Восстанавливаются ли нервные клетки у мужчин. Нервные клетки восстанавливаются. Алкоголь и сигареты

Долгое время на вопрос «восстанавливаются ли нервные клетки» даже от ученых можно было услышать только отрицательный ответ. Именно поэтому знаменитое утверждение, предостерегающее людей от переживаний в различных стрессовых ситуациях, многие до сих пор считают аксиомой. Отсутствие исследовательской базы и необходимого оборудования не давали ученым возможности удостовериться в том, что нейроны мозга способны к самовосстановлению.

В 1962-м году американскими учеными были проведены первые опыты на крысах, результаты которых стали ошеломляющими: восстановление нервных клеток – это естественный процесс, однако их регенерация в мозге людей получила научное подтверждение только в 1998 году. 1

Разрушающее действие на мозг оказывают стрессы, бессонница, хронические недосыпания, радиация, злоупотребление алкоголем и наркотическими веществами, а также другие негативные факторы. Все это могло бы стать фатальным для человека, если бы не процесс восстановления нервных клеток, названный нейрогенезом.

В современном обществе больше не актуален вопрос, нервные клетки восстанавливаются или нет, так как каждое из проведенных исследований уже подкреплено опубликованными фактами и цифрами:

  • скорость нейрогенеза у человека составляет 700 нейронов в день;
  • за год обновляется около 1,75% нервных клеток;
  • на данные показатели не влияет гендерная принадлежность;
  • активность регенерации снижается с возрастом, но на качество нейронов это не влияет;
  • с возрастом клеточный цикл удлиняется. 2

Сложность нервной системы и роль в ней нервных клеток человека

Основной элемент нервной системы – нейрон, или нервная клетка. Их количество в человеческом организме составляет десятки миллиардов, и все они взаимосвязаны между собой. Нервная система является сложной и мало изученной частью человеческого организма.

Вопросу восстановления нервных клеток человека уделяется много внимания, однако на сегодняшний момент ученые смогли исследовать и изучить всего 5% нейронов. В результате было выяснено, что снаружи они покрыты так называемой миелиновой оболочкой (белок, способный само обновляться на протяжении всей человеческой жизни). Таким образом, ранее существовавшая теория о невозможности регенерации нейронов – всего лишь миф.

Со всеми органами и тканями организма нервная система связана через нервы, несущие в себе информацию из внешней среды. Она выполняет массу сложных и многообразных функций, определяющихся взаимодействием между нервными клетками. Самыми важными из них считаются:

  • объединение или интеграция – обеспечение взаимодействия всех органов и систем, благодаря ее корректной работе организм функционирует как единое целое;
  • участие в переработке информации, поступающей через как внутренние, так и внешние рецепторы;
  • преобразование, переработка и передача полученной информации соответствующим органам и системам;
  • развитие по мере усложнения окружающей среды. 3

Исследование ученых Элизабет Гоулд и Чарльза Гросса, работающих в Принстонском университете на факультете психологии, опубликованное в 1999 году, стало новой ступенькой развития медицины и позволило дать обоснованный ответ на волнующий пытливые умы вопрос: так восстанавливаются нервные клетки или нет?

Подопытными стали зрелые обезьяны. В результате эксперимента было установлено, что в их мозге ежедневно возникают тысячи новых нейронов, при этом они не перестают продуцироваться до самой смерти.

На Всемирном конгрессе психиатров, который организовывается раз в три года и в последний раз состоялся в 2014 году, ученые отметили, что человеческий мозг развивается не только в детстве и в подростковом возрасте – он продолжает меняться, регенерируется и развивается всю нашу жизнь. При этом основное воздействие на этот орган оказывают эмоциональные факторы.

