Система массового обслуживания, ее разновидности и научное обоснование. Три основы теории массового обслуживания

Введение

Математическое описание метода

1 Общие сведения о системах массового обслуживания

2 Многоканальные СМО с отказами

Обоснование и выбор инструментальной среды для проведения расчетов

Алгоритмическое обеспечение

1 Постановка задачи

2 Математическая модель

3 Построение моделей СМО с отказами в Simulink

3.1 Для 3-х канальной СМО

3.2 Для 5-канальной СМО

4 Расчет показателей эффективности

4.1 для 3-х канальной СМО

4.2 Для 5-канальной СМО

5 Анализ результатов моделирования

Заключение

Список использованной литературы

ВВЕДЕНИЕ

На сегодняшний день метод имитационного моделирования является одним из наиболее эффективных методов исследования процессов и систем самой различной природы и степени сложности. Сущность метода состоит в составлении модели, имитирующей процесс функционирования системы, и расчета характеристик этой модели с целью получения статистических данных моделируемой системы. Используя результаты имитационного моделирования, можно описать поведение системы, оценить влияние различных параметров системы на ее характеристики, выявить преимущества и недостатки предлагаемых изменений, прогнозировать поведение системы.

Лучшей иллюстрацией области применения имитационного моделирования являются системы массового обслуживания. В терминах СМО описываются многие реальные системы: вычислительные системы, узлы сетей связи, магазины, производственные участки - любые системы, где возможны очереди и отказы в обслуживании. Цель данной курсовой работы - создание блок-схемы в среде MatLab Simulink, наглядно иллюстрирующей алгоритм расчета параметров модели многоканальной СМО с отказами и формирование рекомендаций по выбору оптимального количества каналов обслуживания.

Для достижения поставленной цели выделим основные задачи:

-подробное описание многоканальной СМО с отказами;

выбор контрольного примера и постановка задачи;

определение алгоритма решения;

создание имитационной модели в среде MATLAB (Simulink);

анализ результатов и обоснование выбора оптимального количества каналов для исследуемой СМО

1. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ МЕТОДА

.1 Общие сведения о системах массового обслуживания

В жизни часто встречаются системы, предназначенные для многоразового использования при решении однотипных задач: очередь в магазине, обслуживание автомобилей на автозаправках, билетные кассы и т.п. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания (СМО).

Процессы поступления и обслуживания заявок в СМО являются случайными, что обусловлено случайным характером потока заявок и длительности их обслуживания.

Будем рассматривать СМО с марковским случайным процессом, когда вероятность состояния СМО в будущем зависит только от ее настоящего состояния и не зависит от прошлого (процесс без последействия или без памяти). Условие марковского случайного процесса необходимо, чтобы все потоки событий, при которых система переходит из одного состояния в другое (потоки заявок, потоки обслуживания и т.д.), были пуассоновскими. Пуассоновский поток событий обладает рядом свойств, в том числе свойствами отсутствия последействия, ординарности, стационарности.

В простейшем пуассоновском потоке событий случайная величина распределена по показательному закону:

,(1.1)

где λ - интенсивность потока.

Целью теории систем массового обслуживания является выработка рекомендаций по рациональному их построению, организации работы и регулированию потока заявок. Отсюда вытекают задачи, связанные с теорией массового обслуживания: установление зависимостей работы СМО от ее организации, характера потока заявок, числа каналов и их производительности, правил работы СМО.

Основой СМО является определенное число обслуживающих устройств - каналов обслуживания.

Назначение СМО состоит в обслуживании потока заявок (требовании ), представляющих последовательность событий, поступающих нерегулярно и в заранее неизвестные и случайные моменты времени. Само обслуживание заявок также имеет непостоянный и случайный характер. Случайный характер потока заявок и времени их обслуживания обусловливает неравномерность загрузки СМО: на входе могут накапливаться необслуженные заявки (перегрузка СМО) либо заявок нет или их меньше, чем свободных каналов (недогрузка СМО).

Таким образом, в СМО поступают заявки, часть из которых принимается на обслуживание каналами системы, часть становится в очередь на обслуживание, а часть покидает систему необслуженными.

Основными элементами СМО являются:

1.входной поток заявок;

2.очередь;

.каналы обслуживания;

.выходной поток заявок (обслуженные заявки).

Эффективность функционирования СМО определяется ее пропускной способностью - относительным числом обслуженных заявок.

По числу каналов n все СМО разделяются на одноканальные (n = 1) и многоканальные (n > 1). Многоканальные СМО могут быть как однородными (по каналам), так и разнородными (по продолжительности обслуживания заявок).

По дисциплине обслуживания различаются три класса СМО:

1.СМО с отказами (нулевое ожидание или явные потери). "Отказная" заявка вновь поступает в систему, чтобы ее обслужили (например, вызов абонента через АТС).

2.СМО с ожиданием (неограниченное ожидание или очередь). При занятости системы заявка поступает в очередь и, в конце концов, будет выполнена (торговля, сфера бытового и медицинского обслуживания).

.СМО смешанного типа (ограниченное ожидание). Имеется ограничение на длину очереди (сервис по обслуживанию автомобилей). Ограничение на время пребывания заявки в СМО (ПВО, особые условия обслуживания в банке) также может рассматриваться.

Различают открытые (поток заявок не ограничен), упорядоченные (заявки обслуживаются в порядке их поступления) и однофазные (однородные каналы выполняют одну и ту же операцию) СМО.

Эффективность работы систем массового обслуживания характеризуют показатели, которые можно разбить на три групп:

1.Группа показателей эффективности использования СМО:

-абсолютная пропускная способность (А ) - среднее число заявок, обслуживаемых в единицу времени, или интенсивность выходящего потока обслуженных заявок (это часть интенсивности входящего потока заявок);

относительная пропускная способность (Q ) - отношение абсолютной пропускной способности к среднему числу заявок, поступивших в систему за единицу времени;

средняя продолжительность периода занятости СМО ();

интенсивность нагрузки (ρ) показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость СМО;

коэффициент использования СМО - средняя доля времени, в течение которого система занята обслуживанием заявок.

2.Показатели качества обслуживания заявок:

среднее время ожидания заявки в очереди ();

среднее время пребывания (обслуживания) заявки в СМО ();

вероятность отказа заявки в обслуживании без ожидания ();

вероятность немедленного приема заявки ();

закон распределения времени ожидания заявки в очереди в СМО;

среднее число заявок в очереди ();

среднее число заявок, находящихся в СМО ().

.Показатели эффективности функционирования пары "СМО - потребитель" (вся совокупность заявок или их источник, например средний доход в единицу времени от СМО). Эта группа полезна, когда доход от СМО и затраты на ее обслуживание измеряются в одних и тех же единицах, и отражает специфику работы СМО.

1.2 Многоканальные СМО с отказами

Система M/M/n/0 представляет собой n- линейную СМО с r местами ожидания (r=0), в которую поступает пуассоновский поток интенсивности , а времена обслуживания заявок независимы и при этом время обслуживания каждой заявки на любом приборе распределено по экспоненциальному закону с параметром . В случае, когда , заявка, поступившая в переполненную систему (т.е. когда заняты все приборы и все места ожидания), теряется и вновь в нее не возвращаются. Система M/M/n/r также относится к экспоненциальным СМО.

Уравнения, описывающие распределение заявок в системе

Выпишем систему дифференциальных уравнений Колмогорова. Для этого рассмотрим моменты t и . Предполагая, что в момент t процесс v(t) пребывает в состоянии i, определим, куда он может попасть в момент , и найдем вероятности его переходов за время . Здесь возможны три случая.

А. iпроцесс не выйдет из состояния i равна произведению вероятности не поступления заявки за время на вероятность того, что за это время не обслужится ни одна из i заявок, т.е. равна . Вероятность перехода за время в состояние i+1 равна - вероятности поступления заявки в систему. Наконец поскольку каждый прибор закончит за время обслуживание находящейся в нем заявки с вероятностью , а таких приборов i, то вероятность перехода в состояние i-1 равна . Остальные переходы имеют вероятность .

Б. n≤i остаться в состоянии i равна , перейти в состояние i-1 за это же время

Таким образом, мы фактически доказали, что процесс является процессом рождения и гибели с интенсивностями при при и при . Обозначая через , распределение числа заявок в системе в момент t, получаем следующие выражения для в случае, когда :

,

,

,

Если же , то, что очевидно последнего выражения не будет, а в предпоследнем индекс i может принимать значения i=n,n+1,… .

Вычитая теперь из обеих частей равенства, деля на и переходя к пределу

при , получаем систему дифференциальных уравнений:

,

,

, (1.2)

.

Стационарное распределение очереди

В случае конечного r, например r=0, процесс является эргодическим. Также он будет эргодическим в случае при выполнении условия, о котором будет сказано ниже. Тогда из (1) при получаем, что стационарные вероятности состояний pi удовлетворяют систему уравнений:

,

,(1.3)

,

.

Поясним теперь вывод системы уравнений (1.3), исходя из принципа глобального баланса. Так, например, согласно диаграмме переходов для фиксированного состояния i, , имеем, что суммарные потоки вероятностей входящий в состояние i и выходящий из него равны, соответственно, и .

Рисунок 1 Диаграмма переходов

Исходя теперь из принципа локального баланса, что баланс потоков вероятностей между состояниями i и i+1 отражается равенствами:

,

,(1.4)

являющимися уравнениями локального баланса для данной СМО. Проверка справедливости равенств (1.4) производится непосредственным суммированием системы уравнений (1.3) по i при i=0,1,…,n+r-1.

Из соотношения (1.4), выражая рекуррентно вероятности через ,

где , а определяется из условия нормировки , т.е.

.(1.6)

Ясно, что формулы можно получить из общих соотношений для стационарных вероятностей состояний процесса рождения и гибели при указанных выше значениях и .

