвета указывает на то, что лазерный луч может повредить зрение при попадании его в глаз непосредственно, через оптические приборы или при отражении. Предупреждающий знак «CAUTION» (Предостережение) (рис.1б) желтого цвета указывает, что при попадании лазерного луча в глаза немедленное закрывание глаз защитит от повреждения зрения. Большинство лазерных систем имеет возможность регулировки выходной мощности лазера. При этом регулировочные элементы (обычно переменные резисторы) размещают таким образом, чтобы регулировки можно было проводить без снятия крышек блока лазера. Этим также пытаются достигнуть большей защиты сервисного инженера при проведении работ по техническому обслуживанию.