Восстановление нервных клеток человеческим организмом – длительный процесс, однако увеличить его скорость возможно, если заниматься интеллектуальным трудом: новые нейроны образуются только в отделах мозга, связанных с работой мысли и новыми знаниями. По данным, предоставленным участниками конгресса, нейроны воспроизводятся быстрее:

  • в экстремальных ситуациях;
  • при решении сложных задач;
  • в процессе планирования;
  • при необходимости задействовать память, особенно кратковременную;
  • в решении вопросов пространственной ориентации. 4

Как восстановить нервные клетки? 5

Стресс негативно влияет на весь организм и на нервную систему в частности – нейроны разрушаются. Если вы задумываетесь о том, как восстановить нервные клетки, примите во внимание некоторые правила:

  • соизмеряйте свои мечты с реальностью;
  • учитесь организовывать свою жизнь;
  • прекращайте плыть по течению;
  • найдите смысл собственной жизни;
  • создавайте социальные связи;
  • улучшайте отношения с людьми, особенно с близкими;
  • не забывайте, для регенерации нервной ткани обычно не нужны материальные затраты;
  • ищите решения возникающих проблем;
  • помните, что учеба в любом возрасте способствует регенерации нервных клеток.

Ученые из США М. Рубин и Л. Кац ввели в науку термин «нейробика» и рекомендуют для восстановления нервных клеток регулярно проводить умственные тренировки. Полезна такая аэробика и детям, и взрослым, через некоторое время отмечается быстрое усвоение нового материала, развитие памяти и улучшение работоспособности мозга даже в преклонном возрасте. На Всемирном конгрессе психиатров директор российского Научно-исследовательского Психоневрологического Института им. Бехтерева профессор Н.Г. Незнанов акцентировал внимание в своем выступлении, что и при старческом слабоумии есть возможность восстановления нейронов и тканей.

4. На основе информации официального сайта «Новости науки Science-digest» – публикация материалов со Всемирного конгресса психиатров в электронном журнале от 17.05.2014 г.

5. Раздел написан по переведенным материалам, опубликованным в журнале Science –Gould E., Tanapat P., Hastings N.B., Shors T.J. Neurogenesis in adulthood: a possible role in learning. Trends Cog. Sci. 1999; 3(5):186-1992.», а также на основании информации официального сайта «Новости науки Science-digest» – публикация материалов со Всемирного конгресса психиатров в электронном журнале от 17.05.2014г.

часть нейронов гибнет еще во время внутриутробного развития, многие продолжают это делать после рождения и на протяжении всей жизни человека, что заложено генетически. Но вместе с этим явлением происходит и другое – восстановление нейронов в некоторых мозговых отделах.

Процесс, при котором происходит формирование нервной клетки (как в пренатальном периоде, так и жизненном), носит название «нейрогенез».

Широко известное утверждение, что нервные клетки не восстанавливаются когда-то сделал в 1928 году Сантьяго Рамон-И-Халем – испанский ученый-нейрогистолог. Это положение просуществовало до конца прошлого века пока не появилась научная статья Э. Гоулд и Ч. Кросса, в которой приводились факты, доказывающие продуцирование новых клеток головного мозга, хотя еще в 60–80-х гг. некоторые ученые пытались донести до научного мира это открытие.

Где восстанавливаются клетки

В настоящее время «взрослый» нейрогенез изучен на том уровне, который позволяет сделать вывод о том, где он происходит. Существуют две таких области.

  1. Субвентрикулярная зона (находится вокруг мозговых желудочков). Процесс регенерации нейронов в этом отделе совершается непрерывно и обладает некоторыми особенностями. У животных происходит миграция стволовых клеток (так называемых предшественниц) в обонятельную луковицу после их деления и превращения в нейробласты, где они продолжают свою трансформацию в полноценные нейроны. В отделе человеческого головного мозга происходит тот же самый процесс за исключением миграции – что, скорее всего, связано с тем, что для человека функция обоняния не так жизненно необходима, в отличие от животных.
  2. Гиппокамп. Это парный отдел головного мозга, который является ответственным за ориентацию в пространстве, закрепление запоминаний и формирование эмоций. Нейрогенез в этом отделе особенно активен – в сутки здесь появляется около 700 нервных клеток.

Некоторые ученые утверждают, что в человеческом мозге регенерация нейронов может происходить и в других структурах – например, коре больших полушарий.

Современные представления о том, что образование нервных клеток присутствует во взрослом периоде жизни человека, открывает огромные возможности в изобретении методов лечения дегенеративных болезней головного мозга – Паркинсона, Альцгеймера и подобных, последствий черепно-мозговых травм, инсультов.