Если , то стационарный режим существует при любом .

Выпишем теперь выражения для некоторых характеристик очереди.

Стационарная вероятность немедленного обслуживания заявки (обслуживания без ожидания) совпадает со стационарной вероятностью того, что в системе находится 0,1,…,n-1 заявок, т.е.

Рассмотрим интересующий нас частный случай, когда r=0. тогда в системе отсутствуют места для ожидания (система с потерями M/M/n/0) и такая система носит название системы Эрланга . Система Эрланга описывает процессы, происходящие в простейших телефонных сетях, и названа так в честь А. К. Эрланга, впервые её исследовавшего. Для системы M/M/n/0 стационарные вероятности определяются формулой Эрланга

,.

Следовательно, стационарная вероятность потери заявки определяется формулой:

,

которую также называют формулой Эрланга.

Наконец, когда , то мы имеем систему , для которой при любом стационарные вероятности существуют и, как следует из формул Эрланга при , имеют вид

,.

Вернемся теперь к соотношениям (1.4). Суммируя эти равенства по i=0,1,…,n+r-1 , получаем

,

где - среднее число занятых приборов. Выписанное соотношение выражает равенство интенсивностей принятого в систему и обслуживаемого ею потоков в стационарном режиме. Отсюда мы можем получить выражение для пропускной способности системы , определяемой как среднее число заявок, обслуженных системой в единицу времени, и называемой иногда интенсивностью выхода:

.

Выражение для стационарного числа N заявок в системе нетрудно получить либо непосредственно из распределения вероятностей (4), либо воспользовавшись очевидным соотношением .

Стационарное распределение времени пребывания заявки в системе

Стационарное распределение W(x) времени ожидания начала обслуживания принятой в систему M/M/n/r заявки вычисляется практически так же, как и для системы . Заметим, что заявка, заставшая при поступлении i других заявок в системе, немедленно начинает обслуживаться, если i времена.

Путем несложных преобразований находим, учитывая независимость времени обслуживания от времени ожидания начала обслуживания, находим, что стационарное распределение V(x) времени пребывания в системе принятой к обслуживанию заявки имеет ПЛС

.

Стационарные средние времена ожидания начала обслуживания и пребывания заявки в системе задаются формулами:

,

.

Последнее выражение можно также получить из формул Литтла.

Нестационарные характеристики

Нестационарное распределение числа заявок в системе получается интегрированием системы (1) с учетом начального распределения .

Если , то система (1) представляет собой линейную однородную систему обыкновенных дифференциальных уравнений первого порядка с постоянными коэффициентами.

Выходящий поток

В системе , в установившемся режиме поток заявок, покидающих систему, является пуассоновским. То же самое можно сказать и о выходящем потоке из системы M/M/n/r, если понимать под ним суммарный поток как обслуженных, так и потерянных заявок. Доказательство этого с помощью метода обращения времени полностью совпадает с доказательством аналогичного факта для системы .

2. Обоснование и выбор инструментальной среды для проведения расчетов

Моделирование систем является важным инструментом, когда необходимо понять, объяснить непонятную проблему или решить поставленную задачу с помощью компьютера. Серией компьютерных экспериментов исследуют модель и получают подтверждение или опровержение передэкспериментальных гипотез о поведении модели.

Результаты поведения модели менеджер использует для реального объекта, то есть принимает плановое или прогнозируемое решение, полученное с помощью исследования модели.- это компьютерная программная система для моделирования систем управления. Simulink является составным элементом Matlab и использует для моделирования все возможности. С помощью Matlab Simulink моделируются линейные, нелинейные, дискретные, стохастические и гибридные системы.

При этом, в отличие от классических способов моделирования, пользователю не нужно досконально изучать язык программирования и многочисленные методы математики, а достаточно общих знаний, которые нужны для работы с компьютером, и знаний о той предметной области, в которой он работает.

При работе в Matlab Simulink можно моделировать динамические системы, выбирать методы решения дифференциальных уравнений, а также способов изменения модельного времени (с фиксированным или переменным шагом). В ходе моделирования имеется возможность следить за процессами, которые происходят в системе. Для этого используются специальные устройства наблюдения, входящие в состав библиотеки Simulink. Результаты моделирования могут быть представлены в виде графиков и таблиц.

Преимущество Simulink заключается в том, что он позволяет пополнять библиотеки блоков с помощью программ, написанных как на языке Matlab, так и на языках С++, Fortran и Ada.

Исследуемую модель системы составляют в виде блок-схемы. Каждый типичный блок является объектом с графическими чертежами, графическими и математическими символами исполняемой программой и числовыми или формульными параметрами. Блоки соединяются линиями, которые отражают движение материальных, финансовых и информационных потоков между объектами.

Итак, Matlab Simulink - это система имитационного моделирования, которая позволяет удобно и легко строить и исследовать модели экономических процессов.

3. Алгоритмическое обеспечение

.1 Постановка задачи

В качестве многоканальной СМО с отказами рассмотрим работу вычислительного центра.

В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч).

Требуется определить основные характеристики эффективности данной СМО, если интенсивность, с которой каждая ЭВМ обслуживает заказ, равна 1/3 заявки в час, а интенсивность, с которой заявки поступают в вычислительный центр, равна 0,25 единиц в час. Рассмотреть случай увеличения количества ЭВМ на 2 единицы в центре и проследить, как изменятся основные характеристики этой системы. По результатам анализа полученных результатов, дать рекомендации относительно оптимального числа каналов обслуживания.

Пусть СМО содержит n каналов, интенсивность входящего потока заявок равна , а интенсивность обслуживания заявки каждым каналом равна . Размеченный граф состояний системы изображён на рисунке 2.

Рисунок 2 - График состояний многоканальной СМО с отказами

Состояние S0 означает, что все каналы свободны, состояние Sk (k = 1, n) означает, что обслуживанием заявок заняты k каналов. Переход из одного состояния в другое соседнее правое происходит скачкообразно под воздействием входящего потока заявок интенсивностью независимо от числа работающих каналов (верхние стрелки). Для перехода системы из одного состояния в соседнее левое неважно, какой именно канал освободится. Величина характеризует интенсивность обслуживания заявок при работе в СМО k каналов (нижние стрелки).

Легко увидеть, что многоканальная СМО с отказами является частным случаем системы рождения и гибели, если в последней принять и

(3.1)

При этом для нахождения финальных вероятностей можно воспользоваться формулами (4) и (5). С учётом (16) получим из них:

(3.2)

(3.3)

Формулы (3.2) и (3.3) называются формулами Эрланга - основателя теории массового обслуживания.

Вероятность отказа в обслуживании заявки р_отк равна вероятности того, что все каналы заняты, т.е. система находится в состоянии Sn. Таким образом,

(3.4)

Относительную пропускную способность СМО найдём из (3.4):

(3.5)

Абсолютную пропускную способность найдём из (3,5):

Среднее число занятых обслуживанием каналов можно найти таким образом: так как каждый занятый канал в единицу времени обслуживает в среднем заявок, то можно найти по формуле:

3.3 Построение моделей СМО с отказами в Simulink

.3.1 для 3-х канальной СМО

Рисунок 3 Модель СМО с 3-мя каналами обслуживания

Рисунок 3 (продолжение) Модель СМО с 3-мя каналами обслуживания

В моделях, реализованных в Simulink, есть возможность вывести значения показателей эффективности СМО. При изменении входных параметров, значения будут пересчитываться автоматически.

Система массового обслуживания с тремя каналами может находиться в четырех состояних: S0 - все каналы свободны, S1 - 1 канал занят, S2 - 2 канала занято, S3 - все 3 канала заняты. Вероятности этих состояний представлены на рисунке 4.

Рисунок 4 Вероятности состояний для СМО с 3-мя каналами

3.3.2 Для 5-канальной СМО

Рисунок 5 Модель СМО с 5-ю каналами

Рисунок 5 (продолжение) Модель СМО с 5-ю каналами

Как и в случае n=3 для СМО с n=5 реализован вывод значений показателей эффективности в самой модели.

Система массового обслуживания с пятью каналами может находиться в шести состояних: S0 - все каналы свободны, S1 - 1 канал занят, S2 - 2 канала занято, S3 -3 канала заняты, S4 -4 канала заняты, S5 -все 5 каналов заняты. Вероятности этих состояний представлены на рисунке 7

Рисунок 6 Вероятности состояний для СМО с 5-ю каналами

3.4 Расчет показателей эффективности

Расчет показателей эффективности систем массового обслуживания с тремя и пятью каналами был произведен с помощью пакета MS Excel по формулам, описанным в параграфе 3.2

.4.1 для 3-х канальной СМО

Таблица 1 Расчет показателей эффективности трехканальной СМО

n (число каналов обслуживания)3ʎ (интенсивность входящего потока заявок)0,25µ (интенсивность потока обслуженных заявок, выходящих из одного канала)0,33333ρ (приведенная интенсивность потока заявок)0,75вероятности состояний P_00,47584P_10,35688P_20,13383P_30,03346сумма вероятностей1Q (относительная пропускная способность СМО)0,96654A (абсолютная пропускная способность СМО)0,24164P_serv (вероятность того, что заявка будет обслужена)0,96654P_otk (вероятность того, что заявка получит отказ)0,03346n" (среднее число занятых каналов)0,72491

3.4.2 Для 5-канальной СМО

Таблица 2 Расчет показателей эффективности пятиканальной СМО

n (число каналов обслуживания)5ʎ (интенсивность входящего потока заявок)0,25µ (интенсивность потока обслуженных заявок, выходящих из одного канала)0,33333ρ (приведенная интенсивность потока заявок)0,75вероятности состояний P_00,47243P_10,35432P_20,13287P_30,03322P_40,00623P_50,00093сумма вероятностей1Q (относительная пропускная способность СМО)0,99907A (абсолютная пропускная способность СМО)0,24977P_serv (вероятность того, что заявка будет обслужена)0,99907P_otk (вероятность того, что заявка получит отказ)0,00093n" (среднее число занятых каналов)0,7493

3.5 Анализ результатов моделирования

Таблица 3 Сравнение результатов моделирования с теоретическими расчетами для трехканальной СМО

ПараметрТеоретическое значениеЭмпирическое значениеОтклонение (в долях)P_00,475840,4870,023P_otk0,033460,031360,07Q0,966540,96860,002A0,241640,24220,002n"0,724910,72650,002

Таблица 4 Сравнение результатов моделирования с теоретическими расчетами для пятиканальной СМО

ПараметрТеоретическое значениеЭмпирическое значениеОтклонение (в долях)P_00,472428230,48520,026P_otk0,0009342450,00099520,061Q0,966782390,9990,032A0,2416955980,24980,032n"0,7250867930,74930,032

Из таблиц видно, что отклонения эмпирических значений от теоретических не превышает ε=7%. Это означает, что построенные нами модели адекватно описывают поведение системы и они применимы для поиска оптимальных соотношений количества каналов обслуживания.

