T-лимфоциты. Что такое клетки CD4? Что такое доля лимфоцитов CD4

Оглавление темы "СD8 лимфоциты. Антиген (Аг) представляющие клетки. Классификация антигенов (Аг).":









Рецептор Т-клеток . Т-клетки распознают Аг с помощью двух типов мембранных гликопротеинов - Т-клеточных рецепторов и CD3. Т-клеточный рецептор - гетеродимер, содержащий а- и р-цепи (примерно 98% всех Т-клеток) или 5-цепи (около 1,5-2% клеток) с молекулярной массой 40-50 кД. Т-клеточный рецептор входит в суперсемейство Ig-подобных молекул клеточной поверхности, участвующих в реакциях распознавания. Механизмы трансмембранной передачи с рецептора Т-клетки остаются неизвестными; предположительно они обусловлены CD3, нековалентно связанными с рецепторами Т-лимфоцитов.

Активация Т-клеток

Для активации Т-клеток необходимо два сигнала от макрофагов. Первый сигнал - представление Аг, второй- секреция активирующего фактора (ИЛ-1). Последний стимулирует синтез Т-лимфоцитами ИЛ-2, активирующего эти клетки (аутокринная регуляция). Одновременно на мембранах Т-клеток повышается экспрессия рецепторов к ИЛ-2 (CD25).

Субпопуляции Т-лимфоцитов

На основании поверхностных маркёров различают несколько субпопуляций Т-лимфоцитов , выполняющих различные функции. Для дифференцировки Т-клеток применяют набор моноклональных AT, выявляющих поверхностные маркерные CD-Aг [от англ. cluster of differentiation, кластер дифференцировки]. Все зрелые Т-клетки экспрессируют поверхностный CD3-Aг; помимо него субпопуляции Т-лимфоцитов также экспрессируют и другие CD-Aг.

СD4 + лимфоциты

Мембранные молекулы CD4 несут различные популяции клеток, условно разделяемые на регуляторные (хелперы) и эффекторные (Т гзт).

Т-хелперы [от англ. to help, помогать] специфически распознают Аг и взаимодействуют с макрофагами и В-клетками в ходе индукции гуморального иммунного ответа. Отношение CD4 + /CD8 + -клеток - важный параметр оценки иммунного статуса; в нормальных условиях отношение CD4 + /CD8 + приблизительно равно двум и отражает доминирующее влияние на иммунный ответ стимулирующих факторов. При некоторых иммунодефицитных состояниях отношение обратное (менее I, то есть СD8 + -клетки доминируют), указывая на преимущественное влияние иммуносупрессорных эффектов; лежит в основе патогенеза многих иммунодефицитов (например, СПИДа).

Аг распознающие Т-лимфоциты «узнают» чужеродный эпитоп вирусного или опухолевого Аг в комплексе с молекулой МНС на плазматической мембране клетки-мишени. Т гзт [Т-эффекторы реакций гиперчувствительности замедленного типа (ГЗТ)] опосредуют реакции ГЗТ.

T-лимфоциты , или Т-клетки (от лат. t hymus «тимус ») - лимфоциты , развивающиеся у млекопитающих в тимусе из предшественников - претимоцитов , поступающих в него из красного костного мозга . В тимусе T-лимфоциты дифференцируются, приобретая Т-клеточные рецепторы (ТКР, англ. TCR ) и различные корецепторы (поверхностные маркеры) . Играют важную роль в приобретённом иммунном ответе . Обеспечивают распознавание и уничтожение клеток, несущих чужеродные антигены , усиливают действие моноцитов , NK-клеток , а также принимают участие в переключении изотипов иммуноглобулинов (в начале иммунного ответа B-клетки синтезируют IgM , позже переключаются на продукцию IgG , IgE , IgA).

Типы Т-лимфоцитов

Т-клеточные рецепторы являются основными поверхностными белковыми комплексами Т-лимфоцитов, ответственными за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (ГКГ, англ. Major Histocompatibility Complex (MHC) ) на поверхности антигенпрезентирующих клеток . Т-клеточный рецептор связан с другим полипептидным мембранным комплексом, CD3 . В функции комплекса CD3 входит передача сигналов в клетку, а также стабилизация Т-клеточного рецептора на поверхности мембраны. Т-клеточный рецептор может ассоциироваться с другими поверхностными белками, его корецепторами . В зависимости от корецептора и выполняемых функций различают два основных типа Т-клеток.

Т-хелперы

Т-хелперы (от англ. helper - помощник) - Т-лимфоциты, главной функцией которых является усиление адаптивного иммунного ответа. Активируют Т-киллеры, B-лимфоциты , моноциты , NK-клетки при прямом контакте, а также гуморально, выделяя цитокины . Основным признаком Т-хелперов служит наличие на поверхности клетки молекулы корецептора CD4 . Т-хелперы распознают антигены при взаимодействии их Т-клеточного рецептора с антигеном, связанным с молекулами главного комплекса гистосовместимости II класса (англ. Major Histocompatibility Complex II (MHC-II) ).

Т-киллеры

Т-хелперы и Т-киллеры образуют группу эффекторных Т-лимфоцитов , непосредственно ответственных за иммунный ответ. В то же время существует другая группа клеток, регуляторные Т-лимфоциты , функция которых заключается в регулировании активности эффекторных Т-лимфоцитов. Модулируя силу и продолжительность иммунного ответа через регуляцию активности Т-эффекторных клеток, регуляторные Т-клетки поддерживают толерантность к собственным антигенам организма и предотвращают развитие аутоиммунных заболеваний . Существуют несколько механизмов супрессии: прямой, при непосредственном контакте между клетками, и дистантный, осуществляющийся на расстоянии - например, через растворимые цитокины.

γδ Т-лимфоциты

Т-лимфоциты представляют собой небольшую популяцию клеток с видоизменённым Т-клеточным рецептором . В отличие от большинства других Т-клеток, рецептор которых образован α {\displaystyle \alpha } и β {\displaystyle \beta } субъединицами, Т-клеточный рецептор γ δ {\displaystyle \gamma \delta } -лимфоцитов образован γ {\displaystyle \gamma } и δ {\displaystyle \delta } субъединицами. Данные субъединицы не взаимодействуют с пептидными антигенами, презентированными белками ГКГ. Предполагается, что γ δ {\displaystyle \gamma \delta } Т-лимфоциты участвуют в узнавании липидных антигенов.

Т-супрессоры

Т-лимфоциты, обеспечивающие центральную регуляцию иммунного ответа.

Дифференциация в тимусе

Стадии дифференциации Т-лимфоцитов

Все Т-клетки берут своё начало от гемопоэтических стволовых клеток красного костного мозга , которые мигрируют в тимус и дифференциируются в незрелые тимоциты . Тимус создаёт микросреду, необходимую для развития полностью функционального репертуара Т-клеток, который является ГКГ-ограниченным и толерантным к самому себе.

Дифференциация тимоцитов разделяется на разные стадии в зависимости от экспрессии различных поверхностных маркеров (антигенов). На самой ранней стадии тимоциты не экспрессируют корецепторы CD4 и CD8 и поэтому классифицируются как двойные негативные (англ. Double Negative (DN) ) (CD4-CD8-). На следующей стадии тимоциты экспрессируют оба корецептора и называются двойными позитивными (англ. Double Positive (DP) ) (СD4+CD8+). Наконец на финальной стадии происходит селекция клеток, которые экспрессируют только один из корецепторов (англ. Single Positive (SP) ): или (CD4+), или (CD8+).