Ученые в настоящее время пытаются выяснить, что именно способствует восстановлению нейронов. Так, установлено, что астроциты (особые нейроглиальные клетки), которые являются самыми устойчивыми после клеточного повреждения, производят вещества, стимулирующие нейрогенез. Также предполагают, что один из факторов роста – активин А – в сочетании с другими химическими соединениями дает возможность нервным клеткам подавлять воспаление. Это, в свою очередь, способствует их регенерации. Особенности обоих процессов еще недостаточно изучены.

Влияние внешних факторов на процесс восстановления

Нейрогенез – это постоянный процесс, на который периодически могут негативно воздействовать различные факторы. В современной нейробиологии известны некоторые из них.

  1. Химиотерапия и лучевая терапия, применяющиеся в лечении раковых заболеваний. Клетки-предшественницы испытывают на себе влияние этих процессов и перестают делиться.
  2. Хронический стресс и депрессия. Количество клеток мозга, которые находятся в стадии деления, резко уменьшается в тот период, когда человек испытывает негативные эмоциональные чувства.
  3. Возраст. Интенсивность процесса формирования новых нейронов уменьшается к старости, что сказывается на процессах внимания и памяти.
  4. Этанол. Установлено, что алкоголь повреждает астроциты, которые участвуют в производстве новых клеток гиппокампа.

Положительное воздействие на нейроны

Перед учеными стоит задача – изучить как можно полнее эффекты воздействия внешних факторов на нейрогенез с целью того, чтобы понять, как зарождаются те или иные болезни и что может способствовать их излечению.

Исследование формирования нейронов мозга, которое проводилось на мышах, показало, что физические нагрузки напрямую влияли на деление клеток. Бегающие в колесе животные давали положительные результаты по сравнению с теми, кто сидел без дела. Этот же фактор положительно сказался в том числе и на тех грызунах, которые имели «пожилой» возраст. Кроме того, нейрогенез усиливали умственные нагрузки – решение задач в лабиринтах.

В настоящее время интенсивно проводятся эксперименты, которые ставят своей целью поиск веществ или других терапевтических воздействий, способствующих формированию нейронов. Так, в научном мире известно о некоторых из них.

  1. Стимуляция процесса нейрогенеза с помощью биоразлагаемых гидрогелей показала положительный результат на культурах стволовых клеток.
  2. Антидепрессанты не только позволяют справиться с клинической депрессией, но и влияют на восстановление нейронов у страдающих этим заболеванием. В связи с тем, что исчезновение симптомов депрессии при лекарственной терапии происходит примерно за один месяц, а процесс регенерации клеток занимает столько же, ученые выдвинули предположение, что появление этой болезни напрямую зависит от того, что нейрогенез в гиппокампе замедляется.
  3. В исследованиях, направленных на изучение поиска способов восстановления тканей после ишемического инсульта, было установлено, что периферийная стимуляция головного мозга и физиотерапия усиливали нейрогенез.
  4. Регулярное воздействие агонистами дофаминовых рецепторов стимулирует восстановление клеток после их поражения (например, при болезни Паркинсона). Важным для этого процесса является различная комбинация лекарственных средств.
  5. Введение тенасцина-С – белка межклеточного матрикса – воздействует на клеточные рецепторы и повышает регенерацию аксонов (отростков нейронов).

Применение стволовых клеток

Отдельно необходимо сказать о стимуляции нейрогенеза посредством введения стволовых клеток, которые являются предшественниками нейронов. Этот метод является потенциально действенным в качестве лечения дегенеративных болезней головного мозга. В настоящее время он проводился только на животных.

Для этих целей используются первичные клетки зрелого мозга, сохранившиеся еще со времен эмбрионального развития и способные к делению. После деления и трансплантации они приживаются и превращаются в нейроны в тех самых отделах, уже известных как места, в которых осуществляется нейрогенез – субвентрикулярной зоне и гиппокампе. В других областях они образуют глиальные клетки, но не нейроны.

После того, как ученые поняли, что нервные клетки восстанавливаются из нейрональных стволовых, они предположили, возможность стимуляции нейрогенеза посредством других стволовых клеток – кровяных. Правда оказалась в том, что они проникают в мозг, но образуют двуядерные клетки, сливаясь с существующими уже нейронами.