Таблица 5 Сравнение эмпирических показателей СМО где n=3 и СМО где n=5

ПараметрПоказатели СМО где n=3Показатели СМО где n=5P_00,4870,4852P_otk0,031360,0009952Q0,96860,999A0,24220,2498n"0,72650,7493

Очевидно, что чем выше число каналов обслуживания, тем меньше вероятность отказа системы и выше вероятность того, что заявка будет обслужена. Абсолютная пропускная способность системы в случае функционирования 5 каналов хоть и незначительно выше, чем если бы функционировало всего 3 канала, однако это свидетельствует о том, что необходимо сделать выбор в пользу увеличения числа каналов обслуживания.

Таким образом, проведенный эксперимент показал, насколько можно доверять результатам моделирования и выводам, сделанным на основе интерпретации этих результатов.

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы были решены все поставленные задачи и достигнута поставленная цель, а именно - были созданы модели, описывающие экономический процесс, рассчитаны показатели этих моделей и сформированы рекомендации для практического применения.

Моделирование было выполнено в системе Matlab Simulink в виде блок-схем, которые в простой и удобной форме показывают сущности экономических процессов. Так же была произведена проверка адекватности построенных моделей путем расчета теоретических показателей эффективности выбранных типов СМО, по результатам которой модели были признаны с большой вероятностью приближенными к реальности. Из этого следует, что при рассмотрении аналогичных процессов и для экономии времени, мы можем воспользоваться моделями, разработанными в ходе этой работы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1.Рыжиков Ю.И. Имитационное моделирование. Теория и технологии. - СПб.: КОРОНА принт: М.: Альтекс-А, 2004.

2.Варфоломеев В.И. Алгоритмическое моделирование элементов экономических систем: Практикум. Учеб. пособие. - М.: Финансы и статистика, 2000.

.Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. - М.: Высшая школа, 1998

Основы математического моделирования

социально-экономических процессов

Лекция 3

Тема лекции: «Модели систем массового обслуживания»

1. Модели организационных структур управления (ОСУ).

2. Системы и модели массового обслуживания. Классификация систем массового обслуживания (СМО).

3.Модели СМО. Показатели качества функционирования СМО.

  1. МОДЕЛИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

Многие экономические задачи связаны с системами мас-сового обслуживания (СМО), т. е. с такими системами, в кото-рых, с одной стороны, возникают массовые запросы (требо-вания) на выполнение каких-либо услуг, с другой — проис-ходит удовлетворение этих запросов.

СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания (ТМО).

Методами теории массового обслуживания (ТМО) могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых то- чек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организаций. И задача тео-рии массового обслуживания в данном случае сводится к тому, чтобы установить оптимальное соотношение между числом поступающих на базу требований на обслуживание и числом обслуживающих устройств, при котором суммар-ные расходы на обслуживание и убытки от простоя транс-порта были бы минимальными. Теория массового обслужи-вания может найти применение и при расчете площади складских помещений, при этом складская площадь рас-сматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку — как требование.

Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем. Переход к рынку требует от всех субъектов хозяйствования повышенной надежности и эффективности функционирования производств, гибкости и живучести в ответ на динамичные изменения внешней деловой среды, снижения разновидностей рисков и потерь от запоздалых и некомпетентных управленческих решений.

СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО) ЯВЛЯЮТСЯ МАТЕМАТИЧЕСКИМИ МОДЕЛЯМИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

ОРГАНИЗАЦИОННЫЕ СТРУКТУРЫ УПРАВЛЕНИЯ (ОСУ) призваны оперативно отслеживать колебания рынка и принимать в зависимости от складывающихся ситуаций компетентные управленческие решения.

Поэтому становится понятным то внимание, которое уделяют субъекты рынка (транснациональные корпорации, промышленные предприятия, коммерческие банки, фирмы, организации, малые предприятия и т.п.) выбору эффективно функционирующих организационных структур управления (ОСУ).

Взамен широко распространенных в 90-х годах двадцатого столетия ОСУ предприятий (иерархических, матричных, дуальных, параллельных и др.) сегодня в мире эффективно используются АЛЬТЕРНАТИВНЫЕ ФОРМЫ МНОГОФУНКЦИОНАЛЬНЫХ СТРУКТУР, базирующихся на принципах самоорганизации, адаптации, автономности отдельных подразделений с мягкими связями между ними .

Подобной структурой обладает множество передовых зарубежных фирм, в составе которых насчитывается множество рабочих групп с сетевыми взаимоотношениями между ними. Популярными в последнее время считаются организации, ориентированные на минимизацию потребления ресурсов, имеющие явно выраженную горизонтальную форму с координацией, осуществляемой не по иерархическому признаку, а самими рабочими группами, организованными в сеть.

Альтернативными моделями, противостоящими моделям ОСУ, созданным на базе организационной логики и жесткого регулирования, являются нечеткие структуры без иерархических уровней и структурных подразделений , основанные на координации личной ответственности и профилировании самоуправляемых групп со следующими признаками:

а) наличием относительно независимых рабочих групп с участием представителей различных подразделений, создаваемых для решения определенных проектов и проблем, при широкой свободе действий и автономии в области координации задач и принятия решений;

б) ликвидацией жестких связей между подразделениями ОСУ с введением гибких взаимосвязей.

На аналогичных принципах базируется современная концепция минимизированного по ресурсам производства: на подобных предприятиях в качестве организационных единиц используют рабочие группы с широкими полномочиями и большими возможностями самоуправления с конечной целью, заключающейся в создании разумной гибкой организации труда, опирающейся на самостоятельно действующих исполнителей, а не на синтезированные специалистами рациональные структуры; сотрудниками оцениваются возникающие проблемы, определяются возможности контактов со специалистами внутри и за пределами системы. Самоуправляемый персонал основной упор делает на самоорганизацию, заменяющую собой привнесенную извне (задаваемую сверху) жесткую упорядоченную структуру.

Крайним случаем такого подхода является создание безорганизационной, постоянно «размороженной», структуры со следующими свойствами:

Широкое творческое обсуждение любых обрабатываемых процедур и поступающих извне сигналов без учета шаблонных решений и прошлого опыта;

Автономная работа членов групп с самостоятельной организацией временных взаимосвязей и производственных соглашений между партнерами по мере необходимости для решения возникающих проблем.

Заметим, что чрезмерное увлечение одной системной функцией — гибкостью, при полном игнорировании прочих функций — интеграции, идентификации, учета и контроля, всегда опасно для устойчиво функционирующих систем, так как трудно обеспечить успешную координацию в рамках данной организации без высокой квалификации сотрудников, их способности к обучению и совершенствованию, к установлению эффективных контактов и координации.При подобной форме организации основное внимание должно уделяться созданию условий для максимального использования интеллекта человеческих ресурсов и повышения их квалификации, выделению высококвалифицированных специалистов — системщиков, увязывающих действия членов организации для достижения конечной цели. При этом в сфере системной координации существует вероятность возможных срывов, конфликтов и негативных последствий, так как ориентация на способность персонала к самоорганизации и самокоординации носит слишком общий характер. Хотя высокая компетентность, инициатива и сила воли каждого работника и влияет на жизнеспособность любой децентрализованной организации, но в целом они не могут заменить регулирующей функции целой организационной структуры.

Сегодня в мире интенсивно развивается новое направление синтеза ОСУ как обучающихся систем, характеризующихся следующими характерными особенностями:

а) привлечением высококвалифицированных экспертов-специалистов к процессам восприятия и накопления информации, а также к обучению и расширению способностей персонала;

б) постоянным изменением в процессе функционирования, расширением своих способностей взаимодействия с окружающей деловой средой и быстрой адаптацией к постоянно меняющимся внешним и внутренним условиям;

в) широким распространением открытых компьютерных сетей, охватывающих не только отдельные организации, предприятия или их конгломераты, но и целые крупные регионы и даже совокупности стран (ЕЭС, СВИФТ и др.), что обусловливает новые возможности организации и повышения эффективности работы предприятий и отраслей в масштабах всей страны и даже всего мира.