Раннюю стадию можно разделить на несколько подстадий. Так, на подстадии DN1 (англ. Double Negative 1 ) тимоциты имеют следующую комбинацию маркеров: CD44 +CD25 -CD117 +. Клетки с данной комбинацией маркеров ещё называют ранними лимфоидными предшественниками (англ. Early Lymphoid Progenitors (ELP) ). Прогрессируя в своей дифференциации, ELP активно делятся и окончательно теряют способность трансформироваться в другие типы клеток (например В-лимфоциты или миелоидные клетки). Переходя на подстадию DN2 (англ. Double Negative 2 ), тимоциты экспрессируют CD44 +CD25 +CD117 + и становятся ранними Т-клеточными предшественниками (англ. Early T-cell Progenitors (ETP) ). В течение DN3 подстадии (англ. Double Negative 3 ) ETP клетки имеют комбинацию CD44 -CD25 + и вступают в процесс β-селекции.

β-селекция

Гены Т-клеточного рецептора состоят из повторяющихся сегментов, принадлежащих к трём классам: V (англ. variable ), D (англ. diversity ) и J (англ. joining ). В процессе соматической рекомбинации генные сегменты, по одному из каждого класса, соединяются вместе (V(D)J-рекомбинация). Случайное объединение последовательностей сегментов V(D)J приводит к появлению уникальных последовательностей вариабельных доменов каждой из цепей рецептора. Случайный характер образования последовательностей вариабельных доменов позволяет генерировать Т-клетки, способные распознавать большое количество различных антигенов, и, как следствие, обеспечивать более эффективную защиту против быстро эволюционирующих патогенов. Однако этот же механизм зачастую приводит к образованию нефункциональных субъединиц Т-клеточного рецептора. Гены, кодирующие β-субъединицу рецептора, первыми подвергаются рекомбинации в DN3-клетках. Чтобы исключить возможность образования нефункционального пептида, β-субъединица образует комплекс с инвариабельной α-субъединицей пре-T-клеточного рецептора, формируя т. н. пре-T-клеточный рецептор (пре-ТКР) . Клетки, неспособные образовывать функциональный пре-ТКР, погибают в результате апоптоза . Тимоциты, успешно прошедшие β-селекцию, переходят на подстадию DN4 (CD44 -CD25 -) и подвергаются процессу позитивной селекции .

Позитивная селекция

Клетки, экспрессирующие на своей поверхности пре-ТКР все ещё не являются иммунокомпетентными, так как не способны связываться с молекулами главного комплекса гистосовместимости. Для узнавания молекул ГКГ T-клеточным рецептором необходимо наличие корецепторов CD4 и CD8 на поверхности тимоцитов. Образование комплекса между пре-ТКР и корецептором CD3 приводит к ингибированию перестроек генов β-субъединицы и в то же время вызывает активацию экспрессии генов CD4 и CD8. Таким образом тимоциты становятся двойными позитивными (DP) (CD4+CD8+). DP-тимоциты активно мигрируют в корковое вещество тимуса, где происходит их взаимодействие с клетками кортикального эпителия , экспрессирующими белки обоих классов ГКГ (MHC-I и MHC-II). Клетки, неспособные взаимодействовать с белками ГКГ кортикального эпителия, подвергаются апоптозу , в то время как клетки, успешно осуществившие такое взаимодействие, начинают активно делиться.

Негативная селекция

Тимоциты, прошедшие позитивную селекцию, начинают мигрировать к кортико-медуллярной границе тимуса. Попадая в медуллу, тимоциты взаимодействуют с собственными антигенами организма, презентированными в комплексе с белками ГКГ на медуллярных тимических эпителиальных клетках (мТЭК). Тимоциты, активно взаимодействующие с собственными антигенами, подвергаются апоптозу . Негативная селекция предотвращает появление самоактивирующихся Т-клеток, способных вызывать аутоиммунные заболевания , являясь важным элементом иммунологической толерантности организма.

Дендритные клетки – часть иммунной системы организма. Их сооткрывателем и открывателем ряда их ключевых функций был Ральф Штейнман , за что в 2011 году он получил Нобелевскую премию. По воле случая получилось так, что доктор Штейнман был единственным, кому Нобелевская премия досталась посмертно (сама по себе премия присуждается живым людям). Казус заключался в том, что смерть господина Штейнмана и объявление о присуждении ему премии произошли в один день (в пятницу), но о смерти было объявлено только в понедельник. Комитет Нобелевской премии решил, что технически на момент объявления победителя доктор Штейнман был жив, и ситуацию не стали «переигрывать».

Дендритные клетки (Dendritic cells, DCs) получили свое название за внешнюю схожесть с дендритами нейронов. Они являются частью врожденного иммунитета и играют важную роль в активации адаптивного иммунитета.

Цель заметки – раскрыть базовые принципы активации Т-клеток дендритными клетками и познакомить читателя с необходимой терминологией.

  • Врожденная и адаптивная иммунная система;
  • Общие принципы функционирования врожденной иммунной системы;
  • Pathogen-associated molecular patterns (PAMPs) и pattern recognition receptors (PRRs);
    • Небольшой фокус на дендритных клетках и интерфероне I типа.
  • Коротко о разных видах клеток адаптивной иммунной системы;
  • Дендритные клетки и их функции:
    • Antigen presenting cells и активация Т-клеток;
    • MHC-белки и пептидные «сигнатуры» микробов;
    • Разница MHC I и MHC II;
    • Активация дендритных клеток молекулярными паттернами микробов;
    • CCR7 (рецептор хемокина 7) и миграция в дендритных клеток в лимфоузлы;
    • Циркуляция наивных Т-клеток и попадание их в лимфоузлы;
    • Презентация антигена дендритными клетками и принцип «двойного рукопожатия»;
    • Активация, экспансия и деактивация Т-клеток.

Рассказ не хочется ограничивать исключительно нюансами функций DCs. Хочется, чтобы эта информация накладывалась на какую-то базу о работе иммунной системы. При этом попытки охватить все и сразу не будет. Комплиментарная система, подробности создания и работы антигенов, активация B-клеток и многого-много другого в заметке не будет.

Врожденная иммунная система

Innate immune system (врожденный иммунитет) – мгновенно реагирует на заранее определенное и небольшое количество патогенных паттернов;

Adaptive immune system (адаптивный иммунитет) с задержкой реагирует, но на любое антитело. В последствии запоминая антитело, и в последующие разы реактивно на него реагируя.

Основной клеточный состав врожденной иммунной системы:

  • Циркулирующие в крови клетки:
    • Нейтрофилы, фагоцитируют бактерии, но быстро погибают (в течение часа), секретируют цитокины итд;
    • Моноциты, преобразовываются в макрофаги при попадании в ткани;
  • Дозорные клетки (sentinel cells):
    • Маркофаги, фагоцитоз микробов и мертвых клеток (в основном нейтрофилов), секретируют цитокины, несколько месяцев жизни итд;
    • Тучные клетки (mast cells), секретируют цитокины, гистамины итд;
    • Дендритные клетки, запускают антивирусный ответ, активируют Т клетки итд.

Дозорные клетки находятся в тканях и реагируют на микробы после пересечения последними эпителиальных барьеров кожи и кишечника.

Циркулирующие клетки иммунной системы находятся в крови. И при воспалении попадают в нужные ткани.

