Строение молекулы этилена. Методы получения этилена

Как вы уже знаете, при дегидрировании этана образуется этилен - родоначальник гомологического ряда алкенов.

Потеря двух атомов водорода приводит к образованию между атомами углерода не одинарной, а двойной связи:

Так как валентности атомов углерода в этилене и его гомологах не до предела насыщены атомами водорода, то такие соединения называют непредельными.

Если сравнить общие формулы алканов и алкенов, нетрудно заметить, что их состав отличается на два атома водорода:

Принадлежность углеводорода к классу алкенов отражают родовым суффиксом -ей в его названии. Этилен - родоначальник гомологического ряда алкенов (табл. 3).

Таблица 3 Гомологический ряд этилена

Строение молекулы этилена представлено на рисунке 14. Нетрудно заметить, что молекула этилена имеет плоскостное строение. Аналогично и у всех алкенов по месту расположения двойной связи фрагмент молекулы будет иметь плоскостное строение.

Рис. 14.
Модели молекулы этилена:
1 - масштабная; 2 - шаростержневая

Начиная с третьего члена гомологического ряда алкенов, содержащего в молекуле четыре атома углерода, появляется изомерия углеродного скелета и изомерия положения кратной связи:

Для алкенов характерна межклассовая изомерия с углеводородами другого класса, имеющего такую же общую формулу C n H 2n , - циклоалканами. Особенностью химического строения циклоалканов является наличие замкнутой цепочки атомов углерода - цикла, например:

Особенности построения названий алкенов состоят в том, что главная цепь атомов углерода должна обязательно включать двойную С=С-связь, и ее нумерацию проводят с того конца главной цепи, к которому эта связь ближе. В названии углеводорода, оканчивающегося на -ен, цифрой указывают номер того атома углерода, от которого начинается двойная углерод-углеродная связь. Остальные правила формирования названий алкенов остаются такими же, как и для алканов. Например:

В промышленности этилен получают крекингом (расщеплением) продуктов переработки нефти, например керосина.

В лабораторных условиях этилен получают дегидратацией этилового спирта:

Этилен - это бесцветный газ без запаха, почти нерастворим в воде. Он обладает способностью ускорять созревание плодов и овощей, что используют в овощехранилищах, куда закладывают недозрелую плодоовощную продукцию.

Рассмотрим химические свойства алкенов на примере этилена.

Наличие в молекулах алкенов двойной С=С-связи обусловливает их химические свойства.

Для алкенов, как для непредельных углеводородов, характерны реакции присоединениях 1) водорода (гидрирование), 2) воды (гидратация), 3) галогенов (гало-генирование) и др. При этом одна из двух связей между атомами углерода разрывается, и оба атома присоединяют атомы или группу атомов реагента. В результате алкен превращается в алкан или его производное:

Последняя реакция применяется для обнаружения соединений с кратной (двойной или тройной) углерод-углеродной связью, т. е. является качественной на кратную связь. При этом происходит обесцвечивание бромной воды (раствора брома в воде) (рис. 15). Аналогичная реакция с хлором имеет практическое значение, поскольку приводит к образованию важного продукта - 1,2-дихлорэтана, используемого в качестве растворителя и для получения пластмасс.

Рис. 15.
Обесцвечивание бромной воды этиленом (качественная реакция на кратную связь)

Для гомологов этилена, например пропилена, реакция гидратации протекает в соответствии с правилом В. В. Марковникова.

При присоединении полярных молекул, например галогеноводородов или воды, к алкену водород преимущественно присоединяется к атому углерода при двойной связи, с которым соединено большее число атомов водорода:

Аналогично гидратации протекает и реакция присоединения галогеноводородов к алкенам, например:

Сущность любой химической реакции заключается в образовании новых молекул из тех же самых атомов, из которых образованы исходные вещества. В ходе любой реакции одни связи разрываются, другие - образуются. Разрыв ковалентной связи можно рассматривать как процесс, обратный ее образованию. Следовательно, при этом возможны два направления разрыва.

Гемолитический разрыв приводит к тому, что оба атома, ранее связанные ковалентной связью, получают по одному электрону, превращаясь в частицы с неспаренным электроном - свободные радикалы.

Подобный тип разрыва химической связи и, соответственно, радикальный механизм реакции наблюдается при уже рассмотренном процессе галогенирования метана.

Гетеролитический разрыв осуществляется таким образом, что один из атомов получает оба электрона, служившие ранее общей электронной парой. Такой тип разрыва связи приводит к образованию заряженных частиц - ионов:

Подобный тип разрыва химической связи и, соответственно, ионный механизм реакции наблюдается в процессе присоединения галогеноводорода к алкенам.

Как известно, химическая связь в молекуле хлорово-дорода является полярной. В условиях реакции молекула НС1 распадается на ионы Н + и С1 - :

НСl → Н + + Сl - .

Эти ионы и присоединяются к атомам углерода за счет гетеролитического разрыва двойной связи в молекуле алкена.

Особым случаем реакций присоединения является реакция полимеризации.

Полимеризацию этилена можно отразить с помощью следующей схемы:

или с помощью следующего уравнения:

Полимеризацию проводят в присутствии инициаторов, например перекисных соединений, которые являются источниками свободных радикалов. Перекис-ными соединениями называют вещества, молекулы которых включают группу -О-О-. Простейшим перекисным соединением является пероксид водорода Н-О-О-Н.

Вещество, вступающее в реакцию полимеризации, называют мономером , продукт такой реакции - полимером , формулу в скобках в уравнении такой реакции - структурным звеном , а индекс n - степенью полимеризации , которая показывает, сколько структурных звеньев образуют молекулу полимера.

В настоящее время нашу жизнь невозможно представить без полимеров. Изделия из них все в большей степени вытесняют из нашего быта изделия, изготовленные из природных материалов, поскольку полимеры обладают самыми разнообразными свойствами, сравнительно дешевы, легко обрабатываются.

Полиэтилен представляет собой важнейшую пластмассу, которая находит широкое применение в народном хозяйстве (рис. 16).

Рис. 16.
Применение полиэтилена:
1 - медицинское оборудование; 2 - предметы домашнего обихода; 3 - пленка для парников; 4 - трубы и шланги; 5 - клейкая лента; 6 - упаковочная пленка; 7 - пакеты; 8 - детали

В лабораторных условиях с помощью реакции деполимеризации технического полиэтилена (она является обратной процессу полимеризации), например, из полиэтиленовых гранул, можно получить этилен (рис. 17):

Рис. 17.
Получение этилена деполимеризацией полиэтилена

На кратную связь, кроме реакции обесцвечивания бромной воды, существует еще одна качественная реакция - реакция обесцвечивания раствора перманганата калия КМп04 (рис. 18), уравнение которой


Рис. 18. Обесцвечивание раствора перманганата калия этиленом (качественная реакция на кратную связь)

Этилен - важнейший продукт химической промышленности, так как используется для получения других ценных веществ и материалов (рис. 19).