Считается, что ОСУ должна создаваться на принципах многофункциональности и многоаспектности, позволяющих эффективно контролировать сложные рынки и распределять имеющиеся ресурсы. Из анализа мирового опыта функционирования ОСУ в условиях рынка применительно к российской экономике и ее субъектам хозяйствования можно выделить следующие рекомендации:

1) иерархическую ОСУ можно сохранять и применять с минимумом риска для предприятия, если высшее руководство фирмы способно выступать в качестве координаторов проблем, а их подчиненные — в качестве «маленьких предпринимателей»; при этом предпринимательская инициатива и ответственность перемещаются с верхних в нижние эшелоны фирменной власти при исполнении иерархами действительно координаторских функций;

2) матричную ОСУ можно сохранять, если в фирме отсутствует механическое дублирование служебных инстанций и существует органичная сетевая структура с оптимальной коммуникацией;

3) дуальную ОСУ следует применять при ясности и контролируемости как ключевых связей между основными и сопутствующими структурами, так и прозрачности функций самой системы сопутствующих вторичных структур, причем они должны быть многофункциональными и многоцелевыми (типа «учебных центров»), а не специализированными, ориентированными лишь на собственные потребности;

4) параллельную ОСУ следует применять при сформированной конструктивной конкурентной культуре, сотрудничестве партнеров на базе доверия, терпимости, готовности разрешать конфликты, а в острых ситуациях иметь нейтральную «третейскую» инстанцию.

При наличии средних предприятий, состоящих из слабо интегрированных функциональных подразделений, на вторичные структуры можно возложить решение интеграционных проблем, но эффект от реализации этого механизма получится при осознании руководством подразделений создания структурной надстройки как средства поддержки их собственной позиции, а не как угрозу для их существования.

Развитие на стыке кибернетики, вычислительных сетей, менеджмента и социальной психологии направления Groupware (США), связанного с электронными информационными системами, локальными диалоговыми сетями и средствами их поддержки, обеспечивает распределенную работу больших коллективов людей в режиме прямого доступа, позволяя хранить в машинной памяти огромный объем информации (любую деловую, производственно-техническую и прочую документацию, совещания, переговоры организации и даже обычные разговоры ее сотрудников, а также всю предысторию и опыт работы), используя ее при необходимости для корректировки структуры, функций, задач, стратегии и тактики управления в деятельности конкретной организации. Такой подход по-новому раскрывает понятие обучающейся организации, обеспечивает проведение аналогий между процессами, протекающими в живых и в диалоговых компьютерных системах.

Если обучение и память обусловливают выживание живых систем, то аналогично организационное обучение и память влияют на эффективность деятельности любой организации при изменении деловой внешней среды. Обучение, как живых, так и организационных систем обязательно ведет к структурным изменениям. Организационно правильно построенная компьютерная сеть может вызывать качественный сдвиг в улучшении корпоративной деятельности. Гибкость и широта функциональных возможностей рабочих групп, реализующих управление проектами при минимуме затрат на координацию их работы, обусловливают рост и качество исполнения крупных задач, стоящих перед фирмами, необходимость оптимизации функциональных подразделений и организационных структур в целом, изменения связей между функциональными единицами в зависимости от складывающихся ситуаций.

Качество реструктуризации в живых и организационных системах определяется совокупностью унаследованного и приобретенного поведения, эффективностью обучения и памяти, организации инфраструктур, обеспечивающих совершенствование взаимосвязей и диалогов между людьми. Повышение скорости обучения и эффективности памяти организации зависит от способа управления взаимоотношениями и диалогами между людьми. Сегодня коммуникации — это координация действий, а не передача информации. Организационные инфраструктуры должны расширять возможности формирования и поддержки диалогов между людьми независимо от их традиций, культуры и др. Пример тому организация и распространение сети Internet и ей подобных.

Учет специфики моделей разновидностей СМО в практической деятельности субъектов рынка позволяет:

Провести более глубокий анализ особенностей функционирования сложных систем, оценить их качество и эффективность с получением конкретных количественных оценок;

Вскрыть имеющиеся резервы и возможности по оптимизации протекающих процессов, экономии финансовых и прочих ресурсов, снижению рисков в условиях неопределенности деловой внешней и внутренней среды.

Рассмотрим эти вопросы подробнее.

2. СИСТЕМЫ И МОДЕЛИ МАССОВОГО ОБСЛУЖИВАНИЯ. КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО).

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского уче-ного А. К. Эрланга (1878—1929), с его трудами в области проекти-рования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной мате-матики, занимающаяся анализом процессов в системах произ-водства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и пере-дачи информации; автоматических линиях производства и др.

Большой вклад в развитие этой теории внесли российские математики А. Я. Хинчин, Б. В. Гнеденко, А. Н. Колмогоров, Е. С. Вентцель и др.

Предметом теории массового обслуживания является установ-ление зависимостей между характером потока заявок, числом ка-налов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум сум-марных затрат от ожидания обслуживания, потерь времени и ре-сурсов на обслуживание и от простоев каналов обслуживания.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, напри-мер обслуживание продавцами покупателей в магазинах, обслу-живание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслужива-ния, обеспечение телефонных разговоров на телефонной стан-ции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а опера-ции обслуживания выполняются кем-либо или чем-либо, назы-ваемыми каналами (узлами) обслуживания.

Заявки в силу массовости поступления на обслуживание об-разуют потоки, которые до выполнения операций обслужива-ния называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки об-служивания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока за-явок, очереди, каналов обслуживания и выходящего потока за-явок образует простейшую систему массового обслуживания — СМО.

Одним из параметров входного потока заявок является интенсивность входящего потока заявок λ ;

К параметрам каналов обслуживания заявок относятся: интенсивность обслуживания μ , число каналов обслуживания n .

Параметрами очереди являются: максимальное число мест в очереди L max ; дисциплина очереди D («первым пришел - первым ушел» (FIFO); «последним пришел - первым ушел» (LIFO); с приоритетами; случайный выбор из очереди).

Процедура обслуживания считается завершенной, когда заяв-ка на обслуживание покидает систему. Продолжительность ин-тервала времени, требуемого для реализации процедуры обслу-живания, зависит в основном от характера запроса заявки на об-служивание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, например, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой — от формы организации об-служивания и обслуживающего персонала, что может значитель-но повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания.

Под обслуживанием заявок мы будем понимать процесс удовле-творения потребности. Обслуживание имеет различный характер по своей природе. Однако во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства.

В некоторых случаях обслуживание производится одним челове-ком (обслуживание покупателя одним продавцом), в некоторых — группой людей (обслуживание клиента в ресторане), а в некоторых случаях — техническими устройст-вами (продажа газированной воды, бутербродов автоматами).

Совокупность средств, которые осуществляют обслуживание за-явок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одина-ковые заявки, то каналы обслуживания называются однородны-ми.

Совокупность однородных каналов обслуживания называет-ся обслуживающей системой.

В систему массового обслуживания поступает большое коли-чество заявок в случайные моменты времени, длительность обслу-живания которых также является случайной величиной. Последо-вательное поступление заявок в систему обслуживания называет-ся входящим потоком заявок , а последовательность заявок, покидающих систему обслуживания, — выходящим потоком .

Если максимальная длина очереди L max = 0 , то СМО является системой без очередей.

Если L max = N 0 , где N 0 >0 - некоторое положительное число, то СМО является системой с ограниченной очередью.

Если L max → ∞, то СМО является системой с бесконечной очередью.

Случайный характер распределения длительности выполне-ния операций обслуживания, наряду со случайным характером поступления требований на обслуживание, приводит к тому, что в каналах обслуживания протекает случайный процесс, который может быть назван (по аналогии с входным потоком заявок) потоком обслуживания заявок или просто потоком обслуживания .

Заметим, что заявки, поступающие в систему обслуживания, могут покинуть ее и будучи не обслуженными. Например, если покупатель не найдет в магазине нужный товар, то он покидает магазин, будучи не обслуженным. Покупатель может покинуть магазин также, если нужный товар имеется, но большая очередь, а покупатель не располагает временем.

Теория массового обслуживания занимается изучением про-цессов, связанных с массовым обслуживанием, разработкой ме-тодов решения типичных задач массового обслуживания.

При исследовании эффективности работы системы обслужи-вания важную роль играют различные способы расположения в системе каналов обслуживания.

При параллельном расположении каналов обслуживания тре-бование может быть обслужено любым свободным каналом.

Примером такой системы обслуживания является расчетный узел в магазинах самообслуживания, где число каналов обслужи-вания совпадает с числом кассиров-контролеров.

На практике часто обслуживание одной заявки осуществля-ется последовательно несколькими каналами обслуживания .

При этом очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. В таких системах процесс обслуживания носит многофазовый характер , обслуживание заявки одним каналом называется фазой обслуживания . Например, если в магазине са-мообслуживания имеются отделы с продавцами, то покупатели сначала обслуживаются продавцами, а потом уже кассирами-контролерами.

Организация системы обслуживания зависит от воли челове-ка. Под качеством функционирования системы в теории массо-вого обслуживания понимают не то, насколько хорошо выполне-но обслуживание, а то, насколько полно загружена система об-служивания, не простаивают ли каналы обслуживания, не образуется ли очередь .

Работу системы обслуживания характеризуют такие показате-ли, как время ожидания начала обслуживания, длина очереди, возможность получения отказа в обслуживании, возможность простоя каналов обслуживания, стоимость обслуживания и в ко-нечном итоге удовлетворение качеством обслуживания.

Чтобы улучшить качество функционирования системы об-служивания, необходимо определить, каким образом распреде-лить поступающие заявки между каналами обслуживания, какое количество каналов обслуживания необходимо иметь, как распо-ложить или сгруппировать каналы обслуживания или обслужива-ющие аппараты для улучшения показателей. Для решения перечисленных задач существует эффек-тивный метод моделирования, включающий и объединяющий достижения разных наук, в том числе математики.

Потоки событий.

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий — поступле-ния заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты вре-мени, формирует так называемый поток событий .

Примерами таких потоков являются потоки различной природы — потоки товаров, денег, документов; транспортные потоки; потоки клиентов, покупателей; потоки телефонных звонков, переговоров и др. По-ведение системы обычно определяется не одним, а сразу не-сколькими потоками событий. Например, обслуживание поку-пателей в магазине определяется потоком покупателей и пото-ком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является веро-ятностное распределение времени между соседними события-ми. Существуют различные потоки, которые отличаются свои-ми характеристиками.