Примерный порядок активации врожденного иммунитета:

  • Микробы пересекают эпителиальные барьеры;
  • Рецепторы дозорных клеток опознают «непрошенных гостей»;
  • Дозорные клетки секретируют провоспалительные цитокины;
  • Цитокины связывают на рецепторах эндотелия;
  • Что активирует молекулы адгезии внутри сосудов;
  • Различные молекулы адгезии с разной аффинитивностью связываются с соответствующими лигандами на поверхности циркулирующих иммунных клеток:
    • Например, e-selectin связывается с низкой аффинитивностью с лингадом e-selectin на нейтрофилах, что затормаживает их движение;
    • I-CAM связывается с высокой аффинтивностью с LFA-1 белком иммунной клетки, что останавливает иммунную клетку;
  • После полной остановки иммунные клетки просачиваются с воспаленную ткань и начинают все доступными им способами уничтожать микробы;
  • Первыми приходят нейтрофилы, фагоцитируют бактерии и через пару часов погибают сами; За ними приходят моноциты, превращаются в макрофаги и «подъедают» остатки трупов как микробов, так и нейтрофилов.

Остается вопрос: как дозорные клетки врожденного иммунитета опознают микробы?

PAMPs (Pathogen-associated molecular patterns) – паттерны молекулярных патогенов;

PPRs (Pattern recognition receptors) – рецепторы, опознающие паттеры.PAMPs:

  • Вирусные (находятся внутри клетки):
    • Односпиральные РНК;
    • Двуспиральные РНК
  • Бактериальные (в большей степени на поверхности клетки):
    • Паттерны Грам-отрицательные паттерны:
      • Липополисахариды (LPS) клеточной стенки;
      • Флагеллины («жгутики» для перемещения);
    • Паттерны Грам-положительных бактерий:
      • Флагеллины;
      • Тейхоивые кислоты;
      • Пептидогликаны

Бактерии уничтожаются при помощи фагоцитоза и разрушения их клеточной стенки.

Цепочка будет такой: бактерия связывается с PPRs на поверхности клетки (так называемые TLRs toll like receptors) → димеризация рецепторов и запуск цепочки внутриклеточных сигналов ˧ деактивация ингибитора Nf-Kb → выраженность транскрипторного фактора Nf-Kb → клеточные изменения, в частности секреция цитокинов TNFα и IL-1.

Плазмоцитоидные дендритные клетки и антивирусный ответ

С вирусами ситуация чуть интересней, и тут к нам возвращаются дендритные клетки.

Дендритные клетки реагируют на вирусные PAMPs секретированием интерферонов 1 типа. INF type 1 приводят клетки (например, эпителия) в противо-вирусное состояние. Которое заключается в большей подверженности апоптозу зараженными клетками, выраженности белков/ферментов, которые мешают вирусу размножаться и которые могут наносить урон ДНК/РНК вируса.

Сами клетки в противовирусном состоянии также способны секретировать INF type 1.

Дендритные клетки

Необходимые вводные закончились, пора приступить к antigen presenting cells. К антиген презентующим клеткам относятся дендритные клетки, макрофаги и B-клетки.

В дальнейшем речь будет идти о том, как DCs активируют Т-клетки адаптивной иммунной системы.

Т-клетки, MHC I и MHCII

Т клетки своими рецепторами могут воспринимать только пептиды, представленные им на MHC белках антиген презентующих клеток.

MHC II

  • Отвечает за бактерии;
  • Дендритные клетки интернализируют бактерии, уничтожают их в лизосомах, в итоге мы получаем пептидную «сигнатуру» бактерии;
  • MHC с пептидом отправляется к мембране;
  • MHC II связываются с рецепторами CD4+ клеток (T helpers, которые активируют B-клетки и клетки врожденной иммунной системы;
  • MHC II есть у антиген презентующих клеток.

MHC I

  • Отвечает за вирусы (тему опухолей пропустим);
  • Вирусный белок проходит юбиквинацию и становится доступных протеазам;
  • Протеаза «расщепляет» вирусный белок до пептидов;
  • Вирусный пептид с помощью транспортера TAP попадает в эндоплазматический ретикулум, откуда с MHC I комплексом попадает на мембрану;
  • MHC I активирует CD8+ клетки (цитотоксичные T клетки, которые уничтожают зараженные вирусы;
  • MHC I есть у большинства клеток, что объясняется особенностью вирусов.

Дендритные клетки. Активация и миграция в лимфоузлы

Для активации дендритных клеток должно произойти 2 события:

  • MHC белок с пептидом микроба на поверхности клетки (значит он был так или иначе интернализирован и расщеплен до пептидов);
  • PAMP рецепторы дендритных клеток должны быть активированными микробами;

При выполнении двух этих условий дендритные клетки выражают CD80/CD86 (подробнее чуть позже) и CCR7 (хемокин рецептор 7), выраженность которого приводит к тому, что DCs мигрируют в лимфососуды и по ним попадают во вторичные лимфо-органы. В частности, в лифмоузлы, где в межмембранном пространстве встречаются с Т-клетками.

Дендритные клетки активируют Т клетки

Т-лимфоциты путешествуют по крови по попадают с мемфоликулярное пространоство лимфоузлов при помощи кровотока и так называемых High endothelial venules (HEV).

Дело в том, что Т-клеток, аффинитивных определенному антигену, очень немного. Поэтому они путешествуют по организму, заходя ненадолго в лимфоузлы, куда активированные дендритные клетки попадают из тканей.

Для активации Т-клеток должно пройти 2 сигнала:

Сигнал 1. Антиген должен связаться с рецептором Т-клетки (нужна Т клетка с необходимой аффинитивностью рецептора;

Сигнал 2. Костимулирующие молекулы должны соединиться. Это B7-1 (CD80) и B7-2 (СD86) на стороне DCs и CD-28 на стороне Т-клеток.

Сигнал 1 без сигнала 2 приведет к апоптозу или анергии (угасание активной иммунной функции) Т-клетки.

После активация Т клетки проходят clonal expansion, активно делятся, их становятся десятки тысяч в случае с CD4+ и даже сотни тысяч в случае CD8+. Плюс Т-клетки после активации приобретают некоторые полезные фукнции.

Я опущу вопрос активации B-клеток Т-клетками, вопрос более глубокой функции T helpers и T killers. Остановлюсь только на активации Т клеток. В ткани они попадают примерно также, как циркулирующие в кроки клетки врожденной иммунной системы (см выше).

Деактивация Т-клеток

Любое воспаление (особенно цитотоксичное) чревато последствиями для организма. И этот процесс на уметь «тормозить».

В лимфоузлах это за это отвечает белок CTLA4 на Т-клетках, который связывается вместо CD28 с B7-1/B7-2. Это приводит к тому, что во время активации у нас будет только сигнал 1 и Т клетка будет неактивной.

Ткани (и опухоли) выражают PD-1 лиганд (PD-1, programmed death), который связывается с PD-1 белком Т-клеток, что приводит к их exhaustion (истощению), то есть деактивации.

Моноклональные антитела, подавляющие функции CTLA-4 и PD-1, одно из последних слов в борьбе с раковыми заболеваниями.

Выводы:

  • Дендритные клетки активируются двумя сигналами:
    • MHC белком на мембране, на котором будет пептидный антиген;
    • PAMPs микробов связывается с рецепторами DCs;
  • Активированные дендритные клетки выражают CCR7, что позволяет им мигрировать через лимфо-сосуды в лимфоузлы и «искать» в междфоликулярном пространстве нужную Т-клетку;
  • Активация Т-клеток включает в себя 2 сигнала:
    • Сигнал 1 MHC с пептидом (антигеном) связываются с нужным TCR (T cell receptor);
    • Сигнал 2, костимуляция CD86/CD80 DCs с CD28 Т-клеток;
  • При наличии только сигнала 1 Т-клетки подвергаются апоптозу или анергии;
  • После активации начинается экспансия и дифференциация Т-клеток, которая является одним из компонентов ответа иммунной системы.