Основная проблема метода заключается в незрелости «взрослых» стволовых клеток головного мозга, поэтому существует риск того, что после пересадки они могут не дифференцироваться или погибнуть. Задача исследователей состоит в том, чтобы определить, что конкретно заставляет стволовую клетку перейти в нейрон. Это знание позволит после забора «дать» ей нужный биохимический сигнал для начала трансформации.

Еще одно серьезное затруднение, встречающееся на пути внедрения этого метода в качестве терапии, – бурное деление стволовых клеток после их трансплантации, что в трети случаев приводит к образованию раковых опухолей.

Итак, в современном научном мире вопрос о том, происходит ли формирование нейронов, не стоит: уже не только известно, что нейроны могут восстанавливаться, но и, в некоторой степени, определено, какие факторы могут влиять на этот процесс. Хотя основные исследовательские открытия в этой сфере еще впереди.

Доктор медицинских наук В. ГРИНЕВИЧ.

Крылатое выражение "Нервные клетки не восстанавливаются" все с детства воспринимают как непреложную истину. Однако эта аксиома - не более чем миф, и новые научные данные его опровергают.

Схематическое изображение нервной клетки, или нейрона, которая состоит из тела с ядром, одного аксона и нескольких дендритов.

Нейроны отличаются друг от друга по размеру, разветвленности дендритов и длине аксонов.

Понятие "глии" включает все клетки нервной ткани, не являющиеся нейронами.

Нейроны генетически запрограммированы на миграцию в тот или иной отдел нервной системы, где с помощью отростков они устанавливают связи с другими нервными клетками.

Погибшие нервные клетки уничтожаются макрофагами, попадающими в нервную систему из крови.

Этапы образования нервной трубки в зародыше человека.

Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Почти 70% из них гибнут еще до рождения ребенка. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Конечно же погибают не только нейроны, но и другие клетки организма. Только все остальные ткани обладают высокой регенерационной способностью, то есть их клетки делятся, замещая погибшие. Наиболее активно процесс регенерации идет в клетках эпителия и кроветворных органах (красный костный мозг). Но есть клетки, в которых гены, отвечающие за размножение делением, заблокированы. Помимо нейронов к таким клеткам относятся клетки сердечной мышцы. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются?

Одно из возможных объяснений: в нервной системе одновременно "работают" не все, а только 10% нейронов. Этот факт часто приводится в популярной и даже научной литературе. Мне неоднократно приходилось обсуждать данное утверждение со своими отечественными и зарубежными коллегами. И никто из них не понимает, откуда взялась такая цифра. Любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому, оставив гипотезу об "отдыхающих" нейронах, обратимся к одному из свойств нервной системы, а именно - к ее исключительной пластичности.

Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых "коллеги", которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, ограничение подвижности, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Значит, одна живая нервная клетка может заменить девять погибших.

Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих, или нейрогенез.

Первое сообщение о нейрогенезе появилось в 1962 году в престижном научном журнале "Science". Статья называлась "Формируются ли новые нейроны в мозге взрослых млекопитающих?". Ее автор, профессор Жозеф Олтман из Университета Пердью (США) с помощью электрического тока разрушил одну из структур мозга крысы (латеральное коленчатое тело) и ввел туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе (участок переднего мозга) и коре головного мозга. В течение последующих семи лет Олтман опубликовал еще несколько работ, доказывающих существование нейрогенеза в мозге взрослых млекопитающих. Однако тогда, в 1960-е годы, его работы вызывали у нейробиологов лишь скепсис, их развития не последовало.

И только спустя двадцать лет нейрогенез был вновь "открыт", но уже в головном мозге птиц. Многие исследователи певчих птиц обращали внимание на то, что в течение каждого брачного сезона самец канарейки Serinus canaria исполняет песню с новыми "коленами". Причем новые трели он не перенимает у собратьев, поскольку песни обновлялись и в условиях изоляции. Ученые стали детально изучать главный вокальный центр птиц, расположенный в специальном отделе головного мозга, и обнаружили, что в конце брачного сезона (у канареек он приходится на август и январь) значительная часть нейронов вокального центра погибала, - вероятно, из-за избыточной функциональной нагрузки. В середине 1980-х годов профессору Фернандо Ноттебуму из Рокфеллеровского университета (США) удалось показать, что у взрослых самцов канареек процесс нейрогенеза происходит в вокальном центре постоянно, но количество образующихся нейронов подвержено сезонным колебаниям. Пик нейрогенеза у канареек приходится на октябрь и март, то есть через два месяца после брачных сезонов. Вот почему "фонотека" песен самца канарейки регулярно обновляется.