Поток событий называется регулярным , если в нем события следуют одно за другим через заранее заданные и строго опреде-ленные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегу-лярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зави-сит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени.

То есть стационарным называется поток , для которого математическое ожидание числа требований, поступающих в систему в единицу времени (обозначим λ), не меняется во времени. Таким образом, вероятность поступления в систему определен-ного количества требований в течение заданного промежутка времени?t зависит от его величины и не зависит от начала его отсчета на оси времени.

Стационарность потока означает независимость от времени его вероятностных характеристик; в частности, интенсивность тако-го потока есть среднее число событий в единицу времени и оста-ется величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента t, не определяет того, сколько требований поступит в систему за промежуток вре-мени от t до t+?t.

Например, если на ткацком станке в данный момент произошел обрыв нити, и он устранен ткачихой, то это не оп-ределяет, произойдет новый обрыв на данном станке в следующий момент или нет, тем более это не влияет на веро-ятность возникновения обрыва на других станках.

Поток событий называется потоком без последствия , если число событий, попадающих на один из произвольно выбран-ных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой.

В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждо-го из них, не связаны с аналогичными причинами для других по-купателей.

Поток событий называется ординарным , если вероятность по-падания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попа-дания только одного события.

Другими словами, ординарность потока означает практическую невозмож-ность одновременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы станков, обслуживаемых бригадой ремонтников, одновременно выйдут из строя сразу несколько станков. В ординарном потоке события происходят поодиночке, а не по два (или более) сразу.

Если поток одновременно обладает свойствами стационарнос-ти, ординарности и отсутствием последствия , то такой поток назы-вается простейшим (или пуассоновским) потоком событий .

Мате-матическое описание воздействия такого потока на системы ока-зывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Методы и модели, применяющиеся в теории массового обслуживания (ТМО), можно условно разделить на АНАЛИТИЧЕСКИЕ и ИМИТАЦИОННЫЕ.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некото-рые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

Имитационные методы основаны на моделировании процес-сов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения та-ких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность по-ступления за время t ровно k требований задается формулой:

Важная характеристика СМО — время обслуживания требований в системе.

Время обслуживания одного требования является, как правило, случайной величиной и, следователь-но, может быть описано законом распределения.

Наибольшее распространение в теории и особенно в практических прило-жениях получил экспоненциальный закон распределения времени обслуживания . Функция распределения для этого закона имеет вид:

F(t) = 1 - e - μ t , (2)

т.е. вероятность того, что время обслуживания не превосхо-дит некоторой величины t, определяется формулой (2), где μ — параметр экспоненциального закона распределения времени обслуживания требований в системе. То есть μ - это величина, обратная среднему времени обслуживания ? o6 . :

μ = 1/ ? o6 . (3)

Кроме понятия простейшего потока событий часто приходит-ся пользоваться понятиями потоков других типов.

Поток собы-тий называется потоком Пальма , когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тn являются независимыми, одинаково распределенными, слу-чайными величинами, но в отличие от простейшего потока необязательно распределенными по показательному закону.

Про-стейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так назы-ваемый поток Эрланга . Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего пото-ка. Например, условившись учитывать только каждое второе со-бытие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д. Можно полу-чить потоки Эрланга любого k-го порядка. Очевидно, простей-ший поток есть поток Эрланга первого порядка.

КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

Любое исследование системы массового обслуживания (СМО) начи-нается с изучения того, что необходимо обслуживать, следова-тельно, с изучения входящего потока заявок и его характеристик.

1. В зависимости от условий ожидания начала обслуживания различают:

СМО с потерями (отказами),

СМО с ожиданием.

В СМО с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и теряются. Классическим примером системы с отказами явля-ется телефонная станция. Если вызываемый абонент занят, то требование на соединение с ним получает отказ и теряется.

В СМО с ожиданием требование, застав все обслуживаю-щие каналы занятыми, становится в очередь и ожидает, пока не освободится один из обслуживающих каналов.

СМО, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ограниченной длиной очереди .

СМО, допускающие очередь , но с ограниченным сроком пребывания каждого требования в ней, называются систе-мами с ограниченным временем ожидания.

2. По числу каналов обслуживания СМО делятся на

- одноканальные ;

- многоканальные .

3. По месту нахождения источника требований

СМО делятся на:

- разомкнутые , когда источник требования находится вне системы;

- замкнутые , когда источник находится в самой системе.

Примером разомкнутой системы может служить мастерская по обслуживанию и ремонту бытовой техники. Здесь неисправные устройства — это источник требований на их обслуживание, находятся вне самой системы, число требований можно считать неограни-ченным.

К замкнутым СМО относится, например, станочный участок, в котором станки являются источником неисправностей, и, следовательно, источником требований на их обслу-живание , например, бригадой наладчиков.

Возможны и другие признаки классификации СМО, на-пример, по дисциплине обслуживания , однофазные и многофазные СМО и др.

3. МОДЕЛИ СМО. ПОКАЗАТЕЛИ КАЧЕСТВА ФУНКЦИОНИРОВАНИЯ СМО.

Рассмотрим аналитические модели наиболее распростра-ненных СМО с ожиданием, т.е. таких СМО, в которых требо-вания, поступившие в момент, когда все обслуживающие ка-налы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ СОСТОИТ В СЛЕДУЮЩЕМ.

Система имеет n обслуживающих каналов , каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пуассоновский) поток требований с параметром λ .

Если в момент поступления оче-редного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

Время обслуживания каждого требования t об. — случайная величина, которая подчиняется экспоненциальному за-кону распределения с параметром μ .

СМО С ОЖИДАНИЕМ МОЖНО РАЗБИТЬ НА ДВЕ БОЛЬШИЕ ГРУППЫ: ЗАМКНУТЫЕ И РАЗОМКНУТЫЕ.

К замкнутым относятся системы, в которых поступающий поток требований возникает в самой системе и ограничен .

Например, мастер, задачей кото-рого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится потенциальным источником требований на накладку. В по-добных системах общее число циркулирующих требования конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований , то системы называются разомкнутыми.

Приме-рами подобных систем могут служить магазины, кассы вокза-лов, портов и др. Для этих систем поступающий поток требо-ваний можно считать неограниченным.

Отмеченные особенности функционирования систем этих двух видов накладывают определенные условия на исполь-зуемый математический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей состояний СМО (так называемые фор-мулы Эрланга ).

  1. 1. РАЗОМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ.

Рассмотрим алгоритмы расчета показателей качества функционирования разомкнутой СМО с ожиданием.

При изучении таких систем рассчитывают различные по-казатели эффективности обслуживающей системы. В каче-стве основных показателей могут быть вероятность того, что все каналы свободны или заняты, математическое ожидание длины очереди (средняя длина очереди), коэффициенты за-нятости и простоя каналов обслуживания и др.

Введем в рассмотрение параметр α = λ/μ . Заметим, что если выполняется неравенство α / n < 1, то очередь не может расти безгранично.

Это условие имеет следующий смысл: λ — среднее число требо-ваний, поступающих за единицу времени , 1/μ — среднее время обслуживания одним каналом одного требования, тогда α = λ (1/ μ) — среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступаю-щие требования. Тогда μ - среднее число требований, обслуживаемых одним каналом за единицу времени.

Поэтому условие: α / n < 1, означает, что чис-ло обслуживающих каналов должно быть больше среднего числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требования .

ВАЖНЕЙ-ШИЕ ХАРАКТЕРИСТИКИ РАБОТЫ СМО (для разомкнутой системы массового обслуживания с ожиданием ):

1. Вероятность P 0 того, что все обслуживающие каналы сво-бодны:

2. Вероятность P k того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находя-щихся на обслуживании, не превосходит числа обслуживающих аппаратов, то есть при 1 k n :

3. Вероятность P k того, что в системе находится k требований в случае, когда их число больше числа обслуживающих каналов, то есть при k > n :

4. Вероятность Pn того, что все обслуживающие каналы заняты:

5. Среднее время ожидания требованием начала обслу-живания в системе:

6. Средняя длина очереди:

7. Среднее число свободных от обслуживания каналов:

8. Коэффициент простоя каналов:

9. Среднее число занятых обслуживанием каналов:

10. Коэффициент загрузки каналов

Фирма по обслуживанию и ремонту бытовой техники и электроники имеет филиал: мастерскую по ремонту мобильных телефонов, в которой работает n = 5 опытных мастеров. В среднем в течение рабочего дня от населения поступает в ремонт λ =10 мобильных телефонов. Общее число мобильных телефонов, находящихся в эксплуатации у населения, очень велико, и они независимо друг от друга в различное время выходят из строя. Поэтому есть основания считать, что поток заявок на ремонт ап-паратуры является случайным, пуассоновским. В свою оче-редь каждый мобильный телефон в зависимости от характера неисправ-ности также требует различного случайного времени на ре-монт. Время на проведение ремонта зависит во многом от серьезности полученного повреждения, квалификации мас-тера и множества других причин. Пусть статистика показа-ла, что время ремонта подчиняется экспоненциальному за-кону; при этом в среднем в течение рабочего дня каждый из мастеров успевает отремонтировать μ = 2,5 мобильных телефона.

Требуется оценить работу филиала фирмы по ремонту -бытовой техники и электроники, рассчитав ряд основных характеристик данной СМО.

За единицу времени принимаем 1 рабочий день (7 часов).

1. Определим параметр

α = λ / μ = 10/ 2,5 = 4.

Так как α < n = 5, то можно сделать вывод: очередь не может расти безгранично.

2. Вероятность P 0 того, что все мастера свободны от ремонта аппаратуры, равна согласно (4):

P0 = (1 + 4 + 16/2 + 64/3! + 256/4! + 1024/5!(1- 4/5)) -1 = (77) -1 ≈ 0,013.