Рис. 19.
Применение этилена:
1 - в овощехранилищах для ускорения созревания плодов; 2-6 - производство органических соединений (полиэтилена 2, растворителей 3, уксусной кислоты 4, спиртов 5, 6)

Новые слова и понятия

  1. Алкены.
  2. Изомерия алкенов: углеродного скелета и положения кратной связи.
  3. Правила составления названий алкенов по номенклатуре ИЮПАК.
  4. Реакция дегидратации.
  5. Химические свойства этилена: взаимодействие с водородом, водой, галогенами, реакция полимеризации.
  6. Мономер, полимер, структурное звено, степень полимеризации.
  7. Качественные реакции на кратную связь.

Вопросы и задания

  1. Какие вещества называют алкенами?
  2. Дайте характеристику гомологического ряда алкенов согласно плану: а) общая формула; б) родовой суффикс; в) виды изомерии; г) номенклатура; д) характерные реакции.
  3. Как получают этилен: а) в промышленности; б) в лаборатории?
  4. По аналогии с этиленом запишите уравнения реакций получения пропена: а) промышленного (из пропана); б) лабораторного (из пропанола-1 СН 3 -СН 2 -СН 2 -ОН).
  5. Найдите химические термины-антонимы в названиях реакций, характерующих химические свойства и способы получения этилена. Дайте их определения.
  6. Какими способами можно отличить этилен от этана?
  7. Найдите массовую долю углерода в молекулах: а) пропана; б) пропилена (пропена).
  8. Найдите объем этилена (н. у.), полученного реакцией дегидратации 230 мл 95%-го этилового спирта (плотность 0,8 г/мл).
  9. Этилен горит светящим пламенем в отличие от бесцветного пламени этана. Почему? Ответ подтвердите расчетом массовой доли углерода в молекулах этих веществ. Составьте уравнение реакции горения этилена.

ГОСТ 25070-2013

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЭТИЛЕН

Технические условия

Ethylene. Specifications

МКС 71.080.10

Дата введения 2015-01-01

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ" (ФГУП "ВНИЦСМВ") и Обществом с ограниченной ответственностью "ВНИИОС-наука" (ООО "ВНИИОС-наука")

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 527 "Химия"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. N 44-2013)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Казахстан

Госстандарт Республики Казахстан

Молдова

Молдова-Стандарт

Россия

Росстандарт

Таджикистан

Таджикстандарт

Узбекистан

Узстандарт

Украина

Минэкономразвития Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 1912-ст межгосударственный стандарт ГОСТ 25070-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

5 ВЗАМЕН ГОСТ 25070-87

6 ПЕРЕИЗДАНИЕ. Март 2016 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемом информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на этилен (этен), получаемый при пиролизе углеводородного сырья и предназначенный для применения в производстве полиэтилена, поливинилхлорида, окиси этилена, этилового спирта, этилбензола, уксусного альдегида и других органических продуктов, а также для холодильных установок.

Стандарт не распространяется на этилен, предназначенный для применения в производстве полиэтилена низкого давления газофазным методом.

Формула: .

Относительная молекулярная масса (по международным атомным массам 2011 г.) - 28,05.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.018-93 Система стандартов безопасности труда. Пожаровзрывобезопасность статического электричества. Общие требования

ГОСТ 12.1.044-89 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.021-75 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 17.2.3.02-78 Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями

ГОСТ 1510-84 Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение

ГОСТ 14192-96 Маркировка грузов

ГОСТ 24975.0-89 (ИСО 7382-86, ИСО 8563-87) Этилен и пропилен. Методы отбора проб

ГОСТ 24975.1-89 (ИСО 6379-81, ИСО 6380-81, ИСО 6381-81, ИСО 8174-86) Этилен и пропилен. Хроматографические методы анализа

ГОСТ 24975.2-89 Этилен и пропилен. Методы определения серы

ГОСТ 24975.3-81 Этилен и пропилен. Методы определения кислорода

ГОСТ 24975.4-89 Этилен. Метод определения аммиака

ГОСТ 24975.5-91 Этилен и пропилен. Методы определения воды

ГОСТ 31340-2007 Предупредительная маркировка химической продукции. Общие требования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Технические требования

3.1 Этилен изготовляют в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

3.2 Характеристики

3.2.1 По физико-химическим показателям этилен должен соответствовать нормам, указанным в таблице 1.


Таблица 1

Наименование показателя

Метод анализа

1 Объемная доля этилена, %, не менее

2 Объемная доля пропилена, %, не более

3 Объемная доля метана и этана, %, не более

4 Объемная доля ацетилена, %, не более

5 Объемная доля диеновых углеводородов (пропадиена и бутадиена), %, не более

6 Объемная доля диоксида углерода, %, не более

7 Объемная доля оксида углерода, %, не более

8 Объемная доля метанола, %, не более

9 Объемная доля кислорода в продукте, поставляемом по трубопроводу, %, не более

10 Массовая концентрация серы, мг/м, не более

11 Массовая доля воды, %, не более

а) в продукте, поставляемом по трубопроводу

б) в продукте, поставляемом в цистернах и баллонах

12 Объемная доля аммиака, %, не более

Примечание - Этилен, предназначенный для холодильных установок, должен соответствовать нормам по показателям 1-4. Остальные показатели не определяют.

3.3 Маркировка

3.3.1 При маркировке должны быть соблюдены нормы законодательства, действующего в каждом из государств - участников Соглашения и устанавливающего порядок маркирования продукции информацией на государственном языке.

3.3.2 Маркировка - по ГОСТ 1510 (на условиях аналога углеводородных сжиженных топливных газов).

Допускается по согласованию с потребителем не наносить номер партии и дату изготовления при условии указания их в документе о качестве.

3.3.3 Транспортная маркировка - по ГОСТ 14192 с нанесением манипуляционного знака "Беречь от солнечных лучей", а также в соответствии с правилами перевозки опасных грузов, действующими на соответствующем виде транспорта.

3.3.4 При транспортировании железнодорожным транспортом маркировку осуществляют в соответствии с правилами . На каждое грузовое место отправитель обязан нанести транспортную маркировку, характеризующую вид и транспортную опасность груза, содержащую:

- знак опасности - N 2.1;

- наименование груза - ЭТИЛЕН;

- классификационный шифр этилена - 2111;

- номер ООН - 1962;

- классификационный код - 2F;

- номер аварийной карточки - 204;

для этилена охлажденного жидкого маркировка должна содержать:

- знак опасности - N 2.1;

- наименование груза - ЭТИЛЕН ОХЛАЖДЕННЫЙ ЖИДКИЙ;

- классификационный шифр этилена охлажденного жидкого - 2113;

- номер ООН - 1038:

- классификационный код - 3F;

- номер аварийной карточки - 204.