В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Л. Поленова.

Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа.

Как было показано, новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Однако потребовалось почти пятнадцать лет, чтобы доказать, что аналогичный процесс происходит и в нервной системе млекопитающих.

Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих.

Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. У взрослых крыс за месяц из стволовых клеток образуется около 250 000 нейронов, замещая 3% всех нейронов гиппокампа. Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь (около 2 см). Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны.

Обонятельные луковицы головного мозга млекопитающих отвечают за восприятие и первичную обработку различных запахов, включая и распознавание феромонов - веществ, которые по своему химическому составу близки к половым гормонам. Сексуальное поведение у грызунов регулируется в первую очередь выработкой феромонов. Гиппокамп же расположен под полушариями мозга. Функции этой сложноорганизованной структуры связаны с формированием краткосрочной памяти, реализацией некоторых эмоций и участием в формировании полового поведения. Наличие у крыс постоянного нейрогенеза в обонятельной луковице и гиппокампе объясняется тем, что у грызунов эти структуры несут основную функциональную нагрузку. Поэтому нервные клетки в них часто гибнут, а значит, их необходимо обновлять.

Для того чтобы понять, какие условия влияют на нейрогенез в гиппокампе и обонятельной луковице, профессор Гейдж из Университета Салка (США) построил миниатюрный город. Мыши там играли, занимались физкультурой, отыскивали выходы из лабиринтов. Оказалось, что у "городских" мышей новые нейроны возникали в гораздо большем количестве, чем у их пассивных сородичей, погрязших в рутинной жизни в виварии.

Cтволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. (Светочувствительная внутренняя стенка глаза имеет "нервное" происхождение: состоит из видоизмененных нейронов - палочек и колбочек. Когда светочувствительный слой разрушается, наступает слепота.) Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Причем при пересадке стволовых клеток мозга в неповрежденный глаз никаких превращений с ними не происходило . Вероятно, при повреждении сетчатки глаза вырабатываются какие-то вещества (например, так называемые факторы роста), которые стимулируют нейрогенез. Однако точный механизм этого явления до сих пор не ясен.

Перед учеными встала задача показать, что нейрогенез идет не только у грызунов, но и у человека. Для этого исследователи под руководством профессора Гейджа недавно выполнили сенсационную работу. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей. Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Недавно проведенные исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых, но из стволовых клеток крови. Открытие этого феномена вызвало в научном мире эйфорию. Однако публикация в журнале "Nature" за октябрь 2003 года во многом остудила восторженные умы. Оказалось, что стволовые клетки крови действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образуя двуядерные клетки. Затем "старое" ядро нейрона разрушается, а его замещает "новое" ядро стволовой клетки крови. В организме крысы стволовые клетки крови в основном сливаются с гигантскими клетками мозжечка - клетками Пуркинье, правда, происходит это довольно редко: во всем мозжечке можно обнаружить лишь несколько слившихся клеток. Более интенсивное слияние нейронов происходит в печени и сердечной мышце. Пока совершенно непонятно, какой в этом физиологический смысл. Одна из гипотез заключается в том, что стволовые клетки крови несут с собой новый генетический материал, который, попадая в "старую" клетку мозжечка, продлевает ей жизнь.

Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний (заболеваний, сопровождающихся гибелью нейронов головного мозга). Препараты стволовых клеток для трансплантации получают двумя способами. Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками - заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это.

В некоторых лечебных учреждениях в США уже сформированы "библиотеки" нейрональных стволовых клеток, полученных из зародышевой ткани, и проводятся их пересадки пациентам. Первые попытки трансплантации дают положительные результаты, хотя на сегодняшний день врачи не могут разрешить основную проблему подобных пересадок: безудержное размножение стволовых клеток в 30-40% случаев приводит к образованию злокачественных опухолей. Пока не найдено подхода к предотвращению подобного побочного эффекта. Но, несмотря на это, трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона, ставших бичом развитых стран.