3. Вероятность P5 того, что все мастера заняты ремонтом, находим по формуле (7) (Pn при n=5):

P5 = P0 1024 /5! (1-4/5) = P0 256 /6 ≈ 0,554.

Это означает, что 55,4% времени мастера полностью за-гружены работой.

4. Среднее время обслуживания (ремонта) одного аппарата согласно формуле (3):

? o6. = 1/ μ = 7/2,5 = 2,8 ч./аппарат (важно: единица времени - 1 рабочий день, т. е. 7 часов).

5. В среднем время ожидания каждого неисправного мобильного телефона начала ремонта равно по формуле (8):

Ож. = Pn/(μ (n-α)) = 0,554 2,8/(5 - 4) =1,55 часа.

6. Очень важной характеристикой является средняя длина очереди, которая определяет необходимое место для хранения аппаратуры, требующей ремонта; находим ее по формуле (9):

Оч. = 4 P5/ (5-4) ≈ 2,2 моб. телефона.

7. Определим среднее число мастеров, свободных от ра-боты, по формуле (10):

Ñ0 = P0 (5 + 16 + 24+ 64/3 + 32/3) = P0 77 ≈ 1 мастер.

Таким образом, в среднем в течение рабочего дня ремонтом заняты четыре мастера из пяти.

  1. 2. ЗАМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ.

Перейдем к рассмотрению алгоритмов расчета характери-стик функционирования замкнутых СМО.

Поскольку система замкнутая, то к постановке задачи следует добавить условие: поток поступающих требований ограничен, т.е. в системе обслуживания одновременно не может находиться больше m требований (m — число обслуживаемых объектов).

За критерий, характеризующий качество функциониро-вания рассматриваемой системы, выберем отношение средней длины очереди к наибольшему числу требований, находя-щихся одновременно в обслуживающей системе — коэффици-ент простоя обслуживаемого объекта .

В качестве другого критерия возьмем отношение среднего числа незанятых об-служивающих каналов к их общему числу — коэффициент простоя обслуживаемого канала .

Первый из названных критериев характеризует потери времени из-за ожидания начала обслуживания ; второй по-казывает полноту загрузки обслуживающей системы .

Очевидно, что очередь может возникнуть, лишь когда число каналов обслуживания меньше наибольшего числа требований, нахо-дящихся одновременно в обслуживающей системе (n < m).

Приведем последовательность расчетов характеристик замкнутых СМО и необходимые формулы.

ПАРАМЕТРЫ ЗАМКНУТЫХ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

1. Определим параметр α = λ / μ — показатель загрузки системы , то есть математическое ожидание числа требований, поступающих в систему за время, равное средней длитель-ности обслуживания (1/μ = ?o6.).

2. Вероятность P k того, что занято k обслуживающих каналов при условии, что число требований, находящихся в системе, не превосходит числа обслуживающих каналов системы (то есть при m n ) :

3. Вероятность P k того, что в системе находится k требований для случая, когда их число больше числа обслуживающих каналов (то есть при k > n , при этом k m ):

4. Вероятность P 0 того, что все обслуживающие каналы сво-бодны, определим, используя очевидное условие:

Тогда величина P 0 будет равна:

5. Среднее число M оч. требований, ожидающих начала обслу-живания (средняя длина очереди):

Или с учетом формулы (15)

6. Коэффициент простоя обслуживаемого требования (объекта):

7. Среднее число M требований, находящихся в обслуживаю-щей системе, обслуживаемых и ожидающих обслуживания:

где для вычислений первой и второй суммы применяются формулы (14) и (15) соответственно.

8. Среднее число свободных обслуживающих каналов

где P k вычисляется по формуле (14).

9. Коэффициент простоя обслуживающего канала

Рассмотрим пример расчета характеристик замкнутой СМО.

Рабочий обслуживает группу автоматов, состоя-щую из 3 станков. Поток поступающих требований на обслу-живание станков является пуассоновским с параметром λ = 2 ст./ч.

Обслуживание одного станка занимает у рабочего в среднем 12 минут, а время обслуживания подчинено экспоненци-альному закону.

Тогда 1/μ = 0,2 ч./ст., т.е. μ = 5 ст./ч., Параметр α = λ/μ = 0,4.

Необходимо определить среднее число автоматов, ожи-дающих обслуживания, коэффициент простоя автомата, ко-эффициент простоя рабочего.

Обслуживающим каналом здесь является рабочий; так как станки обслуживает один рабочий, то n = 1 . Общее число требований не может пре-взойти числа станков, т.е. m = 3 .

Система может находиться в четырех различных состоя-ниях: 1) все станки работают; 2) один стоит и обслуживается рабочим, а два работают; 3) два стоят, один обслуживается, один ждет обслуживания; 4) три стоят, из них один обслу-живается, а два ждут очереди.

Для ответа на поставленные вопросы можно воспользо-ваться формулами (14) и (15).

P1 = P0 6 0,4/2 = 1,2 P0;

P2 = P0 6 0,4 0,4 = 0,96 P0;

P3 = P0 6 0,4 0,4 0,4= 0,384 P0;

Сведем вычисления в таблицу (рис. 1).

∑P k /P 0 = 3,5440

∑ (k-n)P k = 0,4875

∑k P k = 1,2053

Рис. 1. Вычисление характеристик замкнутой СМО.

В этой таблице первым вычисляется третий столбец, т.е. отношения P k /P 0 при k = 0,1,2,3.

Затем, суммируя величины по третьему столбцу и учитывая, что ∑ P k = 1, получаем 1/P 0 = 3,544. Откуда Р 0 ≈ 0,2822.

Умножая значения, стоящие в третьем столбце, на Р 0 , получаем в соответствующих строках значения четвертого столбца.

Величина Р 0 = 0,2822, рав-ная вероятности того, что все автоматы работают, может быть истолкована как вероятность того, что рабочий свобо-ден. Получается, что в рассматриваемом случае рабочий будет свободен более 1/4 всего рабочего времени. Однако это не оз-начает, что «очередь» станков, ожидающих обслуживания, всегда будет отсутствовать. Математическое ожидание числа автоматов, стоящих в очереди, равно

Суммируя значения, стоящие в пятом столбце таблицы, получим среднюю длину очереди M оч. = 0,4875. Следова-тельно, в среднем из трех станков 0,49 станка будет про-стаивать в ожидании, пока освободится рабочий.

Суммируя значения, стоящие в шестом столбце таблицы, получим математическое ожи-дание числа простаивающих станков (ремонтируемых и ожидающих ремонта): М = 1,2053. То есть в среднем 1,2 станка не будет выдавать продукцию.

Ко-эффициент простоя станка равен К пр.об. = M оч. /3 = 0,1625. То есть каждый станок простаивает примерно 0,16 часть рабо-чего времени в ожидании, пока рабочий освободится.

Коэффициент простоя рабочего в данном случае совпадает с P 0 , так как n = 1 (все обслуживающие каналы свободны), поэтому

К пр.кан. = N 0 /n = 0,2822.

Абчук В.А. Экономико-математические методы: Элементарная математика и логика. Методы исследования операций. - СПб.: Союз, 1999. - 320.

Елтаренко Е.А. Исследование операций (системы массового обслуживания, теория игр, модели управления запасами). Учебное пособие. - М.: МИФИ, 2007. - С. 157.

Фомин Г. П. Математические методы и модели в коммерческой дея-тельности: Учебник. — 2-е изд., перераб. и доп. — М.: Финан-сы и статистика, 2005. — 616 с: ил.

Шелобаев С. И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. — М.: ЮНИТИ- ДАНА, 2001. - 367 с.

Экономико-математические методы и прикладные модели: Учебное пособие для вузов/ В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. — М.: ЮНИТИ, 1999. - 391 с.

ВВЕДЕНИЕ

ГЛАВА I. ПОСТАНОВКА ЗАДАЧ МАССОВОГО ОБСЛУЖИВАНИЯ

1.1 Общие понятие теории массового обслуживания

1.2 Моделирование систем массового обслуживания

1.3 Графы состояний СМО

1.4 Случайные процессы

Глава II. УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

2.1 Уравнения Колмогорова

2.2 Процессы «рождения – гибели»

2.3 Экономико-математическая постановка задач массового обслуживания

Глава III. МОДЕЛИ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

3.1 Одноканальная СМО с отказами в обслуживании

3.2 Многоканальная СМО с отказами в обслуживании

3.3 Модель многофазной системы обслуживания туристов

3.4 Одноканальная СМО с ограниченной длиной очереди

3.5 Одноканальная СМО с неограниченной очередью

3.6 Многоканальная СМО с ограниченной длиной очереди

3.7 Многоканальная СМО с неограниченной очередью

3.8 Анализ системы массового обслуживания супермаркета

ЗАКЛЮЧЕНИЕ


Введение

В настоящее время появилось большое количество литературы, посвященной непосредственно теории массового обслуживания, развитию ее математических аспектов, а также различных сфер ее приложения - военной, медицинской, транспортной, торговле, авиации и др.

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. Большой вклад в развитие этой теории внесли российские математики А.Я. Хинчин, Б.В. Гнеденко, А.Н. Колмогоров, Е.С. Вентцель и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.

В коммерческой деятельности применение теории массового обслуживания пока не нашло желаемого распространения.

В основном это связано с трудностью постановки задач, необходимостью глубокого понимания содержания коммерческой деятельности, а также надежного и точного инструментария, позволяющего просчитывать в коммерческой деятельности различные варианты последствий управленческих решений.