Источники:

  1. Торможение лейкоцитов молекулами адгезии [видео];

P.S. Это было писать скучно, в виду пересказа без моего вклада, но необходимо для ряда последующих заметок.

Словарь по итогам заметки:

  • Врожденная иммунная система:
    • Дозорные клетки (тучные, макрофаги, дендритные – это только основные, есть и другие);
    • Циркулирующие клетки (моноциты, нейтрофилы);
    • Также врожденная иммунная система включает в себя барьеры (эпителий, муцин), белки и молекулы (комплименты, агглутинины);
  • Адаптивная иммунная система: B-клетки, T-помощники, цитотоксичные Т-клетки;
  • Дендритные клетки:
    • MHC I,
    • MHC II
    • B7-1 (CD80)
    • B7-2 (CD86)
  • Т-клетки:
    • CD28
    • CTLA4
  • Клональная селекция;
  • Клональная экспансия
  • Антиген-презентующие клетки (DCs, макрофаги, B-клетки);
  • Анергия

2981 0

Активация Т- и В-клеток, которые экспрессируют подходящие рецепторы, завершается пролиферацией - увеличением численности (экспансией) лимфоцитарного клона - и дальнейшей дифференцировкой в эффекторные клетки; небольшое количество размножившихся клеток станет клетками памяти. Однако эффекторные функции Т- и В-клеток совершенно различны.

Активация и дифференцировка Т-клеток приводят к синтезу и выделению ряда цитокинов, воздействующих на множество различных типов клеток, или, наоборот, к развитию эффекторных клеток, которые об ладают прямым цитотоксическим действием на клетки хозяина. Напротив, активация и дифференцировка В-клеток приводят к образованию антител. В этой главе более детально описано, как активируются и исполняют свои эффекторные функции Т- и В-клетки.

Активация СD4+-Т-клеток

СD4+-Т-клет-ки, которые играют ключевую роль при ответах почти на все белковые антигены, активируются экзогенными антигенами. Вначале рассмотрим, как эти экзогенные антигены захватываются в организме антигенпрезентирующими клетками (АПК) и как впоследствии АПК взаимодействуют с CD4+-T-клетками.

Специализированные клетки, представляющие антиген Т-клеткам

Антиген может попасть в организм разными путями. В этих участках вторжения антигена находятся специализированные, или профессиональные, АПК - особенно в дыхательных путях, ЖКТ и коже, а также в лимфоидных органах и других тканях по всему телу. Наиболее важными из них являются клетки, производные миелоидного ростка костного мозга, - дендритные клетки и макрофаги. Функциями АПК являются захват антигена, его процессинг и презентация Т-клеткам, а также обеспечение костимуляторными сигналами, которые активируют наивные Т-клетки.

Дендритные клетки - это гетерогенное семейство клеток, которые можно обнаружить во многих тканях, включая тимус. Эти клетки необходимы для инициации ответа первичных, или наивных, Т-клеток, т.е. при первой активации Т-клеток чужеродным антигеном. Для эффективного функционирования дендритных клеток в качестве АПК необходимы многие свойства: они коститутивно экспрессируют высокие уровни МНС II класса (а также и I класса).

Кроме этого дендритные клетки очень подвижны, быстро перемещаются из мест, где вошли в контакт с антигеном, в лимфатические узлы , в которых смогут взаимодействовать с Т-клетками. Более того, захват и процессинг дендритными клетками антигенов, в частности микробных возбудителей, индуцируют костимуляторные сигналы, которые необходимы для активации наивных Т-клеток. Далее эти свойства описаны более детально.

Рис. 10.1. Созревание дендритной клетки после взаимодействия с бактерией в ткани

На рис. 10.1 показано, что взаимодействие антигена с дендритной клеткой в ткани определяет ее созревание, приводящее в конечном счете к тому, что несущая антиген клетка выходит из ткани в лимфатический узел, дренирующий этот участок. Антиген, показанный на рисунке, - грамотрицательная бактерия, захватывается незрелой дендритной клеткой в ткани. Бактерия взаимодействует с Toll-подобным рецептором (TLR) , который экспрессирует дендритная клетка.

Семейство TLR является паттернраспознающими молекулами, экспрессирующимися на клетках врожденной иммунной системы. Они взаимодействуют с инфекционным микроорганизмом или его компонентами: отдельными бактериальными продуктами, такими как ДНК, липопротеин и липополисахарид. Некоторые TLR взаимодействуют с различными бактериальными компонентами, тогда как другие, как предполагается, - с вирусными продуктами. Клеточная стенка грамотрицательной бактерии содержит липополисахарид и взаимодействует с TLR-4, экспрессирующимся на дендритной клетке. Это взаимодействие, связанное с захватом бактерии в клетку, активирует феномен.

Белковые компоненты бактерии процессируются до пептидов в вакуолях с кислым содержимым по пути МНС II класса. На клеточной поверхности появляется большое количество костимулирующих молекул семейства В7 (CD80/CD86), концентрация молекул МНС II класса также возрастает. Дендритная клетка тоже синтезирует высокие концентрации хемокинов и провоспалительных цитокинов, которые являются растворимыми факторами, увеличивающими или вызывающими воспалительный ответ в тканях. К этим цитокинам относят фактор некроза опухоли (TNF) а и IL-12.

Таким образом, дендритная клетка, содержащая поцессированные пептиды, покидает ткань, в которой встретилась с антигеном, и мигрирует по лимфатическим сосудам в лимфатический узел, дренирующий эту ткань. (Миграция из ткани ассоциирована с повышением экспрессии дендритными клетками хемокинового рецептора CCR7.) В Т-клеточной области лимфатического узла уже зрелая дендритная клетка, экспрессирующая высокие уровни МНС II класса и костимулирующих молекул, презентирует пептиды наивной CD4+-T-клеткe, экспрессирующей Т-клеточный рецептор, специфичный для особой комбинации МНС и пептида.

Заметим, что при отсутствии сигнала, индуцированного антигеном, незрелые дендритные клетки экспрессируют низкие концентрации костимулирующих молекул. Таким образом, антигены, не индуцирующие высокие уровни костимулирующих функций, не активируют наивные Т-клетки. Вот почему встреча дендритной клетки с собственными молекулами в нормальной ткани не приводит к активации этой клетки или Т-клеток - поскольку не индуцируется костимулирующая функция

Сходным образом для Т-клеточного и антительного ответов на многие «безвредные» антигены (например, белок куриного яйца, введенный мыши) необходимо присутствие адъюванта - такого как полный адъювант Фрейнда - который включает бактерии или бактериальные компоненты. Бактериальные компоненты адъюванта используются для активации АПК, в особенности для экспрессии костимулирующих молекул. В отсутствие этого добавочного сигнала даже чужеродный антиген может вызвать низкий ответ или вообще его не вызвать.

Миграция АПК, несущих антиген в дренирующий узел, сочетается со способностью наивных Т-клеток рециркулировать по лимфатическим сосудам в лимфатические узлы. Это увеличивает вероятность того, что единичный Т-лимфоцит, экспрессирующий подходящий TCR (по приблизительной оценке это примерно один из общей популяции, составляющей 105-106 клеток), взаимодействует с АПК, несущей антиген. В самом деле, исследования свидетельствуют, что это взаимодействие происходит в организме в течение нескольких часов после введения антигена.

Взаимодействие несущих антиген АПК и Т-клеток - особенно активированных и Т-клеток памяти - может происходить в любой ткани, зараженной или поврежденной антигеном. Каскад событий, развивающихся после того, как АПК в соединении с пептидом взаимодействует с СD4+-Т-клеткой, описывается далее.

