Типы вакцин в зависимости от вида антигенов. Вакцины, применение, состав, классификация, применение. Какие виды вакцин существуют1

Оглавление темы "Иммунодефициты. Вакцины. Сыворотки. Иммуноглобулины.":









Вакцины. Виды антигенов вакцин. Классификация вакцин. Виды вакцин. Живые вакцины. Ослабленные (аттенуированные) вакцины. Дивергентные вакцины.

Вакцины - иммунобиологические препараты, предназначенные для активной иммунопрофилактики, то есть для создания активной специфической невосприимчивости организма к конкретному возбудителю. Вакцинация признана ВОЗ идеальным методом профилактики инфекционных заболеваний человека. Высокая эффективность, простота, возможность широкого охвата вакцинируемых лиц с целью массового предупреждения заболевания вывели активную иммунопрофилактику в большинстве стран мира в разряд государственных приоритетов. Комплекс мероприятий по вакцинации включает отбор лиц, подлежащих вакцинации, выбор вакцинного препарата и определение схемы его использования, а также (при необходимости) контроль эффективности, купирование возможных патологических реакций и осложнений. В качестве Аг в вакцинных препаратах выступают:

Цельные микробные тела (живые или убитые);
отдельные Аг микроорганизмов (наиболее часто протективные Аг);
токсины микроорганизмов;
искусственно созданные Аг микроорганизмов;
Аг, полученные методами генной инженерии.

Большинство вакцин разделяют на живые, инактивированные (убитые, неживые), молекулярные (анатоксины) генно инженерные и химические; по наличию полного или неполного набора Аг - на корпускулярные и компонентные, а по способности вырабатывать невосприимчивость к одному или нескольким возбудителям - на моно- и ассоциированные.

Живые вакцины

Живые вакцины - препараты из аттенуированных (ослабленных) либо генетически изменённых патогенных микроорганизмов, а также близкородственных микробов, способных индуцировать невосприимчивость к патогенному виду (в последнем случае речь идёт о так называемых дивергентных вакцинах). Поскольку все живые вакцины содержат микробные тела, то их относят к группе корпускулярных вакцинных препаратов.

Иммунизация живой вакциной приводит к развитию вакцинального процесса, протекающего у большинства привитых без видимых клинических проявлений. Основное достоинство живых вакцин- полностью сохранённый набор Аг возбудителя, что обеспечивает развитие длительной невосприимчивости даже после однократной иммунизации. Живые вакцины обладают и рядом недостатков. Наиболее характерный - риск развития манифестной инфекции в результате снижения аттенуации вакцинного штамма. Подобные явления более типичны для противовирусных вакцин (например, живая полиомиелитная вакцина в редких случаях может вызвать полиомиелит вплоть до развития поражения спинного мозга и паралича).

Ослабленные (аттенуированные) вакцины

Ослабленные (аттенуированные ) вакцины изготавливают из микроорганизмов с пониженной патогенностью, но выраженной иммуногенностью. Введение вакцинного штамма в организм имитирует инфекционный процесс: микроорганизм размножается, вызывая развитие иммунных реакций. Наиболее известны вакцины для профилактики сибирской язвы, бруцеллёза, Ку-лихорадки, брюшного тифа. Однако большая часть живых вакцин - противовирусные. Наиболее известны вакцина против возбудителя жёлтой лихорадки, противополи-омиелитная вакцина Сэйбина, вакцины против гриппа, кори, краснухи, паротита и аденовирусных инфекций.

Дивергентные вакцины

В качестве вакцинных штаммов используют микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных болезней. Аг таких микроорганизмов индуцируют иммунный ответ, перекрёстно направленный на Аг возбудителя. Наиболее известны и длительно применяются вакцина против натуральной оспы (из вируса коровьей оспы) и БЦЖ для профилактики туберкулёза (из микобактерий бычьего туберкулёза).

Вакцина -- медицинский препарат, предназначенный для создания иммунитета к инфекционным болезням.

Классификации вакцин:

  • 1. Живые вакцины - препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий. Примером таких вакцин являются БЦЖ и вакцина против натуральной оспы человека, в качестве которой используется непатогенный для человека вирус оспы коров.
  • 2. Инактивированные (убитые) вакцины - препараты, в качестве действующего начала включающие убитые химическим или физическим способом культуры патогенных вирусов или бактерий, (клеточные, вирионные) или же извлечённые из патогенных микробов комплексы антигенов, содержащие в своём составе проективные антигены (субклеточные, субвирионные вакцины). В препараты иногда добавляют консерванты и адьюванты.