3.3.5 Предупредительная маркировка - в соответствии с ГОСТ 31340 .

3.4 Упаковка

3.4.1 Упаковка этилена - по ГОСТ 1510

4 Требования безопасности

4.1 По степени воздействия на организм этилен относится к малоопасным веществам (4-й класс опасности по ГОСТ 12.1.007).

4.2 Предельно допустимая концентрация (ПДК) этилена в воздухе рабочей зоны - 100 мг/м по ГОСТ 12.1.005 . Максимальная разовая ПДК по алкенам (в пересчете на углерод) - 300 мг/м, среднесменная - 100 мг/м.
________________



При превышении ПДК этилен оказывает наркотическое действие, вызывает головную боль, головокружение, ослабление дыхания, удушье, нарушение кровообращения, потерю сознания.

Сжиженный этилен при попадании на кожу вызывает ее поражение, аналогичное ожогу.

Этилен кумулятивными свойствами не обладает.

Этилен при нормальных условиях не вступает в химическое взаимодействие с водой, в воздушной среде токсичные соединения не образует.

4.3 Меры первой помощи при отравлении: свежий воздух (можно дать кислород), тепло, покой, в случае необходимости - искусственное дыхание.

Пораженные участки кожи следует смазать противоожоговой мазью и наложить стерильную повязку.

После оказания первой помощи следует обратиться к врачу.

4.4 Средства индивидуальной защиты органов дыхания при превышении ПДК: изолирующий самоспасатель, дыхательный аппарат со сжатым воздухом, кислородно-изолирующий противогаз; при работе в замкнутых пространствах - шланговый противогаз ПШ-1 или ПШ-2 или другие изолирующие средства индивидуальной защиты органов дыхания.

4.5 Этилен - бесцветный горючий газ, способный к взрывному разложению при повышенном давлении, высокой температуре или воздействии открытого огня в присутствии кислорода. Концентрационные пределы распространения пламени в воздухе, % об.:

- нижний - 2,8;

- верхний - 36,35.

Температура самовоспламенения - 427°С.

Минимальное взрывоопасное содержание кислорода при разбавлении этилено-воздушных смесей азотом - 10%, диоксидом углерода - 12,1%.

Показатели пожаровзрывоопасности определены по ГОСТ 12.1.044 .

4.6 При возникновении очага загорания в качестве средств пожаротушения применяют порошковые, хладоновые и углекислотные огнетушители, воздушно-механическую пену, водяной пар, инертные газы, аэрозольные составы.

4.7 Концентрацию этилена в воздухе рабочей зоны определяют по методикам, утвержденным в установленном порядке.

Контроль за содержанием этилена в воздухе рабочей зоны и периодичность контроля - по ГОСТ 12.1.005 , раздел 4*.
________________
* Перечень нормативных документов, действующих в Российской Федерации, представлен в приложении А.


Довзрывоопасную концентрацию в помещениях определяют с помощью автоматических сигнализаторов типов СТМ, СТХ, СГГ, ЭХТ, индикатора типа ИВП и других аналогичных приборов.

4.8 В производственных условиях должны быть предусмотрены следующие меры предосторожности: герметизация производственного оборудования, приточно-вытяжная вентиляция в соответствии с требованиями ГОСТ 12.4.021 , запрещение применения открытого огня и источников искрообразования.

Электрооборудование и освещение должны быть во взрывобезопасном исполнении, оборудование и трубопроводы - заземлены. При работе с продуктом следует соблюдать требования электростатической искробезопасности по ГОСТ 12.1.018 .

4.9 Все работы с этиленом следует проводить с соблюдением санитарных правил, правил по технике безопасности, принятых для работы со сжиженными, горючими газами, и правил устройства и безопасной эксплуатации сосудов, работающих под давлением.

5 Требования охраны окружающей среды

5.1 ПДК этилена (этена) в воде водоемов хозяйственно-питьевого и культурно-бытового назначения - 0,5 мг/л. Лимитирующий показатель вредности - органолептический (этилен изменяет запах воды), класс опасности - 3*.
________________
* Перечень нормативных документов, действующих в Российской Федерации, представлен в приложении А.

5.2 Максимальная разовая ПДК этилена (этена) в атмосферном воздухе населенных мест - 3,0 мг/м. Лимитирующий показатель вредности - рефлекторный, класс опасности - 3*.
________________
* Перечень нормативных документов, действующих в Российской Федерации, представлен в приложении А.

5.3 С целью охраны атмосферного воздуха от загрязнений выбросами вредных веществ должен быть организован контроль за соблюдением нормативов выбросов загрязняющих веществ в атмосферный воздух.

Правила установления допустимых выбросов в атмосферу и контроль за их соблюдением - по ГОСТ 17.2.3.02 .

6 Правила приемки

6.1 Этилен принимают партиями.

6.2 При транспортировании этилена по трубопроводу партией считают количество продукта, переданное за сутки и оформленное одним документом о качестве.

Порядок приемки, анализа партии, оформления и выдачи документа о качестве, а также его реквизиты устанавливают по согласованию между изготовителем и потребителем.

6.3 При транспортировании этилена в цистернах и баллонах партией считают любое количество продукта, однородного по показателям качества, одновременно отправляемое по одному адресу и сопровождаемое одним документом о качестве.

6.4 Документ о качестве должен содержать:

- наименование предприятия-изготовителя, его товарный знак и юридический адрес;

- наименование продукта;

- номер партии и количество мест в партии;

- массу нетто;

- дату изготовления продукта;

- результаты проведенных анализов;

- обозначение настоящего стандарта.

Допускается в документ о качестве вносить дополнительную информацию.

6.5 Объем выборки продукта, поставляемого в цистернах, - 20%, а от партии, состоящей из 7 цистерн и менее, - одна цистерна; в баллонах - 1%, но не менее трех упаковочных единиц (баллонов), если партия состоит менее чем из 300 баллонов.

6.6 За значение каждого показателя качества в партии продукта, поставляемого по трубопроводу, принимают среднеарифметическое значение результатов всех проведенных анализов за сутки. При использовании для анализа продукта газоанализаторов непрерывного действия за значение определяемого показателя качества в партии принимают среднесуточный результат.

За значение каждого показателя качества в партии продукта, поставляемого в цистернах и баллонах, принимают среднеарифметическое значение результатов анализов всех емкостей, входящих в выборку.

Допускается изготовителю указывать в документе о качестве результаты анализа продукта, находящегося в товарном резервуаре-хранилище, кроме результатов по показателю 11 (таблица 1).