Парные взаимодействия на поверхности АПК и CD4+-T-клетки

Пептид/МНС и TCR

Взаимодействие комплекса пептид-молекула МНС II класса, экспрессированного на АПК, и вариабельных областей Vα + Vβ TCR на Т-клетке называют первым сигналом Т-клеточной активации. Это взаимодействие необходимо, но в основном недостаточно для Т-клеточной активации, особенно для активации наивных СD4+-Т-клеток, вследствие низкой склонности к взаимодействию между TCR и комплексом пептид-МНС.

Главный комплекс гистосовместимости II класса и CD4

Взаимодействие неполиморфного участка молекулы МНС II класса (т.е. вне связывающей пептид полости) с дополнительным рецептором CD4 значительно повышает способность Т-клетки отвечать на антиген. Показано, что взаимодействие CD4-МНС II класса делает клетку в 100 раз более чувствительной к антигену, чем при его отсутствии. Рецептор CD4 играет важную роль в трансдукции Т-клеточного сигнала.


Рис. 10.2. Ключевые взаимодействия клеточных поверхностей, ведущие к активации Т-клеток и секреции цитокинов. Штриховкой указана экспрессия, повышающаяся при активации

Предполагается, что после того как комплекс пептид-МНС свяжется с TCR, CD4 приближается к TCR, и цитоплазматический хвост CD4, связанный с ферментом, участвует в Т-клеточной активации; «группирование» CD4 с TCR добавляет этот фермент в комплекс, формирующийся для передачи сигнала.

Костимулирующие пары: В7 с CD28 или CD152, CD40 с CD154

Костимулятор, или второй сигнал, усиливает и поддерживает сигналы, образовавшиеся при взаимодействии МНС - пептид - TCR. Костимуляторы необходимы для активации наивных (непримированных) Т-клеток, но менее важны для активации ранее примированных Т-клеток.

Наиболее изучены костимуляторные взаимодействия между семейством молекул, названным В7, которые экспрессируются на профессиональных АПК (таких как дендритные клетки, макрофаги и активированные В-лимфоциты), и CD28, конститутивно экспрессируемыми на Т-клетках. Больше всего известно о молекулах CD80 и CD86 семейства В7 (В7.1 и В7.2 соответственно); обе связываются с CD28. В настоящее время не ясно, обладают ли CD80 и CD86 разными функциями. Они также взаимодействуют с другой молекулой на Т-клеточной поверхности - CD152 (называемой CTLA-4), которая индуцируется при Т-клеточной активации. Молекула CD152 относится к тому же семейству молекул, что и CD28, но играет в активации Т-клеток другую роль. Костимуляторные функции других молекул семейств В7 и CD28 в настоящее время уточняются.

Взаимодействие комплекса пептид-МНС с TCR также усиливает экспрессию CD154 (лиганд CD40-CD40L) на Т-клетке. Молекула CD154 взаимодействует с CD40, постоянно экспрессируемой АПК, такими как дендритные клетки и макрофаги, а также В-клетками. Взаимодействие CD40-CD154 вызывает повышение экспрессии В7 на поверхности АПК и таким образом усиливает взаимодействие В7-CD28 между АПК и Т-клеткой. Взаимодействие CD154 на активированной Т-клетке с CD40, экспрессируемой на В-клетке, играет ключевую роль во взаимодействии Т- и В-клеток.

Молекулы адгезии: CD54 с CD11a/CD18, CD58 с CD2

Две пары адгезивных взаимодействий усиливают и стабилизируют взаимодействие АПК и Т-клетки на несколько часов, которые клеткам необходимо провести в контакте для активации Т-лимфоцита. Первое взаимодействие осуществляется между CD54 (молекула межклеточной адгезии 1; intercellular adhesion molecule 1 - ICAM-1), экспрессируемой на АПК, и интегрином CD11a/CD18 (антиген, связанный с функционированием лейкоцитов 1; leukocyte function-associated antigen 1 - LFA-1), экспрессируемым на Т-клетке.

Второе взаимодействие осуществляется между CD58 (LFA-3), экспрессируемыми на АПК, и CD2, экспрессируемыми на Т-клетке. Кроме того, предполагается, что эти адгезивные взаимодействия замедляют отделение АПК от Т-клеток при первом взаимодействии; это обеспечивает необходимое время для сканирования TCR поверхности АПК в поисках подходящего комплекса МНС II класса - пептид.

Иммунологический синапс

По нынешним представлениям при взаимодействии АПК и пептида с СD4+-Т-клеткой формируется область межклеточного контакта, называемая иммунологическим синапсом. Кроме комплекса МНС-пептид и TCR, синапс формируют пары адгезионных молекул, описанные ранее, и молекулы В7-CD28 на поверхности Т-клетки и АПК. (Входит ли взаимодействие CD40 - CD154 в синапс, еще не решено.) Кроме того, со стороны Т-клетки синапс формируют сигнальные молекулы, рекрутируемые изнутри Т-клетки, и белки цитоскелета. Похоже, что синапс необходим для поддержания обмена сигналами между клетками, который продолжается, пока АПК и T-клетка не разойдутся после контакта длительностью около 8 ч.

Синапс динамично формируется и развивается; его состав и структура меняются с течением времени после первого контакта. Например, парные молекулы адгезии CD54 (ICAM-1) и CD11а/ CD18 (LFA-1) находятся в различных зонах синапса и появляются в разное время от момента первого контакта между клетками. Кроме того, другие молекулы включаются или исключаются из синапса спустя разное время от момента первого контакта.

Данные нескольких экспериментов свидетельствуют, что после активации Т-клетки реорганизуют свою структуру, как внутренний цитоскелет, так и клеточную мембрану. В мембране Т-клеток структура липидов негомогенна; они формируют так называемые микродомены, или липидные «плоты», обогащенные холестерином и гликосфинголипидами. При активации Т-клеток эти липидные «плоты», которые до этого были распределены по мембране, подтягиваются к синапсу и приносят с собой компоненты межклеточных сигналов. Это перемещение также выталкивает из зоны контакта молекулы, не вовлеченные во взаимодействие АПК с Т-клеткой.

Межклеточные события при активации СD4+-Т-клетки

Множество недавних исследований было посвящено идентификации последовательности активационных событий внутри СD4+-Т-клетки после первоначального контакта с АПК, экспрессирующей пептид, связанный с молекулой МНС II класса. Тем не менее все стадии этого сложного и взаимосвязанного процесса полностью не понятны, хотя определенно известно, что активационный каскад распространяется в определенном порядке от поверхности клетки через цитоплазму в ядро. Также известно, что некоторые события происходят за секунды, другие - через минуты, а некоторые - спустя часы после начала взаимодействия. Основные события при активации Т-клеток описаны на рис. 10.3.

Стартовый сигнал

Связывание комплекса МНС-пептид с внеклеточными вариабельными областями (Vα+Vβ) TCR приводит к передаче сигнала через плотно связанные молекулы CD3 и ξ внутрь Т-клетки. Природа передачи через мембрану в настоящее время еще не известна: возможно, она связана с агрегацией нескольких молекул TCR в мембране клетки (подобно первым шагам активации через В-клеточный рецептор, как будет описано далее) или с конформационными изменениями трансмембранной области цепей TCR.