Молекулярные вакцины - в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

Корпускулярные вакцины - содержащие в своем составе протективный антиген

  • 3. Анатоксины относятся к числу наиболее эффективных препаратов. Принцип получения - токсин соответствующей бактерии в молекулярном виде превращают в нетоксичную, но сохранившую свою антигенную специфичность форму путем воздействия 0.4% формальдегида при 37t в течение 3-4 недель, далее анатоксин концентрируют, очищают, добавляют адьюванты.
  • 4. Синтетические вакцины. Молекулы эпитопов сами по себе не обладают высокой иммуногенностью для повышения их антигенных свойств эти молекулы сшиваются с полимерным крупномолекулярным безвредным веществом, иногда добавляют адьюванты.
  • 5. Ассоциированные вакцины - препараты, включающие несколько разнородных антигенов.

Требования, предъявляемые к современным вакцинам:

Иммуногенность;

Низкая реактогенность (аллергенность);

Не должны обладать тератогенностью, онкогенностью;

Штаммы, из которых приготовлена вакцина, должны быть генетически стабильны;

Длительный срок хранения;

Технологичность производства;

Простота и доступность в применении. № 89 Живые вакцины. получение, применение. Достоинства и недостатки.

Живые вакцины - препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий.

Аттенуация (ослабление) возможна путём воздействия на штамм химических (мутагены) и физических (температура) факторов или посредством длительных пассажей через невосприимчивый организм. Так же в качестве живых вакцин используются дивергентные штаммы (непатогенные для человека), имеющие общие протективные антигены с патогенными для человека микробами. Примером такой вакцины является БЦЖ и вакцина против натуральной оспы.

Возможно получение живых вакцин генно-инженерным способом. Принцип получения таких вакцин сводится к созданию непатогенных для человека рекмбинантных штаммов, несущих протективные антигены патогенных микробов и способных при введении в орг. человека размножаться и создавать иммунитет. Такие вакцины называют векторными.

Вне зависимости от того, какие штаммы включены в вакцины, бактерии получают путём выращивания на искусственных питательных средах, культурах клеток или куриных эмбрионах. В живую вакцину, как правило, добавляют стабилизатор, после чего подвергают лиофильному высушиванию.

В связи с тем, что живые вакцины способны вызывать вакцинную инфекцию (живые аттенуированные микробы размножаются в организме, вызывая воспалительный процесс проходящий без клинических проявлений), они всегда вызывают перестройку иммунобиологического статуса организма и образование специфических антител. Это так же может являться недостатком, т. к. живые вакцины чаще вызывают аллергические реакции.

Вакцины данного типа, как правило, вводятся однократно.

Примеры: сибиреязвенная вакцина, чумная вакцина, бруцеллёзная вакцина, БЦЖ вакцина, оспенная дермальная вакцина.

Первостепенное значение в защите человека и животных от различных инфекционных заболеваний имеет вакцинопрофилактика, основанная на введении клинически здоровым дериватам антигенных структур, вызывающих развитие клеточного или гуморального иммунитета.

Впервые вакцинопрофилактику против оспы провел английский ученый Э. Дженнер, обеспечив менее острое течение болезни. Работы Пастера позволили разработать научные основы создания вакцинных препаратов. Промышленный выпуск профилактических лекарственных средств обусловлен развитием биотехнологии и совместных дисциплин, а также благодаря использованию биообъектов, как безотказных депо синтеза антигенов [Таточенко, 1994].

Иммунизация наиболее эффективна, если не применяют для профилактики острых инфекционных болезней, вызванных высокопатогенными микробами и менее эффективна для предупреждения инфекций поросенка, обусловленных так называемыми условно-патогенными микроорганизмами. В целом вакцинопрофилактика в свиноводстве снижает уровень заболеваемости, предупреждает вспышки инфекции. В настоящее время ученые вновь проявляют повышенный интерес к бактериальным вакцинам из-за постоянного увеличения резистентности микроорганизмов к антибиотикам, а также в связи с остаточным количеством антибиотиков в продукции животноводства, предназначенным для человека.