"Наука и жизнь" о стволовых клетках:

Белоконева О., канд. хим. наук. Запрет для нервных клеток. - 2001, № 8.

Белоконева О., канд. хим. наук. Праматерь всех клеток. - 2001, № 10.

Смирнов В., акад. РАМН, член-корр. РАН. Восстановительная терапия будущего. - 2001, № 8.

Мозг новорожденного младенца содержит 100 миллиардов нервных клеток - нейронов. Считается, что их количество остается неизменным в течение всей жизни. По мере взросления человека и развития его интеллекта увеличивается не число нейронов, а число и сложность соединений между ними. Гибель нервных клеток в результате болезни или травмы невосполнима - человек теряет способность думать, чувствовать, говорить, двигаться - в зависимости от того, какие части мозга повреждены. Поэтому и бытует выражение: "нервные клетки не восстанавливаются".

На вопрос: можно ли восстановить поврежденную нервную ткань? - наука долгое время отвечала отрицательно. Однако исследования академика Российской академии естественных наук, члена Международных институтов эмбриологии и биологии развития Льва Владимировича Полежаева свидетельствуют о другом: в некоторых условиях нервные клетки могут быть восстановлены.

Академик Л. ПОЛЕЖАЕВ.

Загадки нейронов

Медикам давно известно, что при повреждении разных отделов мозга у человека нервные клетки (нейроны) теряют способность проводить электрические импульсы. Кроме того, при травмах мозга нейроны сильно изменяются: их многочисленные ветвистые отростки, принимающие и передающие нервные импульсы, исчезают, клетки сморщиваются и уменьшаются в размере. После такого превращения нейроны уже не способны выполнять свою главную работу в организме. А не работают нервные клетки - нет и мышления, эмоций, сложных проявлений психической жизни человека. Поэтому травмирование нервной ткани, особенно в головном мозге, и приводит к непоправимым последствиям. Это касается не только человека, но и млекопитающих.

А как обстоит дело с другими животными - у всех ли нервная ткань не восстанавливается после повреждения? Оказывается, у рыб, тритонов, аксолотлей, саламандр, лягушек и ящериц нервные клетки мозга способны к восстановлению.

Почему же у одних животных нервная ткань обладает способностью к регенерации, а у других нет? И так ли это на самом деле? Этот вопрос долгие годы занимал умы ученых.

Что такое, вообще, восстановление нервной ткани? Это либо появление новых нервных клеток, которые возьмут на себя функции погибших нейронов, либо возвращение изменившихся в результате травмы нервных клеток в исходное рабочее состояние.

Источником восстановления нервной ткани могут стать еще не развитые клетки глубоких слоев мозга. Они превращаются в так называемые нейробласты - предшественники нервных клеток, а затем уже - в нейроны. Это явление обнаружил в 1967 году немецкий исследователь В. Кирше - сначала у лягушек и аксолотлей, а потом еще и у крыс.

Был замечен и другой путь: после повреждения мозга сохранившиеся нервные клетки светлеют, внутри них формируются два ядра, далее разделяется пополам цитоплазма, и в результате этого разделения получается два нейрона. Так появляются новые нервные клетки. Российский биолог И. Рампан, работавший в Институте мозга, в 1956 году первым открыл именно такой способ восстановления нервной ткани у крыс, собак, волков и других видов животных.

В 1981-1985 годах американский исследователь Ф. Ноттебом обнаружил, что сходные процессы протекают у поющих самцов канареек. У них сильно увеличиваются области мозга, отвечающие за пение - как оказалось, за счет того, что в этих областях появляются новые нейроны.

В 70-е годы в Киевском и Саратовском университетах, в Московском медицинском институте исследователи изучали крыс и собак с повреждениями различных участков мозга. Под микроскопом удалось проследить, как по краям раны нервные клетки размножаются и появляются новые нейроны. Однако нервная ткань в области травмы полностью не восстанавливалась. Напрашивался вопрос: нельзя ли как-то стимулировать процесс деления клеток и тем самым вызвать появление новых нейронов?