Рис. 10.3. Внутриклеточные события при активации Т-лимфоцита. Для простоты показаны только по одной цепи CD3, ξ и один фосфорилированный ITAM. Оранжевые полукруги обозначают фосфатные группы, добавленные к активированной молекуле

Фосфорилирование киназ, сборка и активация сигнального комплекса на клеточной мембране

После связывания лиганда с TCR одним из первых событий, определяемых в Т-клетке через несколько секунд, является активация тирозиновых киназ - ферментов, которые активируют белки путем присоединения фосфатных групп к остаткам тирозина. Тирозинкиназы связаны с цитоплазматическими участками комплекса TCR и молекул CD4. (Предполагают, что мембранный белок CD45 - тирозиновая фосфатаза, активирует эти киназы, удаляя ингибирующие фосфатные группы). Тирозинкиназа, связанная с CD3 и называется Fyn, а тирозинкиназа, связанная с CD4, - Lck. Обе принадлежат к семейству тирозиновых киназ, известных Src (произносится как «сарк»).

Когда Fyn и Lck активированы, они группируются с областями CD3 и ξ-цепями, которые содержат описанные ранее иммунорецепторные тирозинсодержащие активационные мотивы (последовательности) (ITAM), и активируют их. Эта группировка (кластер) также подтягивает CD4, находящийся в тесной ассоциации с комплексом TCR, как описано ранее. Фосфорилированные последовательности ITAM в CD3 и ξ служат местом прикрепления еще одной тирозиновой киназы ZAP-70 (она принадлежит ко второму семейству тирозиновых киназ - Syk). Эту стадию считают ключевой для активации Т-клеток, поскольку у некоторых пациентов, у которых нет ZAP-70, Т-клетки не отвечают на антиген. Так как CD3 и ξ содержат множество ITAM-последовательностей, к этому комплексу сигнальных белков присоединяется более одной молекулы ZAP-70.

Тирозинкиназа, связанная с CD4, активирует ZAP-70, когда она уже присоединена к мультимолекулярному комплексу сигнальных белков. Активированная ZAP-70 фосфорилирует множество белков внутри клетки. Среди наиболее значимых субстратов активации ZAP-70 можно назвать адаптерные молекулы. Эти белки не обладают ферментативной активностью, но содержат множество участков для связывания с другими белками. Два типа этих важных адаптерных молекул, фосфорилированных после Т-клеточной активации, - LAT и SLP-76 - показаны на рис. 10.3.

Фосфорилированные адаптеры привлекаются к клеточной мембране, увеличивая тем самым комплекс молекул для транедукции сигнала, формирующийся в иммунологическом синапсе. Таким образом, на цитоплазматической стороне Т-клеточной мембраны собирается и активируется мультимолекулярный белковый комплекс, состоящий из молекул, последовательно передающих сигнал.

Активация внутриклеточных сигнальных механизмов

Активированные адаптерные молекулы, привлеченные в иммунологический синапс, связывают ферменты и другие адаптеры, активирующие некоторые важные внутриклеточные сигнальные пути. Адаптерные молекулы связывают фосфолипазу С-γ (PLC-γ), которая после фосфорилирования ZAP-70 катализирует разрушение мембранного фосфолипида фосфотидилинозитола дифос-фата (Р1Р2).

Он разделяется на два компонента: диацилглицерол (ДАГ), который активирует ассоциированный с мембраной фермент протеин-киназу С (РКС), активирующую киназный каскад, который приводит в конечном счете к активации в цитоплазме фактора транскрипции NF-kB, и инозитолтрифосфат (IР3), увеличивающий внутриклеточную концентрацию свободного кальция, который в свою очередь активирует цитоплазматическую молекулу кальциневрина, приводя к активации фактора транскрипции NF-AT. Этот механизм является клинически значимым, поскольку иммуносупрессант циклоспорин А, используемый для предотвращения отторжения трансплантата между генетически различающимися организмами, связывается с кальциневрином и посредством этого ингибирует следующие этапы Т-клеточной активации.

Также активированные адаптерные молекулы связываются и активируют связывающие нуклеотид гуанозин белки, называемые Ras и Rac, которые в свою очередь активируют цитоплазматический каскад митогенактивируемых протеинкиназ (mitogen-activated proteinkinases - MAP), ведущий к активации фактора транскрипции АР-1.

Секреция цитокинов и пролиферация

Как показано на рис. 10.3, NF-кВ, NF-AT, АР-1 и другие активированные факторы транскрипции поступают в ядро Т-клетки и избирательно связываются с регуляторными последовательностями различных генов. В результате гены, кодирующие цитокин IL-2 и одну цепь рецептора IL-2 (IL2Ra; CD25), транскрибируются и транслируются (рис. 10.4). IL-2Ra соединяется с другими цепями рецептора, формируя высокоаффинный рецептор для IL-2 на активированной Т-клетке. В течение 24 ч клетка увеличивается в размере (становится Т-клеточным бластом) и начинает секретировать белок IL-2.


Рис. 10.4. Секреция IL-2 и его взаимодействие с высокоаффинным IL-2-рецептором, приводящее к расширению СD4+-Т-клеточного клона

Интерлейкин-2 является фактором роста Т-клеток и связывается со своим высокоаффинным рецептором на этой же самой или другой Т-клетке. Спустя примерно 48 ч синтезируется ДНК, и приблизительно еще через 24 ч активированные CD4+-T-клетки начинают пролиферировать, что ведет к увеличению их количества в этом конкретном клоне Т-клеток. Некоторые из этих активированных клеток развиваются в СD4+-клетки памяти.

Роли B7-CD28 и B7-CD152 в активации Т-клеток

Ранее подчеркивалось значение взаимодействия членов семейства В7 с CD28 для усиления и поддержки сигнала от комплекса пептид-МНС и TCR на наивной СD4+-Т-клетке. Как уже было отмечено, считается, что при отсутствии костимуляторного сигнала В7 - CD28 наивная CD4+-Т-клетка не производит IL-2 и может оставаться инактивированной (анергичной).

Как взаимодействие В7-CD28 приводит к «полной» активации Т-клеток, пока не до конца понятно, но предполагают, что при этом задействуются несколько различных механизмов. Одним из важных путей является увеличение длительности жизни некоторых иРНК, в частности иРНК IL-2, в результате активации Т-клетки через CD28. Это приводит к увеличению синтеза белка IL-2 в Т-клетках, активированных как первым, так и вторым сигналом, по сравнению с клетками, активированными только через TCR. Результаты исследований также свидетельствуют, что сигнал от CD28 увеличивает жизнеспособность Т-клеток путем индукции экспрессии белка Вс1-х, который угнетает апоптоз.

Недавно полученные данные также указывают, что взаимодействие В7-CD28 мобилизует липидные плоты внутри Т-клетки; таким способом CD28 привлекает молекулы, такие как тирозиновые киназы, которые участвуют в активации Т-клеток, находясь внутри них, в месте, где TCR контактирует с АПК. Также было показано, что взаимодействие В7-CD28 активирует киназу, называемую фосфатидилинозитол-3-киназа; активация последующих этапов этого киназного пути, вероятно, усиливает внутриклеточную передачу сигнала, проводимого через TCR.

Ранее было указано на возможность контакта лигандов на поверхности АПК из группы В7 (CD80 и CD86) с поверхностной молекулой Т-клетки, родственной CD28, CD152 (называемой CTLA-4). В отличие от CD28, которая экспрессируется на покоящихся Т-клетках, экспрессия CD152 индуцируется вследствие активации Т-клетки.

Взаимодействие В7 с CD152 передает негативный сигнал в активированную Т-клетку. Он выключает продукцию IL-2 и, таким образом, пролиферацию Т-клеток, ограничивая длительность иммунного ответа. Механизм негативного эффекта, связанного с В7-CD152, полностью не ясен; как и при взаимодействии В7-CD28. вероятно, вовлечены множество биохимических механизмов. Последние данные позволяют предположить, что CD152 действует в иммунологическом синапсе путем замещения ключевых компонентов сигнального комплекса и/или ограничения их функций.