Глава I . Постановка задач массового обслуживание

1.1 Общие понятие теории массового обслуживания

Природа массового обслуживания, в различных сферах, весьма тонка и сложна. Коммерческая деятельность связана с выполнением множества операций на этапах движения, например товарной массы из сферы производства в сферу потребления. Такими операциями являются погрузка товаров, перевозка, разгрузка, хранение, обработка, фасовка, реализация. Кроме таких основных операций процесс движения товаров сопровождается большим количеством предварительных, подготовительных, сопутствующих, параллельных и последующих операций с платежными документами, тарой, деньгами, автомашинами, клиентами и т.п.

Для перечисленных фрагментов коммерческой деятельности характерны массовость поступления товаров, денег, посетителей в случайные моменты времени, затем их последовательное обслуживание (удовлетворение требований, запросов, заявок) путем выполнения соответствующих операций, время выполнения которых носит также случайный характер. Все это создает неравномерность в работе, порождает недогрузки, простой и перегрузки в коммерческих операциях. Много неприятностей доставляют очереди, например, посетителей в кафе, столовых, ресторанах, или водителей автомобилей на товарных базах, ожидающих разгрузки, погрузки или оформления документов. В связи с этим возникают задачи анализа существующих вариантов выполнения всей совокупности операций, например, торгового зала супермаркета, ресторана или в цехах производства собственной продукции для целей оценки их работы, выявления слабых звеньев и резервов для разработки в конечном итоге рекомендаций, направленных на увеличение эффективности коммерческой деятельности.

Кроме того, возникают другие задачи, связанные с созданием, организацией и планированием нового экономичного, рационального варианта выполнения множества операций в пределах торгового зала, кондитерского цеха, всех звеньев обслуживания ресторана, кафе, столовой, планового отдела, бухгалтерии, отдела кадров и др.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, например обслуживание продавцами покупателей в магазинах, обслуживание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслуживания, обеспечение телефонных разговоров на телефонной станции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а операции обслуживания выполняются кем-либо или чем-либо, называемыми каналами (узлами) обслуживания. Роль заявок в коммерческой деятельности выполняют товары, посетители, деньги, ревизоры, документы, а роль каналов обслуживания - продавцы, администраторы, повара, кондитеры, официанты, кассиры, товароведы, грузчики, торговое оборудование и др. Важно заметить, что в одном варианте, например, повар в процессе приготовления блюд является каналом обслуживания, а в другом - выступает в роли заявки на обслуживание, например к заведующему производством за получением товара.

Заявки в силу массовости поступления на обслуживание образуют потоки, которые до выполнения операций обслуживания называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки обслуживания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока заявок, очереди, каналов обслуживания и выходящего потока заявок образует простейшую одноканальную систему массового обслуживания - СМО.

Под системой понимается совокупность взаимосвязанных и. целенаправленно взаимодействующих частей (элементов). Примерами таких простейших СМО в коммерческой деятельности являются места приема и обработки товаров, узлы расчета с покупателями в магазинах, кафе, столовых, рабочие места экономист та, бухгалтера, коммерсанта, повара на раздаче и т.д.

Процедура обслуживания считается завершенной, когда заявка на обслуживание покидает систему. Продолжительность интервала времени, требуемого для реализации процедуры обслуживания, зависит в основном от характера запроса заявки на обслуживание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой - от формы организации обслуживания и обслуживающего персонала, что может значительно повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания. Например, овладение кассирами-контролерами работы «слепым» методом на кассовом аппарате позволило увеличить пропускную способность узлов расчета в 1,3 раза и сэкономить время, затрачиваемое на расчеты с покупателями по каждой кассе более чем на 1,5 ч в день. Внедрение единого узла расчета в супермаркете дает ощутимые преимущества покупателю. Так, если при традиционной форме расчетов время обслуживания одного покупателя составляло в среднем 1,5 мин, то при введении единого узла расчета - 67 с. Из них 44 с уходят на оформление покупки в секции и 23 с непосредственно на расчеты за покупки. Если покупатель делает несколько покупок в разных секциях, то потери времени сокращаются при приобретении двух покупок в 1,4 раза, трех - в 1,9, пяти - в 2,9 раза.

Под обслуживанием заявок будем понимать процесс удовлетворения потребности. Обслуживание имеет различный характер по своей природе. Однако, во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства. В некоторых случаях обслуживание производится одним человеком (обслуживание покупателя одним продавцом, в некоторых - группой людей (обслуживание больного врачебной комиссией в поликлинике), а в некоторых случаях - техническими устройствами (продажа газированной воды, бутербродов автоматами). Совокупность средств, которые осуществляют обслуживание заявок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одинаковые заявки, то каналы обслуживания называются однородными. Совокупность однородных каналов обслуживания называется обслуживающей системой.

В систему массового обслуживания поступает большое количество заявок в случайные моменты времени, длительность обслуживания которых также является случайной величиной. Последовательное поступление заявок в систему обслуживания называется входящим потоком заявок, а последовательность заявок, покидающих систему обслуживания,- выходящим потоком.

Случайный характер распределения длительности выполнения операций обслуживания наряду со случайным характером поступления требований на обслуживание приводит к тому, что в каналах обслуживания протекает случайный процесс, который "может быть назван (по аналогии с входным потоком заявок) потоком обслуживания заявок или просто потоком обслуживания.

Заметим, что заявки, поступающие в систему обслуживания, могут покинуть ее и будучи не обслуженными. Например, если покупатель не найдет в магазине нужный товар, то он покидает магазин, будучи не обслуженным. Покупатель может покинуть магазин также, если нужный товар имеется, но большая очередь, а покупатель не располагает временем.

Теория массового обслуживания занимается изучением процессов, связанных с массовым обслуживанием, разработкой методов решения типичных задач массового обслуживания.

При исследовании эффективности работы системы обслуживания важную роль играют различные способы расположения в системе каналов обслуживания.

При параллельном расположении каналов обслуживания требование может быть обслужено любым свободным каналом. Примером такой системы обслуживания является расчетный узел в магазинах самообслуживания, где число каналов обслуживания совпадает с числом кассиров-контролеров.

На практике часто обслуживание одной заявки осуществляется последовательно несколькими каналами обслуживания. При этом очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. В таких системах процесс обслуживания носит многофазовый характер, обслуживание заявки одним каналом называется фазой обслуживания. Например, если в магазине самообслуживания имеются отделы с продавцами, то покупатели сначала обслуживаются продавцами, а потом уже кассирами-контролерами.

Организация системы обслуживания зависит от воли человека. Под качеством функционирования системы в теории массового обслуживания понимают не то, насколько хорошо выполнено обслуживание, а то, насколько полно загружена система обслуживания, не простаивают ли каналы обслуживания, не образуется ли очередь.

В коммерческой деятельности заявки, поступающие в систему массового обслуживания, выступают с высокими претензиями еще и на качество обслуживания в целом, которое включает не только перечень характеристик, исторически сложившихся и рассматриваемых непосредственно в теории массового обслуживания, но и дополнительные характерные для специфики коммерческой деятельности, в частности отдельных процедур обслуживания, требования, к уровню которых к настоящему времени сильно возросли. В связи с этим необходимо учитывать еще и показатели коммерческой деятельности.

Работу системы обслуживания характеризуют такие показатели. Как время ожидания начала обслуживания, длина очереди, возможность получения отказа в обслуживании, возможность простоя каналов обслуживания, стоимость обслуживания и в конечном итоге удовлетворение качеством обслуживания, которое еще включает показатели коммерческой деятельности. Чтобы улучшить качество функционирования системы обслуживания, необходимо определить, каким образом распределить поступающие заявки между каналами обслуживания, какое количество каналов обслуживания необходимо иметь, как расположить или сгруппировать каналы обслуживания или обслуживающие аппараты для улучшения показателей коммерческой деятельности. Для решения перечисленных задач существует эффективный метод моделирования, включающий и объединяющий достижения разных наук, в том числе математики.

1.2 Моделирование систем массового обслуживания

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий - поступления заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты времени, формирует так называемый поток событий. Примерами таких потоков в коммерческой деятельности являются потоки различной природы - товаров, денег, документов, транспорта, клиентов, покупателей, телефонных звонков, переговоров. Поведение системы обычно определяется не одним, а сразу несколькими потоками событий. Например, обслуживание покупателей в магазине определяется потоком покупателей и потоком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является вероятностное распределение времени между соседними событиями. Существуют различные потоки, которые отличаются своими характеристиками.

Поток событий называется регулярным, если в нем события следуют одно за другим через заранее заданные и строго определенные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегулярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зависит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени. Стационарность потока означает независимость от времени его вероятностных характеристик, в частности, интенсивность такого потока есть среднее число событий в единицу времени и остается величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Поток событий называется потоком без последствия, если число событий, попадающих на один из произвольно выбранных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой. В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждого из них, не связаны с аналогичными причинами для других покупателей.

Поток событий называется ординарным, если вероятность попадания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попадания только одного события. В ординарном потоке события происходят поодиночке, а не по два или более разу. Если поток одновременно обладает свойствами стационарности, ординарности и отсутствием последствия, то такой поток называется простейшим (или пуассоновским) потоком событий. Математическое описание воздействия такого потока на системы оказывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Рассмотрим на оси времени некоторый промежуток времени t. Допустим, вероятность попадания случайного события на этот промежуток p, а полное число возможных событий - п. При наличии свойства ординарности потока событий вероятность р должна быть достаточно малой величиной, а я - достаточно большим числом, поскольку рассматриваются массовые явления. В этих условиях для вычисления вероятности попадания на промежуток времени t некоторого числа событий т можно воспользоваться формулой Пуассона:

P m, n = a m _e -a ; (m=0,n),

где величина а = пр - среднее число событий, попадающих на промежуток времени t, которое можно определить через интенсивность потока событий Xследующим образом: a= λ τ

Размерность интенсивности потока X есть среднее число событий в единицу времени. Между п и λ, р и τ имеется следующая связь:

где t- весь промежуток времени, на котором рассматривается действие потока событий.