Вакцины (лат. Vaccinus – коровий) – препараты из ослабленных живых или убитых микроорганизмов, продуктах их жизнедеятельности, а также отдельных компонентов микробной клетки, используемые для искусственного создания активного специфического приобретенного иммунитета против определенных видов микроорганизмов или выделяемых токсинов.

Существуют живые вакцины против кори, гриппа, полиомиелита, желтой лихорадки, сыпного тифа, туберкулеза, туляремии, бруцеллеза, чумы, сибирской язвы и другие; вакцины из убитых микроорганизмов (убитые вакцины) против энцефалита, гриппа, гепатита А, гепатита В, герпеса, брюшного тифа, холеры и других; анатоксины (токсины, лишены ядовитых свойств, но сохранили иммуногенные свойства) – столбняковые, дифтерийные, стафилококковые и другие.

По числу антигенных компонентов, входящих в состав вакцины, различают: моновакцины (один компонент), например, вакцина против туберкулеза; дивакцину (два компонента), например, дифтерийно-столбняковый анатоксин; поливакцины (ассоциированные вакцины), например, АКДС, в состав которой входят коклюшный антиген, столбняковый и дифтерийный анатоксины [Таточенко, 1994].

Субклеточные или рибосомальные вакцины

Субклеточные или рибосомальные вакцины, в которых в качестве действующего начала используют активные антигенные комплексы – рибосомы возбудителя соответствующей болезни, выделенные из бактерий после их дезинтеграции ультразвуком или механическим методом. Очищают их с помощью дифференциального ультрацентрифугирования или высаливания сернокислым аммонием. Преимущества таких вакцин:

  • рибосомальные вакцины не обладают токсичностью;
  • имеют более выраженную иммуногенность в сравнении с корпускулярными вакцинами;
  • они способны создать перекрестный иммунитет к различным серо группам данного вида.

Сейчас используют вакцины данного типа против сибирской язвы, брюшинного тифа (на основе О-, Н-, Vi-антигенов) и др. Открытие иммуногенности рибосомальных вакцин было осуществлено в 1965 году на субклеточных фракциях микобактерий туберкулеза.

Фаги – ИБП, созданные на основе вирусов бактерий. Используют для фагопрофилактики и фагодиагностики. Сывороточные ИБП – гомологичные и гетерологические иммунопрепараты, полученные в соответствии с крови людей и животных, которые состоят из иммуноглобулинов соответствующих инфекций. Для исключения развития анафилактического шока, при введении ИБП, их вводят по методу Березки. Также в ИБП относят иммуномодуляторы, разделяющиеся на гомологичные (цитокины, интерфероны, интерлейкины) и гетерологическая – декарис (регулирует созревание Т-лимфоцитов, циклоспорин – иммунодепрессант и другие). В зависимости от эффекта их делят на иммунодепрессанты, иммуностимуляторы и средства заместительной терапии.

Субъединичные вирусные вакцины

Субъединичные вирусные вакцины – вакцины из отдельных структур вибрионов, так называемые белковые, молекулярные, субъединичные или расщепленные вакцины. Этот вид вакцин относят к третьему поколению др. активированных вирусных вакцин. Традиционными являются тканевые или культуральные вакцины - первое поколение. Современные вакцины характеризуются высокой степенью очистки - второе поколение. Иммунногенное действие проявляется благодаря наружный оболочке вируса - вириона. Типичными вакцинами являются инактивированные очищенные вакцины - субвирионные с полностью разрушенными вибрионами ("сплитвирусные" вакцины) и субвирионные субъединичные вакцины - с высокой степенью очистки. Их получают следующим образом:

  • заражают аллантоис куриных эмбрионов;
  • очищают с помощью пластинчатого сепаратора на колонке с синтетической смолой;
  • микрофильтруют;
  • концентрируют на фильтрах (примерно в 50 раз);
  • очищают ультрацентрифугированием в среде сахарозы;
  • расщепляют концентраты вибрионов катионными детергентами;
  • экстрагируют гликопротеины ультрафильтрацией;
  • диализ;
  • стерилизующая фильтрация;
  • стандартизируют концентрат субъединиц;
  • контроль препарата.

Полученная вакцина малореактогенна, менее токсична, безопасна, имеет хорошие иммуногенные свойства.

Генно-инженерные вакцины

Генно-инженерные вакцины получили развитие в 70-х годах ХХ века, так как необходимость таких разработок была обусловлена недостаточностью природных источников сырья, невозможностью размножить вирус в классических объектах.