Миграция из лимфатического узла

Спустя несколько дней после первых активационных этапов, активированные Т-клетки и клетки памяти покидают лимфатический узел и направляются в различные участки организма, в частности в те, которые подвергались воздействию или были инфицированы патогенными микроорганизмами. Миграция из лимфатического узла связана со сменой экспрессии поверхностных клеточных молекул. В основном на активированных Т-клетках снижается экспрессия CD64L (L-селектина или MEL-14), рецептора хоминга наивных Т-клеток, который позволяет клеткам войти в лимфатический узел.

Активированные Т-клетки увеличивают экспрессию других молекул клеточной поверхности, таких как интегрин CD49dCD29 (VLA-4) и CD44. Лиганды к этим молекулам экспрессируются за пределами лимфатического узла в таких тканях, как кожа, или в очагах воспаления . Результаты недавно проведенных исследований также указывают, что активированные Т-клетки отличаются от наивных по экспрессии хемокиновых рецепторов. Таким образом, вследствие этой смены экспрессии молекул хоминга и хемокиновых рецепторов активированные Т-клетки и клетки памяти выходят из лимфатического узла и направляются в ткани.

Р.Койко, Д.Саншайн, Э.Бенджамини

иммуноглобулинов (в начале иммунного ответа B-клетки синтезируют IgM , позже переключаются на продукцию IgG , IgE , IgA).

Энциклопедичный YouTube

    1 / 5

    ✪ B-лимфоциты и T-лимфоциты популяций CD4+ и CD8+

    ✪ Цитотоксические T-лимфоциты

    ✪ T-лимфоциты

    ✪ Лимфоциты

    ✪ B-лимфоциты (B-клетки)

    Субтитры

    Я уже рассказал об основных клетках специфической иммунной системы, а сейчас мы еще раз обобщим изученное. Давайте начнем с B-лимфоцита, которого я всегда рисую синими цветом.. Вот он перед вами. У B-лимфоцитов на поверхности присутствуют мембранные иммуноглобулины, причем у каждого такого лимфоцита свой вариант вариабельного домена. Повторю: у B-лимфоцитов на поверхности есть мембранные иммуноглобулины, и у каждого такого лимфоцита свой вариант вариабельного домена. Вариабельные домены нарисую розовым. У другого B-лимфоцита будут другие вариабельные домены. Поэтому они могут реагировать на самые разные антигены, проникшие в организм. При этом B-лимфоциты активируются. Что для этого нужно и что при этом происходит? Давайте поговорим о том, что происходит при активировании В-лимфоцитов. Что нужно для запуска активации? Для этого нужно, чтобы патоген связался с мембранным иммуноглобулином. Запишем, что патоген связывается. Патоген связывается с мембранным иммуноглобулином. Но этого мало. Обычно B-лимфоциту нужна стимуляция T-лимфоцитом. Так и пишем: стимуляция Т- лимфоцитом. В какой ситуации необходима такая стимуляция? B-лимфоцит является антигенпрезентирующей клеткой. Он поглощает антиген, расщепляет его и демонстрирует вместе с ГКГ класса 2. Его мы тоже сейчас нарисуем. Это ГКГ класса 2. С ним связываются фрагменты антигена. С этим комплексом связывается активированный T-хелпер, у которого есть рецептор с вариабельным доменом, специфичным для этого конкретного антигена. Да, кривоватый получился рецептор, но суть ясна, по крайней мере, я буду на это надеяться. После активации следует дифференцировка: клетка делится, и ее потомки могут стать эффекторными клетками. Это справедливо и для T-, и для B-лимфоцитов. После активации лимфоцит производит эффекторные клетки и клетки памяти. Клетки памяти сохраняются надолго, и их в результате деления получается много. При повторном проникновении того же патогена он с большой вероятностью наткнется на клетку памяти, запустив быстрый иммунный ответ. Эффекторные B-лимфоциты – это фабрики по производству иммуноглобулинов. Итак, эффекторные B-лимфоциты – производят иммуноглобулин. Логика такая: раз антитело подходит к антигену, попавшему в организм, нужно синтезировать побольше. Все производственные мощности клетки принимаются синтезировать антитела. Расскажу вам один факт, который мне подсказала жена. Подслушав то, как я записывал прошлое видео. Она специалист в гематологии и разбирается в иммунологии, так что я ей в этом доверяю: она в этом деле эксперт. В прошлом ролике я опрометчиво заявил, что антитела вырабатывают активированные эффекторные B-лимфоциты. Так оно и есть на самом деле – антитела вырабатываются исключительно B-лимфоцитами. Однако, для секретирующих антитела клеток есть свое название. Эти эффекторные B-лимфоциты обычно называют плазматическими клетками. Запишу термин. В ходе дифференцировки меняется название. Так называют B-лимфоцит, который начал выделять антитела. После этого его называют исключительно плазматической клеткой. Так что на вопрос о том, какие клетки производят антитела, не отвечайте, что это B-лимфоциты. Правильным будет ответ: плазматические клетки. Это общепринятый термин, используемый в иммунологии, а также ревматологии. Простите, я сказал, что моя жена – гематолог? Нет, она ревматолог. Иногда я в этом путаюсь. Так вот, суть B-лимфоцито в производстве антител, которые свяжутся с антигенами вирусов или бактерий и сделают их заметными для макрофагов и прочих фагоцитов. Но вот и все о них, теперь переходим к T-лимфоцитам. Я расскажу о них то, чего не было в прошлых роликах. Так вот, существует две разновидности T-лимфоцитов. Вы уже знаете о хелперах и цитотоксических T-лимфоцитах, но есть и другая классификация лимфоцитов, и я расскажу вам о ней. Итак, две разновидности. У обеих – T-клеточный рецептор. Нарисую его вот таким образом. T-клеточный рецептор. Кроме того, на их мембранах есть ряд других белков. У некоторых T-лимфоцитов есть мембранный белок, называемый CD4. CD4. У других T-лимфоцитов есть другой белок – это CD8. Его тоже подпишем. CD8. Лимфоцит справа называется CD8-положительным T-лимфоцитом. У него на мембране есть CD8. А вот CD4-положительный T-лимфоцит. Вот две разновидности. Их разделяют по этим белкам. Белок CD4 – это рецептор, который имеет сродство с белками ГКГ класса 2. Большинство CD4-положительных клеток – это T-хелперы. В большинстве случаев, если в разговоре упоминают CD4-положительные клетки, то по привычке имеют в виду именно хелперные T-лимфоциты. Обычно говорят о них. Пожалуй, я подпишу его - T-хелпер. Рецептор CD8 имеет сродство с ГКГ класса 1. Укажем это на рисунке. У раковых клеток ГКГ класса 1 на мембране связан с антигенами рака. Поэтому CD8 характерен для цитотоксических лимфоцитов. CD8 характерен для цитотоксических лимфоцитов. Обычно до того как клетка активирована, ее называют CD4- или CD8-положительной, а о функции лимфоцита говорят уже после активации. Уже после. Это особенности терминологии. Надеюсь, суть вы улавили. Теперь вспомним, чем занимается этот лимфоцит. Он связывается с белками ГКГ, которые находятся на мембране вместе с антигенами. Вот ГКГ класса 1. Как я уже говорил в прошлом ролике, он есть у каждой клетки с ядром. Допустим, в клетке произошло что-то плохое. Что-то нехорошее, может быть, это вирус. Может быть, рак. Пораженная клетка должна умереть, иначе она будет копировать вирус или размножаться, если это опухоль. Так вот, CD8-положительные T-лимфоциты убивают клетки, пораженные вирусом или онкологией. Они убивают пораженные клетки, которые в противном случае могли угрожать всему организму, в целом. T-хелперы – совсем другое дело. Давайте возьмем дендритную клетку – антигенпрезентирующую клетку. У нее есть ГКГ класса 2, с которым соединяются фрагменты переваренного антигена. Он активирует хелперные T-лимфоциты, которые делятся и дифференцируются в эффекторные клетки, а так же клетки памяти. У эффекторного T-лимфоцита есть несколько функций. Хелперный T-лимфоцит активирует B-лимфоциты и выделяет цитокины. Выделяет цитокины. Активированный лимфоцит выделяет множество веществ, которые служат сигналом другим клеткам, например другим лимфоцитам, поднимая при этом тревогу. Часть этих цитокинов помогает цитотоксическим лимфоцитам в их активации. Цитокины поднимают тревогу, и CD8-положительные, то есть цитотоксические T-лимфоциты, эффекторные лимфоциты, принимаются убивать клетки. Что касается клеток памяти, то это копии оригинальных лимфоцитов, которые надолго сохраняются в этом месте на случай повторения угрозы, чтобы обеспечить более быстрый ответ. Надеюсь, что не сильно вас запутал новыми терминами, но это было необходимо. И теперь вы знаете, что антитела синтезируют не B-лимфоциты, не их, а клетки, у которых есть собственное название. Это плазматические клетки или плазмоциты.