6.7 Значения по показателям 5-8, 10, 11б и 12 таблицы 1 изготовитель определяет по требованию потребителя, а значение по показателю 9 - по требованию потребителя только в продукте, предназначенном для полимеризации. Кроме того, показатель 10 изготовитель определяет при замене сырья, а показатель 12 - при использовании в производстве аммиака.

6.8 При получении неудовлетворительных результатов анализа продукта, поставляемого в цистернах и баллонах, хотя бы по одному из показателей по нему проводят повторный анализ на удвоенной выборке (при транспортировании продукта в баллонах) или вновь отобранных пробах из цистерны или товарного резервуара той же партии.

Результаты повторного анализа распространяют на всю партию.

7 Методы анализа

7.1 Отбор проб для анализа - по ГОСТ 24975.0 .

7.2 Общие указания

7.2.1 Результаты определения округляют до того количества значащих цифр, которому соответствует норма по данному показателю.

По согласованию с потребителем допускается округлять результаты определения до количества значащих цифр, установленных требованиями договора (контракта).

7.2.2 Допускается применять другие методы анализа, обеспечивающие требуемую точность и достоверность результатов определения. Применяемые методики должны быть аттестованы в установленном порядке. При разногласиях в оценке качества продукта анализ проводят методами, указанными в настоящем стандарте.

8 Транспортирование и хранение

8.1 Газообразный этилен транспортируют по трубопроводу, сжиженный - в специальных железнодорожных и автомобильных цистернах грузоотправителя (грузополучателя), рассчитанных на давление.

Баллоны с этиленом транспортируют железнодорожным и автомобильным транспортом в крытых транспортных средствах в соответствии с правилами перевозки опасных грузов, действующими на данном виде транспорта. Жидкий этилен транспортируют в вагонах-цистернах в соответствии с правилами .

Транспортирование автомобильным транспортом производится в соответствии с требованиями Европейского соглашения о международной перевозке опасных грузов (ДОПОГ)*, приложения А и В
________________
* Перечень нормативных документов, действующих в Российской Федерации, представлен в приложении А.

8.2 Хранение этилена проводят в соответствии с требованиями ГОСТ 1510 (на условиях аналога углеводородных сжиженных топливных газов) и правил устройства и безопасной эксплуатации сосудов, работающих под давлением, действующих на территории страны - участника Соглашения.

9 Гарантии изготовителя

Изготовитель гарантирует соответствие этилена требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

Приложение А (справочное). Перечень нормативных документов, действующих в Российской Федерации

Приложение А
(справочное)

Предельно-допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны

Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда

Гигиенические нормативы с изменениями и дополнениями от 23.11.2007, 30.05.2008, 22.05.2009; в ред. протоколов от 14.05.2010, 21.10.2010

Правила перевозок жидких грузов наливом в вагонах-цистернах и вагонах бункерного типа для перевозки нефтебитума . Утв. Советом по железнодорожному транспорту государств - участников Содружества, протокол от 21-22 мая 2009 г. N 50

УДК 661.715.332:006.354

МКС 71.080.10

Ключевые слова: этилен, технические требования, применение, безопасность, упаковка, маркировка, транспортирование, хранение

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2016

Физические свойства

Этан при н. у.- бесцветныйгаз, без запаха. Молярная масса - 30,07. Температура плавления −182,81 °C, кипения -88,63 °C. . Плотность ρ газ. =0,001342 г/см³ или 1,342 кг/м³ (н. у.), ρ жидк. =0,561 г/см³ (T=-100 °C). Константа диссоциации 42 (в воде, прин. у.) [ источник? ] . Давление паров при 0 °С - 2,379 МПа .

Химические свойства

Химическая формула C 2 H 6 (рациональная CН 3 СН 3). Наиболее характерны реакции замещения водорода галогенами, проходящие по свободно радикальному механизму. Термическое дегидрирование этана при 550-650 °С приводит кэтену, при температурах свыше 800 °С - кацетилену(образуется такжебензолисажа). Прямоехлорированиепри 300-450 °С - кэтилхлориду,нитрованиевгазовойфазе даетсмесь(3:1)нитроэтанаинитрометана.

Получение

В промышленности

В промышленности получают из нефтяных и природных газов, где он составляет до 10 % по объему. В России содержание этана в нефтяных газах очень низкое. В США и Канаде (где его содержание в нефтяных и природных газах высоко) служит основным сырьем для полученияэтена.

В лабораторных условиях

Получают из иодметанапореакции Вюрца, изацетата натрияэлектролизомпореакции Кольбе, сплавлениемпропионата натрияс щелочью, изэтилбромидапореакции Гриньяра,гидрированиемэтена(над Pd) илиацетилена(в присутствииНикель Ренея).

Применение

Основное использование этана в промышленности - получение этилена.

Бута́н (C 4 H 10) - органическое соединение класса алканов . В химии название используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH 3) 3 . Название происходит от корня «бут-» (английское название масляной кислоты - butyric acid ) и суффикса «-ан» (принадлежность к алканам). В больших концентрациях ядовит, вдыхание бутана вызывает дисфункцию лёгочно-дыхательного аппарата. Содержится в природном газе , образуется при крекинге нефтепродуктов , при разделении попутного нефтяного газа , "жирного" природного газа . Как представитель углеводородных газов пожаро- и взрывоопасен, малотоксичен, имеет специфический характерный запах, обладает наркотическими свойствами. По степени воздействия на организм газ относится к веществам 4-го класса опасности (малоопасные) по ГОСТ 12.1.007-76. Вредно воздействует на нервную систему .

Изомерия

Бутан имеет два изомера :

Физические свойства

Бутан - бесцветный горючий газ, со специфическим запахом, легко сжижаемый (ниже 0 °C и нормальном давлении или при повышенном давлении и обычной температуре - легколетучая жидкость). Точка замерзания -138°С (при нормальном давлении). Растворимость в воде - 6,1 мг в 100 мл воды (для н-бутана, при 20 °C, значительно лучше растворяется в органических растворителях ). Может образовывать азеотропную смесь с водой при температуре около 100 °C и давлении 10 атм.

Нахождение и получение

Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций. В лаборатории может быть получен по реакции Вюрца .

2 C 2 H 5 Br + 2Na → CH 3 -CH 2 -CH 2 -CH 3 + 2NaBr

Сероочистка (демеркаптанизация) бутановой фракции

Прямогонную бутановую фракцию необходимо очищать от сернистых соединений, которые в основном представлены метил- и этил- меркаптанами. Метод очистки бутановой фракции от меркаптанов заключается в щелочной экстракции меркаптанов из углеводородной фракции и последующей регенерации щелочи в присутствии гомогенных или гетерогенных катализаторов кислородом воздуха с выделением дисульфидного масла.