Трансплантация нервной ткани
Ученые пытались решить проблему восстановления нервной ткани таким путем - пересадить нервную ткань, взятую от взрослых млекопитающих, в головной мозг других животных того же вида. Но эти попытки не привели к успеху - пересаженная ткань рассасывалась. В 1962-1963 годах автор статьи и его сотрудница Э. Н. Карнаухова пошли другим путем - они осуществили пересадку кусочка мозга от одной крысы к другой, используя для трансплантации растертую, бесклеточную нервную ткань. Опыт оказался удачным - ткань мозга у животных восстановилась.

В 70-е годы во многих странах мира стали проводить пересадки в головной мозг нервной ткани не взрослых животных, а зародышей. При этом эмбриональная нервная ткань не отторгалась, а приживлялась, развивалась и соединялась с нервными клетками мозга хозяина, то есть чувствовала себя как дома. Этот парадоксаль ный факт исследователи объяснили тем, что эмбриональная ткань более устойчива, чем взрослая.

Кроме того, у этого метода были и другие преимущества - кусочек эмбриональной ткани не отторгался при трансплантации. Почему? Все дело в том, что ткань мозга отделена от остальной внутренней среды организма так называемым гематоэнцефалическим барьером. Этот барьер не пропускает в мозг крупные молекулы и клетки из других частей тела. Гематоэнцефалический барьер состоит из плотно сомкнутых клеток внутренней части тонких кровеносных сосудов мозга. Нарушенный во время пересадки нервной ткани гематоэнцефалический барьер через некоторое время восстанавливается. Все, что расположено внутри барьера - в том числе и пересаженный кусочек эмбриональной нервной ткани, - организм считает "своим". Этот кусочек оказывается как бы в привилегированном положении. Поэтому иммунные клетки, обычно способствующие отторжению всего чужеродного, на этот кусочек не реагируют, и он успешно приживается в мозге. Пересаженные нейроны своими отростками соединяются с отростками нейронов хозяина и буквально врастают в тонкую и сложную структуру коры головного мозга.

Важную роль играет и такой факт: при трансплантации из разрушенной нервной ткани и хозяина, и трансплантата выделяются продукты распада нервной ткани. Они каким-то образом омолаживают нервную ткань хозяина. В результате мозг практически полностью восстанавливается.

Этот метод пересадки нервной ткани стал быстро распространяться в разных странах мира. Оказалось, что трансплантацию нервной ткани можно осуществлять и у людей. Так появилась возможность лечить некоторые неврологические и психические заболевания.

Например, при болезни Паркинсона у больного разрушается особый отдел мозга - черная субстанция. В ней вырабатывается вещество - дофамин, которое у здоровых людей передается по нервным отросткам в соседнюю часть мозга и осуществляет регуляцию разнообразных движений. При болезни Паркинсона этот процесс нарушается. Человек не может совершать целенаправленные движения, руки его дрожат, тело постепенно теряет подвижность.

Сегодня с помощью эмбриональной трансплантации в Швеции, Мексике, США, на Кубе прооперирова но уже несколько сотен пациентов с болезнью Паркинсона. Они вновь обрели способность двигаться, а некоторые вернулись к работе.

Пересадка эмбриональной нервной ткани в область раны может помочь и при тяжелых травмах головы. Такая работа проводится сейчас в Институте нейрохирургии в Киеве, которым руководит академик А. П. Ромоданов, и в некоторых американских клиниках.

С помощью эмбриональной трансплантации нервной ткани удалось улучшить состояние пациентов с так называемой болезнью Гентингтона, при которой человек не может контролировать свои движения. Это связано с нарушением работы некоторых частей мозга. После трансплантации эмбриональной нервной ткани в пораженную область больной постепенно обретает контроль над своими движениями.

Возможно, что медикам удастся с помощью пересадки нервной ткани улучшить память и познаватель ные способности тех пациентов, чей мозг разрушен болезнью Альцгеймера.

Нейроны могут восстанавливаться
В лаборатории экспериментальной нейрогенетики Института общей генетики им. Н. И. Вавилова АН СССР несколько лет проводили опыты на животных, чтобы установить причины гибели нервных клеток и понять возможности их восстановления. Автор статьи и его сотрудники обнаружили, что в условиях острого кислородного голодания некоторые нейроны сморщивались или растворялись, остальные же как-то боролись с нехваткой кислорода. Однако при этом в нейронах резко снижалась выработка белка и нуклеиновых кислот, и клетки теряли способность проводить нервные импульсы.