Принцип создания генно-инженерных вакцин состоит из следующих этапов: выделение генов антигенов, встраивание их в простые биообъекты - дрожжи, бактерии - и получение необходимого продукта в процессе культивирования.

Гены, кодирующие протективные белки, можно клонировать с ДНК-содержащих вирусов непосредственно, а с РНК-содержащих вирусов - после обратной транскрипции их генома. В 1982 году в США впервые была получена экспериментальная вакцина против вируса гепатита В.

Новым подходом к созданию вирусных вакцин является введение генов, отвечающих за синтез вирусных белков в геном другого вируса. Таким образом, создаются рекомбинантные вирусы, обеспечивающие комбинированный иммунитет. Синтетические и полусинтетические вакцины получают при крупнотоннажном производстве химических вакцин, очищенных от балластных веществ. Основными составляющими таких вакцин является антиген, полимерный носитель - присадка, повышающая активность антигена. В качестве носителя используют полиэлектролиты - ПВП, декстран, с которыми смешивается антиген.

Также по составу антигенов различают моновакцины (например, холерные) - против одной болезни, дивакцину (против тифа) - для лечения 2 инфекций; ассоциированные вакцины - АКДС - против коклюша, дифтерии и столбняка. Поливалентные вакцины против одной инфекции, но содержат несколько серологических типов возбудителя болезни, например вакцина для иммунизации против лептоспироза; комбинированные вакцины, то есть введение нескольких вакцин одновременно в различные области тела.

Сегодняшняя статья открывает рубрику «Вакцинация» и речь в ней пойдет о том, какие бывают виды вакцин и чем они отличаются, как их получают и какими способами вводят в организм.

А начать было бы логично с определения того, что такое вакцина. Итак, вакцина – это биологический препарат, предназначенный для создания специфической невосприимчивости организма к конкретному возбудителю инфекционного заболевания путем выработки активного иммунитета.

Под вакцинацией (иммунизацией) , в свою очередь подразумевается процесс, в ходе которого организм приобретает активный иммунитет к инфекционному заболеванию путем введения вакцины.

Виды вакцин

Вакцина может содержать живые или убитые микроорганизмы, части микроорганизмов, ответственные за выработку иммунитета (антигены) или их обезвреженные токсины.

Если вакцина содержит только отдельные компоненты микроорганизма (антигены), то она называется компонентной (субъединичной, бесклеточной, ацеллюлярной) .

По количеству возбудителей, против которых они задуманы, вакцины делятся на:

  • моновалентные (простые) — против одного возбудителя
  • поливалентные – против нескольких штаммов одного возбудителя (например, полиомиелитная вакцина является трехвалентной, а вакцина Пневмо-23 содержит 23 серотипа пневмококков)
  • ассоциированные (комбинированные) – против нескольких возбудителей (АКДС, корь – паротит — краснуха).

Рассмотрим виды вакцин более подробно.

Живые ослабленные вакцины

Живые ослабленные (аттенуированные) вакцины получают из модифицированных искусственным путем патогенных микроорганизмов. Такие ослабленные микроорганизмы сохраняют способность размножаться в организме человека и стимулировать выработку иммунитета, но не вызывают заболевание (то есть являются авирулентными).

Ослабленные вирусы и бактерии обычно получают путем многократного культивирования на куриных эмбрионах или клеточных культурах. Это длительный процесс, на который может потребоваться около 10 лет.

Разновидностью живых вакцин являются дивергентные вакцины , при изготовлении которых используют микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных заболеваний человека, но не способные вызвать у него заболевание. Пример такой вакцины — БЦЖ, которую получают из микобактерий бычьего туберкулеза.

Все живые вакцины содержат цельные бактерии и вирусы, поэтому относятся к корпускулярным.

Основным достоинством живых вакцин является способность вызывать стойкий и длительный (часто пожизненный) иммунитет уже после однократного введения (кроме тех вакцин, которые вводятся через рот). Это связано с тем, что формирование иммунитета к живым вакцинам наиболее приближено к таковому при естественном течении заболевания.

При использовании живых вакцин существует вероятность, что размножаясь в организме, вакцинный штамм может вернуться к своей первоначальной патогенной форме и вызвать заболевание со всеми клиническими проявлениями и осложнениями.