Применение и реакции

При свободнорадикальном хлорировании образует смесь 1-хлор- и 2-хлорбутана. Их соотношение хорошо объясняется разницей в прочности С-Н связей в позиции 1 и 2 (425 and 411 кДж/моль). При полном сгорании на воздухе образует углекислый газ и воду. Бутан применяется в смеси с пропаном в зажигалках, в газовых баллонах в сжиженном состоянии, где он имеет запах, так как содержит специально добавленные одоранты . При этом используются «зимние» и «летние» смеси с различным составом. Теплота сгорания 1 кг - 45,7 МДж (12,72 кВт·ч ).

2C 4 H 10 + 13 O 2 → 8 CO 2 + 10 H 2 O

При недостатке кислорода образуется сажа или угарный газ или то и другое вместе.

2C 4 H 10 + 5 O 2 → 8 C + 10 H 2 O

2C 4 H 10 + 9 O 2 → 8 CO + 10 H 2 O

Фирмой Дюпон разработан метод получения малеинового ангидрида из н-бутана при каталитическом окислении.

2 CH 3 CH 2 CH 2 CH 3 + 7 O 2 → 2 C 2 H 2 (CO) 2 O + 8 H 2 O

н-Бутан - сырьё для получения бутена , 1,3-бутадиена , компонент бензинов с высоким октановым числом. Бутан высокой чистоты и особенно изобутан может быть использован в качестве хладагента в холодильных установках. Производительность таких систем немного ниже, чем фреоновых. Бутан безопасен для окружающей среды, в отличие от фреоновых хладагентов.

В пищевой промышленности бутан зарегистрирован в качестве пищевой добавки E943a , а изобутан - E943b , как пропеллент , например, в дезодорантах .

Этиле́н (по ИЮПАК : этен ) - органическое химическое соединение , описываемое формулой С 2 H 4 . Является простейшим алкеном (олефином ). В природе этилен практически не встречается. Это бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам . Играет чрезвычайно важную роль в промышленности, а также является фитогормоном . Этилен - самое производимое органическое соединение в мире ; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3 % в год .

Применение

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

    Винилацетат ;

    Дихлорэтан / винилхлорид (3-е место, 12 % всего объёма);

    Окись этилена (2-е место, 14-15 % всего объёма);

    Полиэтилен (1-е место, до 60 % всего объёма);

    Стирол ;

    Уксусная кислота ;

    Этилбензол ;

    Этиленгликоль ;

    Этиловый спирт .

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 80-х годов ХХ века в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений , среди прочего отвечает за опадание иголок у хвойных.

Основные химические свойства

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

    Галогенирование:

CH 2 =CH 2 + Cl 2 → CH 2 Cl-CH 2 Cl

Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.

    Гидрирование:

CH 2 =CH 2 + H - H → CH 3 - CH 3 (под действием Ni)

    Гидрогалогенирование:

CH 2 =CH 2 + HBr → CH 3 - CH 2 Br

    Гидратация:

CH 2 =CH 2 + HOH → CH 3 CH 2 OH (под действием катализатора)

Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.

    Окисление:

Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений.

Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуется этиленгликоль :

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

    Полимеризация:

nCH 2 =CH 2 → (-CH 2 -CH 2 -) n

Изопрен СН 2 =С(СН 3)-СН=СН 2 , 2-метилбутадиен-1,3 - ненасыщенный углеводород диенового ряда (C n H 2n−2 ) . В нормальных условиях бесцветная жидкость. Он является мономером для натурального каучука и структурной единицей для множества молекул других природных соединений - изопреноидов, или терпеноидов . . Растворим в спирте . Изопрен полимеризуется, давая изопреновые каучуки . Изопрен также вступает в реакцию полимеризации с соединениями винилового ряда.

Нахождение и получение

Натуральный каучук является полимером изопрена - наиболее часто цис-1,4-полиизопреном с молекулярной массой от 100,000 до 1,000,000. В качестве примесей содержит несколько процентов других материалов, таких как белки , жирные кислоты , смолы и неорганические вещества . Некоторые источники натурального каучука называются гуттаперча и состоит из транс-1,4-полиизопрена, структурный изомер , который имеет схожие, но не идентичные свойства. Изопрен производится и выделяется в атмосферу многими видами деревьев (главный из них - дуб ) Годовое производство изопрена растительностью около 600 млн т., причем половина производится тропическими широколистными деревьями, остальное производится кустарниками. После попадания в атмосферу изопрен превращается свободными радикалами (такими как гидроксил (OH) радикал) и в меньшей мере озоном в различные вещества, такие как альдегиды , гидроксипероксиды , органические нитраты и эпоксиды , которые смешиваются с водными каплями, образуя аэрозоли или дымку . Этот механизм деревья используют не только для того, чтобы избежать перегрева листьев Солнцем, но и для защиты от свободных радикалов, особенно озона . Изопрен впервые был получен термической обработкой натурального каучука. Наиболее промышленно доступен как продукт термического крекинга лигроина или масла, а также как побочный продукт при производстве этилена . Производится около 20,000 тонн в год. Около 95% производства изопрена используется для производства цис-1,4-полиизопрена - синтетического варианта природного каучука.

Бутадие́н-1,3 (дивинил) СН 2 =СН-СН=СН 2 - ненасыщенный углеводород , простейший представитель диеновых углеводородов .

Физические свойства

Бутадиен - бесцветный газ с характерным запахом, температура кипения −4,5 °C, температура плавления −108,9 °C, температура вспышки −40 °C, предельно допустимая концентрация в воздухе (ПДК) 0,1 г/м³, плотность 0,650 г/см³ при −6 °C.

Слабо растворим в воде, хорошо растворим в спирте, керосине с воздухом в количестве 1,6-10,8 %.

Химические свойства

Бутадиен склонен к полимеризации , легко окисляется воздухом с образованием перекисных соединений, ускоряющих полимеризацию.

Получение

Бутадиен получают по реакции Лебедева пропусканием этилового спирта через катализатор :

2CH 3 CH 2 OH → C 4 H 6 + 2H 2 O + H 2

Или дегидрогенизацией нормального бутилена :

CH 2 =CH-CH 2 -CH 3 → CH 2 =CH-CH=CH 2 + Н 2

Применение

Полимеризацией бутадиена получают синтетический каучук . Сополимеризацией с акрилонитрилом и стиролом получают АБС-пластик .

Бензо́л (C 6 H 6 , Ph H ) - органическое химическое соединение , бесцветная жидкость с приятным сладковатым запахом . Простейший ароматический углеводород . Бензол входит в состав бензина , широко применяется в промышленности , является исходным сырьём для производства лекарств , различных пластмасс , синтетической резины , красителей. Хотя бензол входит в состав сырой нефти , в промышленных масштабах он синтезируется из других её компонентов. Токсичен , канцерогенен .