После кислородного голодания в головной мозг крыс пересаживали кусочек эмбриональной нервной ткани. Трансплантаты успешно приживлялись. Отростки их нейронов соединялись с отростками нейронов мозга хозяина. Исследователи обнаружили, что этот процесс как-то усиливают продукты распада нервной ткани, которые выделяются при операции. По-видимому, именно они стимулировали регенерацию нервных клеток. Благодаря каким-то веществам, содержащимся в разрушенной нервной ткани, сморщенные и уменьшившиеся в размере нейроны постепенно восстанавливали свой обычный внешний вид. В них начиналась активная выработка биологически важных молекул, и клетки снова становились способными проводить нервные импульсы.

Какой же именно продукт распада нервной ткани мозга дает толчок регенерации нервных клеток? Поиски постепенно привели к выводу: наиболее важна информационная РНК ("дублер" молекулы наследственности ДНК). На основе этой молекулы в клетке из аминокислот синтезируются специфические белки. Введение в мозг этой РНК привело к полному восстановлению изменившихся после кислородного голодания нервных клеток. Поведение животных после инъекции РНК было таким же, как у их здоровых собратьев.

Гораздо удобнее было бы вводить РНК в кровеносные сосуды животных. Но сделать это оказалось непросто - крупные молекулы не проходили сквозь гематоэнцефалический барьер. Однако проницаемость барьера можно регулировать, например, с помощью инъекции раствора соли. Если таким путем временно раскрыть гематоэнцефалический барьер, а потом сделать инъекцию РНК, то молекула РНК достигнет цели.

Автор статьи вместе с химиком-органиком из Института судебной психиатрии В. П. Чехониным решили усовершенствовать метод. Они соединили РНК с поверхност ноактивным веществом, которое служило как бы "буксиром" и позволило крупным молекулам РНК пройти в мозг. В 1993 году опыты увенчались успехом. С помощью электронной микроскопии удалось проследить, как клетки капилляров мозга как бы "заглатыва ют" и затем выбрасывают в мозг РНК.

Таким образом, был разработан метод регенерации нервной ткани, совершенно безопасный, безвредный и очень простой. Есть надежда, что этот метод даст в руки врачам оружие против тяжелых психических болезней, которые сегодня считаются неизлечимыми. Однако для применения этих разработок в клинике требуется, согласно указаниям Минздрава России и Фармкомитета, провести проверку препарата на мутагенность, канцерогенность и токсичность. Проверка займет 2-3 года. К сожалению, в настоящее время экспериментальная работа приостановлена: нет финансирования. Между тем эта работа имеет огромное значение, так как больных шизофренией, старческим слабоумием, маниакально-депрессивным психозом в нашей стране немало. Во многих случаях врачи бессильны что-либо сделать, а больные медленно погибают.

Литература

Полежаев Л. В., Александрова М. А. Трансплантация ткани мозга в норме и патологии . М., 1986.

Полежаев Л. В. и др. Трансплантация ткани мозга в биологии и медицине . М., 1993.

Полежаев Л. Трансплантация лечит мозг. "Наука и жизнь" № 5, 1989.

Нейроны и мозг

В головном мозге человека и млекопитающих ученые выделяют области и ядра - плотные скопления нейронов. Различают также кору мозга и подкорковые области. Все эти участки мозга состоят из нейронов и связаны между собой отростками нейронов. Каждый нейрон имеет один аксон - длинный отросток и множество дендритов - коротких отростков. Специфические соединения между нейронами называются синапсами. Нейроны окружены клетками другого рода - глиоцитами. Они играют роль поддерживающих и питающих нейроны клеток. Нейроны легко повреждаются, очень ранимы: через 5-10 минут после того, как перестал поступать кислород, они погибают.

Словарик к статье

Нейроны - нервные клетки.

Гематоэнцефалический барьер - структура из клеток внутренней части капилляров мозга, которая не пропускает в мозг крупные молекулы и клетки из других частей тела.

Синапс - особое соединение нервных клеток.

Гипоксия - нехватка кислорода.

Трансплантат - кусочек ткани, который пересаживается другому животному (реципиенту).

РНК - молекула, дублирующая наследственную информацию и служащая основой для синтеза белков.