Такие случаи известны для живой полиомиелитной вакцины (ОПВ), поэтому в некоторых странах (США) она не применяется.

Живые вакцины нельзя вводить людям с иммунодефицитными заболеваниями (лейкемия, ВИЧ, лечение препаратами, вызывающими подавление иммунной системы).

Другими недостатками живых вакцин являются их неустойчивость даже при незначительных нарушениях условий хранения (тепло и свет действуют на них губительно), а так же инактивация, которая происходит при наличии в организме антител к данному заболеванию (например, когда у ребенка в крови еще циркулируют антитела, полученные через плаценту от матери).

Примеры живых вакцин: БЦЖ, вакцины против кори, краснухи, ветрянки, паротита, полиомиелита, гриппа.

Инактивированные вакцины

Инактивированные (убитые, неживые) вакцины , как следует из названия, не содержат живых микроорганизмов, поэтому не могут вызвать заболевания даже теоретически, в том числе и у людей с иммунодефицитом.

Эффективность инактивированных вакцин, в отличие от живых, не зависит от наличия в крови циркулирующих антител к данному возбудителю.

Инактивированные вакцины всегда требуют нескольких вакцинаций. Защитный иммунный ответ развивается обычно только после второй или третьей дозы. Количество антител постепенно снижается, поэтому спустя некоторое время для поддержания титра антител требуется повторная вакцинация (ревакцинация).

Для того, чтобы иммунитет сформировался лучше, в инактивированные вакцины часто добавляют специальные вещества — адсорбенты (адъюванты) . Адъюванты стимулируют развитие иммунного ответа, вызывая местную воспалительную реакцию и создавая депо препарата в месте его введения.

В качестве адъювантов обычно выступают нерастворимые соли алюминия (гидроксид или фосфат алюминия). В некоторых противогриппозных вакцинах российского производства с этой целью используют полиоксидоний.

Такие вакцины называются адсорбированными (адъювантными) .

Инактивированные вакцины, в зависимости от способа получения и состояния содержащихся в них микроорганизмов, могут быть:

  • Корпускулярные – содержат цельные микроорганизмы, убитые физическими (тепло, ультрафиолетовое облучение) и/или химическими (формалин, ацетон, спирт, фенол) методами.
    Такими вакцинами являются : коклюшный компонент АКДС, вакцины против гепатита А, полиомиелита, гриппа, брюшного тифа, холеры, чумы.
  • Субъединичные (компонентные, бесклеточные) вакцины содержат отдельные части микроорганизма — антигены, которые отвечают за выработку иммунитета к данному возбудителю. Антигены могут представлять собой белки или полисахариды, которые выделены из микробной клетки с помощью физико-химических методов. Поэтому такие вакцины еще называют химическими .
    Субъединичные вакцины менее реактогенные, чем корпускулярные, потому что из них убрано все лишнее.
    Примеры химических вакцин : полисахаридные пневмококковая, менингококковая, гемофильная, брюшнотифозная; коклюшная и гриппозная вакцины.
  • Генно-инженерные (рекомбинантные) вакцины являются разновидностью субъединичных вакцин, их получают путем встраивания генетического материала микроба – возбудителя болезни в геном других микроорганизмов (например, в дрожжевые клетки), которые затем культивируют и из полученной культуры выделяют нужный антиген.
    Пример — вакцины против гепатита В и вируса папилломы человека.
  • В стадии экспериментальных исследований находятся еще два вида вакцин – это ДНК-вакцины и рекомбинантные векторные вакцины . Предполагается, что оба типа вакцин будут обеспечивать защиту на уровне живых вакцин, являясь при этом наиболее безопасными.
    В настоящее время проводятся исследования ДНК-вакцин против гриппа и герпеса и векторных вакцин против бешенства, кори и ВИЧ-инфекции.

Анатоксиновые вакцины

В механизме развития некоторых заболеваний основную роль играет не сам микроб-возбудитель, а токсины, которые он вырабатывает. Одним из примеров такого заболевания является столбняк. Возбудитель столбняка продуцирует нейротоксин – тетаноспазмин, который и вызывает симптомы.

Для создания иммунитета к таким заболеваниям используются вакцины, которые содержат обезвреженные токсины микроорганизмов – анатоксины (токсоиды) .