Физические свойства

Бесцветная жидкость со своеобразным резким запахом. Температура плавления = 5,5 °C, температура кипения = 80,1 °C, плотность = 0,879 г/см³, молярная масса = 78,11 г/моль. Подобно всем углеводородам бензол горит и образует много копоти. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами , бензином и другими органическими растворителями, с водой образует азеотропную смесь с температурой кипения 69,25 °C (91% бензола). Растворимость в воде 1,79 г/л (при 25 °C).

Химические свойства

Для бензола характерны реакции замещения - бензол реагирует с алкенами , хлоралканами , галогенами , азотной и серной кислотами . Реакции разрыва бензольного кольца проходят в жёстких условиях (температура, давление).

    Взаимодействие с хлором в присутствии катализатора:

С 6 H 6 + Cl 2 -(FeCl 3)→ С 6 H 5 Cl + HCl образуется хлорбензол

Катализаторы содействуют созданию активной электрофильной частицы путём поляризации между атомами галогена.

Cl-Cl + FeCl 3 → Cl ઠ - ઠ +

С 6 H 6 + Cl ઠ - -Cl ઠ + + FeCl 3 → [С 6 H 5 Cl + FeCl 4 ] → С 6 H 5 Cl + FeCl 3 + HCl

В отсутствие катализатора при нагревании или освещении идёт радикальная реакция замещения.

С 6 H 6 + 3Cl 2 -(освещение)→ C 6 H 6 Cl 6 образуется смесь изомеров гексахлорциклогексана видео

    Взаимодействие с бромом (чистый):

    Взаимодействие с галогенопроизводными алканов (реакция Фриделя-Крафтса ):

С 6 H 6 + С 2 H 5 Cl -(AlCl 3)→ С 6 H 5 С 2 H 5 + HCl образуется этилбензол

С 6 H 6 + HNO 3 -(H 2 SO 4)→ С 6 H 5 NO 2 + H 2 O

Структура

Бензол по составу относится к ненасыщенным углеводородам (гомологический ряд C n H 2n-6), но в отличие от углеводородов ряда этилена C 2 H 4 проявляет свойства, присущие ненасыщенным углеводородам (для них характерны реакции присоединения) только при жёстких условиях, а вот к реакциям замещения бензол более склонен. Такое «поведение» бензола объясняется его особым строением: нахождением всех связей и молекул на одной плоскости и наличием в структуре сопряжённого 6π-электронного облака. Современное представление об электронной природе связей в бензоле основывается на гипотезе Лайнуса Полинга , который предложил изображать молекулу бензола в виде шестиугольника с вписанной окружностью, подчёркивая тем самым отсутствие фиксированных двойных связей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.

Производство

На сегодняшний день существует три принципиально различных способа производства бензола.

    Коксование каменного угля. Этот процесс исторически был первым и служил основным источником бензола до Второй мировой войны. В настоящее время доля бензола, получаемого этим способом, составляет менее 1 %. Следует добавить, что бензол, получаемый из каменноугольной смолы, содержит значительное количество тиофена, что делает такой бензол сырьем, непригодным для ряда технологичных процессов.

    Каталитический риформинг (аромаизинг) бензиновых фракций нефти. Этот процесс является основным источником бензола в США. В Западной Европе, России и Японии этим способом получают 40-60 % от общего количества вещества. В данном процессе кроме бензола образуются толуол и ксилолы . Ввиду того, что толуол образуется в количествах, превышающих спрос на него, его также частично перерабатывают в:

    бензол - методом гидродеалкилирования;

    смесь бензола и ксилолов - методом диспропорционирования;

Пиролиз бензиновых и более тяжелых нефтяных фракций. До 50 % бензола производится этим методом. Наряду с бензолом образуются толуол и ксилолы. В некоторых случаях всю эту фракцию направляют на стадию деалкилирования, где и толуол, и ксилолы превращаются в бензол.

Применение

Бензол входит в десятку важнейших веществ химической промышленности. [ источник не указан 232 дня ] Большую часть получаемого бензола используют для синтеза других продуктов:

  • около 50 % бензола превращают в этилбензол (алкилирование бензола этиленом );

    около 25 % бензола превращают в кумол (алкилирование бензола пропиленом );

    приблизительно 10-15 % бензола гидрируют в циклогексан ;

    около 10 % бензола расходуется на производство нитробензола ;

    2-3 % бензола превращают в линейные алкилбензолы ;

    приблизительно 1 % бензола используется для синтеза хлорбензола .

В существенно меньших количествах бензол используется для синтеза некоторых других соединений. Изредка и в крайних случаях, ввиду высокой токсичности, бензол используется в качестве растворителя . Кроме того, бензол входит в состав бензина . Ввиду высокой токсичности его содержание новыми стандартами ограничено введением до 1 %.

Толуо́л (от исп. Tolu , толуанский бальзам) - метилбензол, бесцветная жидкость с характерным запахом, относится к аренам.

Толуол получен впервые П. Пельтье в 1835 при перегонке сосновой смолы. В 1838 выделен А. Девилем из бальзама, привезенного из города Толу в Колумбии, в честь которого получил свое название.

Общая характеристика

Бесцветная подвижная летучая жидкость с резким запахом, проявляет слабое наркотическое действие. Смешивается в неограниченных пределах с углеводородами, многими спиртами и эфирами , не смешивается с водой. Показатель преломления света 1,4969 при 20 °C. Горюч, сгорает коптящим пламенем.

Химические свойства

Для толуола характерны реакции электрофильного замещения в ароматическом кольце и замещения в метильной группе по радикальному механизму.

Электрофильное замещение в ароматическом кольце идёт преимущественно в орто- и пара-положения относительно метильной группы.

Кроме реакций замещения, толуол вступает в реакции присоединения (гидрирование), озонолиза. Некоторые окислители (щелочной раствор перманганата калия, разбавленная азотная кислота) окисляют метильную группу до карбоксильной. Температура самовоспламенения 535 °C. Концентрационный предел распространения пламени, %об . Температурный предел распространения пламени, °C . Температура вспышки 4 °C.

    Взаимодействие с перманганатом калия в кислой среде:

5С 6 H 5 СH 3 + 6KMnO 4 + 9H 2 SO 4 → 5С 6 H 5 СOOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O образование бензойной кислоты

Получение и очистка

Продукт каталитического риформинга бензиновых фракций нефти . Выделяется селективной экстракцией и последующей ректификацией .Также хорошие выходы достигаются при каталитическом дегидрировании гептана через метилциклогексан . Очищают толуол аналогично бензолу , только в случае применения концентрированной серной кислоты нельзя забывать, что толуол сульфируется легче бензола, а, значит, необходимо поддерживать более низкую температуру реакционной смеси (менее 30 °C ). Толуол также образует с водой азеотропную смесь .