Типы Т-лимфоцитов

Т-лимфоциты, обеспечивающие центральную регуляцию иммунного ответа.

Дифференциация в тимусе

Все Т-клетки берут своё начало от гемопоэтических стволовых клеток красного костного мозга , которые мигрируют в тимус и дифференциируются в незрелые тимоциты . Тимус создаёт микросреду, необходимую для развития полностью функционального репертуара Т-клеток, который является ГКГ-ограниченным и толерантным к самому себе.

Дифференциация тимоцитов разделяется на разные стадии в зависимости от экспрессии различных поверхностных маркеров (антигенов). На самой ранней стадии, тимоциты не экспрессируют корецепторы CD4 и CD8, и поэтому классифицируются как двойные негативные (англ. Double Negative (DN) ) (CD4-CD8-). На следующей стадии тимоциты экспрессируют оба корецептора и называются двойными позитивными (англ. Double Positive (DP) ) (СD4+CD8+). Наконец на финальной стадии происходит селекция клеток, которые экспрессируют только один из корецепторов (англ. Single Positive (SP) ): или (CD4+), или (CD8+).

Раннюю стадию можно разделить на несколько подстадий. Так, на подстадии DN1 (англ. Double Negative 1 ), тимоциты имеют следующую комбинацию маркеров: CD44 +CD25 -CD117 +. Клетки с данной комбинацией маркеров ещё называют ранними лимфоидными предшественниками (англ. Early Lymphoid Progenitors (ELP) ). Прогрессируя в своей дифференциации, ELP активно делятся и окончательно теряют способность трансформироваться в другие типы клеток (например В-лимфоциты или миелоидные клетки). Переходя на подстадию DN2 (англ. Double Negative 2 ), тимоциты экспрессируют CD44 +CD25 +CD117 + и становятся ранними Т-клеточными предшественниками (англ. Early T-cell Progenitors (ETP) ). В течение DN3 подстадии (англ. Double Negative 3 ), ETP клетки имеют комбинацию CD44 -CD25 + и вступают в процесс β-селекции.

β-селекция

Гены Т-клеточного рецептора состоят из повторяющихся сегментов, принадлежащих к трём классам: V (англ. variable ), D (англ. diversity ) и J (англ. joining ). В процессе соматической рекомбинации генные сегменты, по одному из каждого класса, соединяются вместе (V(D)J-рекомбинация). Случайное объединение последовательностей сегментов V(D)J приводит к появлению уникальных последовательностей вариабельных доменов каждой из цепей рецептора. Случайный характер образования последовательностей вариабельных доменов позволяет генерировать Т-клетки, способные распознавать большое количество различных антигенов, и, как следствие, обеспечивать более эффективную защиту против быстро эволюционирующих патогенов. Однако этот же механизм зачастую приводит к образованию нефункциональных субъединиц Т-клеточного рецептора. Гены, кодирующие β-субъединицу рецептора, первыми подвергаются рекомбинации в DN3-клетках. Чтобы исключить возможность образования нефункционального пептида, β-субъединица образует комплекс с инвариабельной α-субъединицей пре-T-клеточного рецептора, формируя т. н. пре-T-клеточный рецептор (пре-ТКР) . Клетки, неспособные образовывать функциональный пре-ТКР, погибают в результате апоптоза . Тимоциты, успешно прошедшие β-селекцию, переходят на подстадию DN4 (CD44 -CD25 -) и подвергаются процессу позитивной селекции .

Позитивная селекция

Клетки, экспрессирующие на своей поверхности пре-ТКР все ещё не являются иммунокомпетентными, так как не способны связываться с молекулами главного комплекса гистосовместимости. Для узнавания молекул ГКГ T-клеточным рецептором необходимо наличие корецепторов CD4 и CD8 на поверхности тимоцитов. Образование комплекса между пре-ТКР и корецептором CD3 приводит к ингибированию перестроек генов β-субъединицы и в то же время вызывает активацию экспрессии генов CD4 и CD8. Таким образом тимоциты становятся двойными позитивными (DP) (CD4+CD8+). DP-тимоциты активно мигрируют в корковое вещество тимуса, где происходит их взаимодействие с клетками кортикального эпителия , экспрессирующими белки обоих классов ГКГ (MHC-I и MHC-II). Клетки, неспособные взаимодействовать с белками ГКГ кортикального эпителия, подвергаются апоптозу , в то время как клетки, успешно осуществившие такое взаимодействие, начинают активно делиться.

Негативная селекция

Тимоциты, прошедшие позитивную селекцию, начинают мигрировать к кортико-медуллярной границе тимуса. Попадая в медуллу, тимоциты взаимодействуют с собственными антигенами организма, презентированными в комплексе с белками ГКГ на медуллярных тимических эпителиальных клетках (мТЭК). Тимоциты, активно взаимодействующие с собственными антигенами, подвергаются апоптозу . Негативная селекция предотвращает появление самоактивирующихся Т-клеток, способных вызывать аутоиммунные заболевания клон . Некоторые из клеток этого клона превращаются в эффекторные Т-клетки , которые выполняют функции, специфичные для данного типа лимфоцита (например, выделяют цитокины в случае Т-хелперов или же лизируют поражённые клетки в случае Т-киллеров). Другая часть активированных клеток трансформируется в Т-клетки памяти . Клетки памяти сохраняются в неактивной форме после первичного контакта с антигеном до тех пор, пока не наступает повторное взаимодействие с тем же антигеном. Таким образом, Т-клетки памяти хранят информацию о ранее действовавших антигенах и обеспечивают вторичный иммунный ответ, осуществляющийся в более короткие сроки, чем первичный.

Взаимодействие Т-клеточного рецептора и корецепторов (СD4, CD8) с главным комплексом гистосовместимости важно для успешной активации наивных Т-клеток, однако его самого по себе недостаточно для дифференциации в эффекторные клетки. Для последующей пролиферации активированных клеток необходимо взаимодействие т. н. костимулирующих молекул. Для Т-хелперов такими молекулами являются рецептор CD28 на поверхности Т-клетки и иммуноглобулин B7 на поверхности антигенпрезентирующей клетки.