Анатоксины получают с использованием вышеописанных физико-химических методов (формалин, тепло), затем их очищают, концентрируют и адсорбируют на адъюванте для усиления иммуногенных свойств.

Анатоксины можно условно отнести к инактивированным вакцинам.

Примеры анатоксиновых вакцин : столбнячный и дифтерийный анатоксины.

Конъюгированные вакцины

Это инактивированные вакцины, которые представляют собой комбинацию частей бактерий (очищенные полисахариды клеточной стенки) с белками-носителями, в качестве которых выступают бактериальные токсины (дифтерийный анатоксин, столбнячный анатоксин).

В такой комбинации значительно усиливается иммуногенность полисахаридной фракции вакцины, которая сама по себе не может вызвать полноценный иммунный ответ (в частности, у детей до 2-х лет).

В настоящее время созданы и применяются конъюгированные вакцины против гемофильной инфекции и пневмококка.

Способы введения вакцин

Вакцины можно вводить почти всеми известными способами – через рот (перорально), через нос (интраназально, аэрозольно), накожно и внутрикожно, подкожно и внутримышечно. Способ введения определяется свойствами конкретного препарата.

Накожно и внутрикожно вводятся в основном живые вакцины, распространение которых по всему организму крайне не желательно из-за возможных поствакцинальных реакций. Таким способом вводятся БЦЖ, вакцины против туляремии, бруцеллеза и натуральной оспы.

Перорально можно вводить только такие вакцины, возбудители которых в качестве входных ворот в организм используют желудочно-кишечный тракт. Классический пример — живая полиомиелитная вакцина (ОПВ), так же вводятся живые ротавирусная и брюшнотифозная вакцины. В течение часа после вакцинации ОВП российского производства нельзя пить и есть. На другие оральные вакцины это ограничение не распространяется.

Интраназально вводится живая вакцина против гриппа. Цель такого способа введения – создание иммунологической защиты в слизистых оболочках верхних дыхательных путей, которые являются входными воротами гриппозной инфекции. В то же время системный иммунитет при данном способе введения может оказаться недостаточным.

Подкожный способ подходит для введения как живых так и инактивированных вакцин, однако имеет ряд недостатков (в частности, относительно большое число местных осложнений). Его целесообразно использовать у людей с нарушением свертывания крови, так как в этом случае риск кровотечения минимален.

Внутримышечное введение вакцин является оптимальным, так как с одной стороны, благодаря хорошему кровоснабжению мышц, иммунитет вырабатывается быстро, с другой снижается вероятность возникновения местных побочных реакций.

У детей до двух лет предпочтительным местом для введения вакцины служит средняя треть передне-боковой поверхности бедра, а у детей после двух лет и взрослых – дельтовидная мышца (верхняя наружная треть плеча). Этот выбор объясняется значительной мышечной массой в данных местах и менее выраженным, чем в ягодичной области, подкожно-жировым слоем.

На этом все, надеюсь, что мне удалось изложить довольно не простой материал о том, какие бывают виды вакцин , в доступной для понимания форме.


Вакцина- медицинский препарат, предназначенный для создания иммунитета к инфекционным болезням.

Классификации вакцин:

1. Живые вакцины - препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий. Примером таких вакцин являются БЦЖ и вакцина против натуральной оспы человека, в качестве которой используется непатогенный для человека вирус оспы коров.

2. Инактивированные (убитые) вакцины – препараты, в качестве действующего начала включающие убитые химическим или физическим способом культуры патогенных вирусов или бактерий, (клеточные, вирионные) или же извлечённые из патогенных микробов комплексы антигенов, содержащие в своём составе проективные антигены (субклеточные, субвирионные вакцины). В препараты иногда добавляют консерванты и адъюванты.

Инактивированные вакцины получают путем воздействия на микроорганизмы химическим путем или нагреванием. Такие вакцины являются достаточно стабильными и безопасными, так как не могут вызвать реверсию вирулентности. Они часто не требуют хранения на холоде, что удобно в практическом использовании. Однако у этих вакцин имеется и ряд недостатков, в частности, они стимулируют более слабый иммунный ответ и требуют применения нескольких доз (бустерные иммунизации).