Толуол можно получить из бензола по реакции Фриделя-Крафтса :

Применение

Сырьё для производства бензола , бензойной кислоты , нитротолуолов (в том числе тринитротолуола ), толуилендиизоцианатов (через динитротолуол и толуилендиамин) бензилхлорида и др. органических веществ.

Является растворителем для многих полимеров , входит в состав различных товарных растворителей для лаков и красок . Входит в состав растворителей: Р-40, Р-4, 645, 646 , 647 , 648. Применяется как растворитель в химическом синтезе.

Нафтали́н - С 10 Н 8 твердое кристаллическое вещество с характерным запахом . В воде не растворяется, но хорошо - в бензоле , эфире , спирте , хлороформе .

Химические свойства

Нафталин по химическим свойствам сходен с бензолом : легко нитруется , сульфируется , взаимодействует с галогенами . Отличается от бензола тем, что ещё легче вступает в реакции.

Физические свойства

Плотность 1.14 г/см³, температура плавления 80.26 °C, температура кипения 218 °C, растворимость в воде примерно 30 мг/л, температура вспышки 79 - 87 °C, температура самовоспламенения 525 °C, молярная масса 128.17052 г/моль.

Получение

Получают нафталин из каменноугольной смолы . Также нафталин можно выделять из тяжёлой смолы пиролиза (закалочное масло), которая применяется в процессе пиролиза на этиленовых установках.

Также нафталин производят термиты Coptotermes formosanus , чтобы защитить свои гнёзда от муравьёв , грибков и нематод .

Применение

Важное сырьё химической промышленности: применяется для синтеза фталевого ангидрида , тетралина , декалина , разнообразных производных нафталина.

Производные нафталина применяют для получения красителей и взрывчатых веществ , в медицине , как инсектицид .

С другом двойной связью.


1. Физические свойства

Этилен - бесцветный газ со слабым приятным запахом. Он немного легче воздуха. В воде мало растворим, а в спирте и других органических растворителях растворяется хорошо.

2. Строение

Молекулярная формула С 2 Н 4. Структурная и электронная формулы:


3. Химические свойства

В отличие от метана этилен химически довольно активен. Для него характерны реакции присоединения по месту двойной связи, реакции полимеризации и реакции окисления. При этом один из двойных связей разрывается и на его месте остается простой одинарный связь, а за счет уволенных валентностей происходит присоединение других атомов или атомных групп. Рассмотрим это на примерах некоторых реакций. При пропускании этилена в бромную воду (водный раствор брома) последняя обесцвечивается результате взаимодействия этилена с бромом с образованием дибромэтан (бромистого этилена) C 2 H 4 Br 2:

Как видно из схемы этой реакции, здесь происходит не замещение атомов водорода атомами галогена, как в насыщенных углеводородов, а присоединение атомов брома по месту двойной связи. Этилен легко обесцвечивает также фиолетовый цвет водного раствора манганатом калия KMnO 4 даже при обычной температуре. Сам же этилен при этом окисляется в этиленгликоль C 2 H 4 (OH) 2. Этот процесс можно изобразить следующим уравнением:

  • 2KMnO 4 -> K 2 MnO 4 + MnO 2 + 2O

Реакции взаимодействия этилена с бромом и манганатом калия служат для открытия ненасыщенных углеводородов. Метан и другие насыщенные углеводороды, как уже отмечалось, с манганатом калия не взаимодействуют.

Этилен вступает в реакцию с водородом. Так, когда смесь этилена с водородом нагреть в присутствии катализатора (порошка никеля, платины или палладия), то они сочетаются с образованием этана :

Реакции, при которых происходит присоединение водорода к веществу, называются реакциями гидрирования или гидрогенизации. Реакции гидрогенизации имеют большое практическое значение. их довольно часто используется в промышленности. В отличие от метана этилен горит на воздухе свитящим пламенем, поскольку содержит больше углерода, чем метан. Поэтому не весь углерод сгорает сразу и частицы его сильно раскаляются и светятся. Затем эти частицы углерода сгорают в наружной части пламени:

  • C 2 H 4 + 3O 2 = 2CO 2 + 2H 2 O

С воздухом этилен, как метан, образует взрывчатые смеси.


4. Получение

В природе этилен не встречается, за исключением незначительных примесей в природном газе. В лабораторных условиях этилен обычно получают при действии концентрированной серной кислоты на этиловый спирт при нагревании. Этот процесс можно изобразить следующим суммарным уравнением:

Во время реакции от молекулы спирта вычитаются элементы воды, а уволено две валентности насыщают друг друга с образованием двойной связи между атомами углерода. Для промышленных целей этилен получают в больших количествах из газов крекинга нефти.


5. Применение

В современной промышленности этилен применяется достаточно широко для синтеза этилового спирта и производства важных полимерных материалов (полиэтилен и др.)., А также для синтеза других органических веществ. Очень интересна свойство этилена ускорять созревание многих огородных и садовых плодов (помидоров, дынь, груш, лимонов и т.п.). Используя это, плоды можно транспортировать еще зелеными, а затем доводить их до спелого состояния уже на месте потребления, вводя в воздух складских помещений небольшие количества этилена.

Из этилена производят хлористый винил и поливинилхлорид, бутадиен и синтетические каучуки, оксид этилена и полимеры на его основе, этиленгликоль и т.д..


Примечания

Источники

  • Ф. А. Деркач "Химия" Л. 1968
? в ? Фитогормоны
? в ? Углеводороды

История открытия этилена

Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла (H 2 SO 4) на винный (этиловый) спирт (C 2 H 5 OH).

CH 3 -CH 2 -OH+H 2 SO 4 →CH 2 =CH 2 +H 2 O

Вначале его отождествляли с «горючим воздухом», т. е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Трусвик, Бонд и Лауеренбург и описали под названием «маслородного газа», так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена («масло голландских химиков»), (Прохоров,1978).

Изучение свойств этилена, его производных и гомологов началось с середины XIX века. Начало практического использования этих соединений положили классические исследования А.М. Бутлерова и его учеников в области непредельных соединений и особенно создания Бутлеровым теории химического строения. В 1860 году он получил этилен действием меди на йодистый метилен, установив структуру этилена.

В 1901 году Дмитрий Николаевич Нелюбов выращивал горох в лаборатории, В Санкт-Петербурге, но семена давали искривленные, укороченные проростки, у которых верхушка была согнута крючком и не сгибалась. В теплице и на свежем воздухе проростки были ровные, рослые, и верхушка на свету быстро распрямляла крючок. Нелюбов предложил, что фактор, вызывающий физиологический эффект, находится в воздухе лаборатории.