Они содержат либо убитый целый микроорганизм (например цельноклеточная вакцина против коклюша, инактивированная вакцина против бешенства, вакцина против вирусного гепатита А), либо компоненты клеточной стенки или других частей возбудителя, как например в ацеллюлярной вакцине против коклюша, коньюгированной вакцине против гемофилусной инфекции или в вакцине против менингококковой инфекции. Их убивают физическими (температура, радиация, ультрафиолетовый свет) или химическими (спирт, формальдегид) методами. Такие вакцины реактогенны, применяются мало (коклюшная, против гепатита А).

Инактивированные вакцины также являются корпускулярными. Анализируя свойства корпускулярных вакцин также следует выделить, как положительные так и их отрицательные качества. Положительные стороны: Корпускулярные убитые вакцины легче дозировать, лучше очищать, они длительно хранятся и менее чувствительны к температурным колебаниям. Отрицательные стороны: вакцина корпускулярная - содержит 99 % балласта и поэтому реактогенная, кроме того, содержит агент, используемый для умерщвления микробных клеток (фенол). Еще одним недостатком инактивированной вакцины является то, что микробный штамм не приживляется, поэтому вакцина слабая и вакцинация проводится в 2 или 3 приема, требует частых ревакцинаций (АКДС), что труднее в плане организации по сравнению с живыми вакцинами. Инактивированные вакцины выпускают как в сухом (лиофилизированном), так и в жидком виде.

3. Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

Корпускулярные вакцины – содержащие в своем составе протективный антиген

3. Анатоксины относятся к числу наиболее эффективных препаратов. Принцип получения – токсин соответствующей бактерии в молекулярном виде превращают в нетоксичную, но сохранившую свою антигенную специфичность форму путем воздействия 0.4% формальдегида при 37t в течение 3-4 недель, далее анатоксин концентрируют, очищают, добавляют адъюванты.

4. Синтетические вакцины. Молекулы эпитопов сами по себе не обладают высокой иммуногенностью для повышения их антигенных свойств эти молекулы сшиваются с полимерным крупномолекулярным безвредным веществом, иногда добавляют адъюванты.

5. Ассоциированные вакцины – препараты, включающие несколько разнородных антигенов.

Требования, предъявляемые к современным вакцинам:

Иммуногенность;

Низкая реактогенность (аллергенность);

Не должны обладать тератогенностью, онкогенностью;

Штаммы, из которых приготовлена вакцина, должны быть генетически стабильны;

Длительный срок хранения;

Технологичность производства;

Простота и доступность в применении.

Комбинированные вакцины

К комбинированным вакцинам относят искусственные вакцины. Они представляют собой препараты, состоящие из микробного антигенного компонента (обычно выделенного и очищенного или искусственно синтезированного антигена возбудителя) и синтетических полиионов (полиакриловая кислота и другие) - мощных стимуляторов иммунного ответа. Содержанием этих веществ они и отличаются от химических убитых вакцин.

Первая такая отечественная вакцина - гриппозная полимер-субъединичная ("Гриппол"), разработанная в Институте иммунологии МЗ РФ, уже внедрена в практику российского здравоохранения.

Для специфической профилактики инфекционных заболеваний, возбудители которых продуцируют экзотоксин, применяют анатоксины. Анатоксин - это экзотоксин, лишенный токсических свойств, но сохранивший антигенные свойства. В отличии от вакцин, при использовании которых у человека формируется антимикробный иммунитет, при введении анатоксинов формируется антитоксический иммунитет, так как они индуцируют синтез антитоксических антител - антитоксинов. В настоящее время применяются:

● дифтерийный,
столбнячный,
ботулинический,
стафилококковый анатоксины,
холероген-анатоксин.

Вакцина АКДС (адсорбированная коклюшно-дифтерийно-столбнячная вакцина), в которой коклюшный компонент представлен убитой коклюшной вакциной, а дифтерийный и столбнячный - соответствующими анатоксинами,

Вакцина ТАВТе, содержащая О-антигены брюшнотифозных, паратифозных А и В бактерий, и столбнячный анатоксин,

Брюшнотифозная химическая вакцина с секстаанатоксином (смесь анатоксинов клостридий ботулизма типов А, В, Е, клостридий столбняка, клостридий перфрингенс типа А и эдематиенс - два последних микроорганизма - наиболее частые возбудители газовой гангрены), и другие.

В то же время АДС (дифтерийно-столбнячный анатоксин), часто используемый вместо АКДС при вакцинации детей, является просто комбинированным препаратом, а не ассоциированной вакциной, так как содержит только анатоксины.