В то время помещения освещали газом. В уличных фонарях горел тот же газ, и давно было замечено, что при аварии в газопроводе стоящие рядом с местом утечки газа деревья преждевременно желтеют и сбрасывают листья.

Осветительный газ содержал разнообразные органические вещества. Чтобы удалить примесь газа, Нелюбов пропускал его через разогретую трубку с оксидом меди. В «очищенном» воздухе проростки гороха развивались нормально. Для того чтобы выяснить, какое именно вещество вызывает ответ проростков, Нелюбов добавлял различные компоненты светильного газа по очереди, и обнаружил, что добавка этилена вызывает:

1) замедление роста в длину и утолщение проростка,

2) «не разгибающуюся» апикальную петельку,

3) Изменение ориентации проростка в пространстве.

Эта физиологическая реакция проростков была названа тройным ответом на этилен. Горох оказался настолько чувствительным к этилену, что его стали использовать в биотестах для определения низких концентрациях этого газа. Вскоре было обнаружено, что этилен вызывает и другие эффекты: листопад, созревание плодов и т.д. Оказалось, что этилен способны синтезировать сами растения, т.е. этилен является фитогормоном (Петушкова,1986).

Физические свойства этилена

Этиле́н - органическое химическое соединение, описываемое формулой С 2 H 4 . Является простейшим алкеном (олефином ).

Этилен – бесцветный газ со слабым сладким запахом плотностью 1,178 кг/м³ (легче воздуха), его вдыхание оказывает наркотическое действие на человека. Этилен растворяется в эфире и ацетоне, значительно меньше - в воде и спирте. При смешении с воздухом образует взрывоопасную смесь

Затвердевает при –169,5°C, плавится при таких же температурных условиях. Кипит этен при –103,8°C. Воспламеняется при нагревании до 540°C. Газ хорошо горит, пламя светящееся, со слабой копотью. Округленная молярная масса вещества - 28 г/моль. Третий и четвертый представители гомологического ряда этена - тоже газообразные вещества. Физические свойства пятого и следующих алкенов отличаются, они являются жидкостями и твердыми телами.

Получение этилена

Основные способы получения этилена:

Дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

CH 3 -CH 2 -Br + KOH → CH 2 = CH 2 + KBr + H 2 O;

Дегалогенирование дигалогенпроизводных алканов под действием активных металлов

Сl-CH 2 -CH 2 -Cl + Zn → ZnCl 2 + CH 2 = CH 2 ;

Дегидратация этилена при его нагревании с серной кислотой (t >150˚ C) или пропускании его паров над катализатором

CH 3 -CH 2 -OH → CH 2 = CH 2 + H 2 O;

Дегидрирование этана при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

CH 3 -CH 3 → CH 2 = CH 2 + H 2 .

Химические свойства этилена

Для этилена характерны реакции, протекающщие по механизму электрофильного, присоединения, реакции радикального замещения, окисления, восстановления, полимеризации.

1. Галогенирование (электрофильное присоединение) - взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:

CH 2 = CH 2 + Br 2 = Br-CH 2 -CH 2 Br.

Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:

CH 2 = CH 2 + Cl 2 → CH 2 = CH-Cl + HCl.

2. Гидрогалогенирование - взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:

CH 2 = CH 2 + HCl → CH 3 -CH 2 -Cl.

3. Гидратация - взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:

CH 2 = CH 2 + H 2 О → CH 3 -CH 2 -ОН.

Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты (1), реакции гидрокси- и алкоксимеркурирования (2, 3) (получение ртутьорганических соединений) и гидроборирование (4):

CH 2 = CH 2 + HClO → CH 2 (OH)-CH 2 -Cl (1);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + H 2 O → CH 2 (OH)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (2);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + R-OH → R-CH 2 (OCH 3)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (3);

CH 2 = CH 2 + BH 3 → CH 3 -CH 2 -BH 2 (4).

Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,

2 ON-CH = CH 2 + HCN → 2 ON-CH 2 -CH 2 -CN.

4. окисление. Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. В результате образуется этиленгликоль

3CH 2 = CH 2 + 2KMnO 4 +4H 2 O = 3CH 2 (OH)-CH 2 (OH) +2MnO 2 + 2KOH.

При жестком окислении этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:

Окисление этилена кислородом при 200С в присутствии CuCl 2 и PdCl 2 приводит к образованию ацетальдегида:

CH 2 = CH 2 +1/2O 2 = CH 3 -CH = O.

5. гидрирование. При восстановлении этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

CH 2 = CH 2 + H 2 = CH 3 -CH 3 .

6. Этилен вступает в реакцию полимеризации . Полимеризация - процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):

n CH 2 = CH 2 = -(-CH 2 -CH 2 -) n -.

7. Горение:

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

8. Димеризация. Димеризация - процесс образования нового вещества путём соединения двух структурных элементов (молекул, в том числе белков, или частиц) в комплекс (димер), стабилизируемый слабыми и/или ковалентными связями.

2CH 2 =CH 2 →CH 2 =CH-CH 2 -CH 3

Применение

Этилен используют в двух основных категориях: в качестве мономера, из которого построены большие углеродные цепи, и в качестве исходного материала для других двух-углеродных соединений. Полимеризации - это повторяющиеся объединения множества мелких молекул этилена в более крупные. Этот процесс происходит при высоких давлениях и температурах. Области применения этилена многочисленны. Полиэтилен – это полимер, который используется особенно массово в производстве упаковочных пленок, проволочных покрытий и пластиковых бутылок. Еще одно применение этилена в качестве мономера касается формирования линейных α-олефинов. Этилен является исходным материалом для приготовления ряда двух-углеродных соединений, таких как этанол (технический спирт ), окись этилена (антифриз, полиэфирные волокна и пленки) , ацетальдегида и винил хлорида. Кроме этих соединений, этилен с бензолом образует этилбензол, который используется в производстве пластмасс и синтетического каучука. Рассматриваемое вещество является одним из простейших углеводородов. Однако свойства этилена делают его биологически и хозяйственно значимым.

Свойства этилена дают хорошую коммерческую основу для большого количества органических (содержащих углерод и водород) материалов. Одиночные молекулы этилена могут быть соединены вместе для получения полиэтилена (что означает много молекул этилена). Полиэтилен используется для изготовления пластмасс. Кроме того, он может быть использован для изготовления моющих средств и синтетических смазочных материалов , которые представляют собой химические вещества, используемые для уменьшения трения. Применение этилена для получения стиролов актуально в процессе создания резины и защитной упаковки. Кроме того, он используется в обувной промышленности, особенно это касается спортивной обуви, а также при производстве автомобильных покрышек . Применение этилена является коммерчески важным, а сам газ является одним из наиболее часто производимых углеводородов в глобальном масштабе.

Этилен используется в производстве стекла специального назначения для автомобильной промышленности.