Необходимо определить распределение интервала времени Т между событиями в таком потоке. Поскольку это случайная величина, найдем ее функцию распределения. Как известно из теории вероятностей, интегральная функция распределения F(t) есть вероятность того, что величина T будет меньше времени t.

По условию в течение времени T не должно произойти ни одного события, а на интервале времени t должно появиться хотя бы одно событие. Эта вероятность вычисляется с помощью вероятности противоположного события на промежутке времени (0; t), куда не попало ни одного события, т.е. m= 0, тогда

F(t)=1-P 0 =1-(a 0 *e -a)0!=1-e -Xt ,t≥0

Для малых ∆tможно получить приближенную формулу, получаемую заменой функции e - Xt , только двумя членами разложения в ряд по степеням ∆t, тогда вероятность попадания на малый промежуток времени ∆t хотя бы одного события составляет

P(T<∆t)=1-e - λ t ≈1- ≈ λΔt

Плотность распределения промежутка времени между двумя последовательными событиями получим, продифференцировав F(t) по времени,

f(t)= λe- λ t ,t≥0

Пользуясь полученной функцией плотности распределения, можно получить числовые характеристики случайной величины Т: математическое ожидание М (Т), дисперсию D(T) и среднее квадратическое отклонение σ(Т).

М(Т)= λ ∞ ∫ 0 t*e - λt *dt=1/ λ ; D(T)=1/ λ 2 ; σ(T)=1/ λ .

Отсюда можно сделать следующий вывод: средний интервал времени Т между любыми двумя соседними событиями в простейшем потоке в среднем равен 1/λ , и его среднее квадратическое отклонение также равно 1/λ, λ где, - интенсивность потока, т.е. среднее число событий, происходящих в единицу времени. Закон распределения случайной величины, обладающей такими свойствами М(Т) = Т, называется показательным (или экспоненциальным), а величина λ, является параметром этого показательного закона. Таким образом, для простейшего потока математическое ожидание интервала времени между соседними событиями равно его среднеквадратическому отклонению. В этом случае вероятность того, что число заявок, поступающих на обслуживание за промежуток времени t, равно к, определяется по закону Пуассона:

P k (t)=(λt) k / k! *e -λ t ,

где λ - интенсивность поступления потока заявок, среднее число событий в СМО за единицу времени, например[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] .

Для такого потока заявок время между двумя соседними заявками Т распределено экспоненциально с плотностью вероятности:

ƒ(t)= λe - λ t .

Случайное время ожидания в очереди начала обслуживания t оч тоже можно считать распределенным экспоненциально:

ƒ (t оч)=V*e - v t оч,

где v - интенсивность потока прохода очереди, определяемая средним числом заявок, проходящих на обслуживание в единицу времени:

где Т оч - среднее время ожидания обслуживания в очереди.

Выходной поток заявок связан с потоком обслуживания в канале, где длительность обслуживания t обс является тоже случайной величиной и подчиняется во многих случаях показательному закону распределения с плотностью вероятности:

ƒ(t обс)=µ*е µ t обс,

где µ - интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени:

µ=1/ t обс [чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] ,

где t обс - среднее время обслуживания заявок.

Важной характеристикой СМО, объединяющей показатели λи µ , является интенсивность нагрузки: ρ= λ/ µ, которая показывает степень согласования входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

Кроме понятия простейшего потока событий часто приходится пользоваться понятиями потоков других типов. Поток событий называется потоком Пальма, когда в этом потоке промежутки времени между последовательными событиями T 1 , T 2 , ..., Т k ..., Т n являются независимыми, одинаково распределенными, случайными величинами, нов отличие от простейшего потока не обязательно распределенными по показательному закону. Простейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так называемый поток Эрланга.

Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего потока.

Например, условившись учитывать только каждое второе событие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д.

Можно получить потоки Эрланга любого к-го порядка. Очевидно, простейший поток есть поток Эрланга первого порядка.

Любое исследование системы массового обслуживания начинается с изучения того, что необходимо обслуживать, следовательно, с изучения входящего потока заявок и его характеристик.

Поскольку моменты времени tи интервалы времени поступления заявок τ, затем продолжительность операций обслуживания t обс и время ожидания в очереди t оч, а также длина очереди l оч - случайные величины, то, следовательно, характеристики состояния СМО носят вероятностный характер, а для их описания следует применять методы и модели теории массового обслуживания.

Перечисленные выше характеристики к, τ, λ, L оч, Т оч, v, t обс, µ, р, Р k являются наиболее общими для СМО, которые являются обычно лишь некоторой частью целевой функции, поскольку необходимо учитывать еще и показатели коммерческой деятельности.

1.3 Графы состояний СМО

При анализе случайных процессов с дискретными состояниями и непрерывным временем удобно пользоваться вариантом схематичного изображения возможных состояний СMO (рис. 6.2.1) в виде графа с разметкой его возможных фиксированных состояний. Состояния СМО изображаются обычно либо прямоугольниками, либо кружками, а возможные направления переходов из одного состояния в другое ориентированы стрелками, соединяющими эти состояния. Например, размеченный граф состояний одноканальной системы случайного процесса обслуживания в газетном киоске приведен на рис. 1.3.

12

Рис. 1.3. Размеченный граф состояний СМО

Система может находиться в одном из трех состояний: S 0 -канал свободен, простаивает, S 1 - канал занят обслуживанием, S 2 - канал занят обслуживанием и одна заявка в очереди. Переход системы из состояния S 0 в S l происходит под воздействием простейшего потока заявок интенсивностью λ 01 а из состояния S l в состояние S 0 систему переводит поток обслуживания с интенсивностью λ 01 . Граф состояний системы обслуживания с проставленными интенсивностями потоков у стрелок называется размеченным. Поскольку пребывание системы в том или ином состоянии носит вероятностный характер, то вероятность:p i (t) того, что система будет находиться в состоянии S i в момент времени t, называется вероятностью i-го состояния СМО и определяется числом поступивших заявок k на обслуживание.

Случайный процесс, происходящий в системе, заключается в том, что в случайные моменты времени t 0 , t 1, t 2 ,..., t k ,..., t n система оказывается в том или другом заранее известном дискретном состоянии последовательно. Такая. случайная последовательность событий называется Марковской цепью, если для каждого шага вероятность перехода из одного состояния S t в любое другое Sjне зависит от того, когда и как система перешла в состояние S t . Описывается марковская цепь с помощью вероятности состояний, причем они образуют полную группу событий, поэтому их сумма равна единице. Если вероятность перехода не зависит от номера к, то марковская цепь называется однородной. Зная начальное состояние системы обслуживания, можно найти вероятности состояний для любого значения к-числа заявок поступивших на обслуживание.

1.4 Случайные процессы

Переход СМО из одного состояния в другое происходит случайным образом и представляет собой случайный процесс. Работа СМО - случайный процесс с дискретными состояниями, поскольку его возможные состояния во времени можно заранее перечислить. Причем переход из одного состояния в другое, происходит скачкообразно, в случайные моменты времени, по этому он называется процессом с непрерывным временем. Таким образом, работа СМО представляет собой случайный процесс с дискретными состояниями и непрерывным; временем. Например, в процессе обслуживания оптовых покупателей на фирме «Кристалл» в Москве можно фиксировать заранее все возможные состояния простейших. СМО, которые входят в весь цикл, коммерческого обслуживания от момента заключения договора на поставку ликероводочной продукции, ее оплаты, оформления документов, отпуска и получения продукции, догрузки и вывоза со склада готовой продукции.

Из множества разновидностей случайных процессов наибольшее распространение в коммерческой деятельности получили такие процессы, для которых в любой момент времени характеристики процесса в будущем зависят только от его состояния в настоящий момент и не зависят от предыстории - от прошлого. Например, возможность получения с завода «Кристалл» ликероводочной продукции зависит от наличия ее на складе готовой продукции, т.е. его состояния в данный момент, и не зависит от того, когда и как получали и увозили в прошлом эту продукцию другие покупатели.

Такие случайные процессы называются процессами без последствия, или марковскими, в которых при фиксированном настоящем будущее состояние СМО не зависит от прошлого. Случайный процесс, протекающий в системе, называется марковским случайным процессом, или «процессом без последствия», если он обладает следующим свойством: для каждого момента времени t 0 вероятность любого состояния t > t 0 системы S i , - в будущем (t>t Q) зависит только от ее состояния в настоящем (при t = t 0) и не зависит от того, когда и каким образом система пришла в это состояние, т.е. оттого, как развивался процесс в прошлом.

Марковские случайные процессы делятся на два класса: процессы с дискретными и непрерывными состояниями. Процесс с дискретными состояниями возникает в сиcтемах, обладающих только некоторыми фиксированными состояниями, между которыми возможны скачкообразные переходы в некоторые, заранее не известные моменты времени. Рассмотрим пример процесса с дискретными состояниями. В офисе фирмы имеются два телефона. Возможны следующие состояния у этой системы обслуживания: S o -телефоны свободны; S l - один из телефонов занят; S 2 - оба телефона заняты.

Процесс, протекающий в этой системе, состоит в том, что система случайным образом переходит скачком из одного дискретного состояния в другое.

Процессы с непрерывными состояниями отличаются непрерывным плавным переходом из одного состояния в другое. Эти процессы более характерны для технических устройств, нежели для экономических объектов, где обычно лишь приближенно можно говорить о непрерывности процесса (например, непрерывном расходовании запаса товара), тогда как фактически всегда процесс имеет дискретный характер. Поэтому далее мы будем рассматривать только процессы с дискретными состояниями.

Марковские случайные процессы с дискретными состояниями в свою очередь подразделяются на процессы с дискретным временем и процессы с непрерывным временем. В первом случае переходы из одного состояния в другое происходят только в определенные, заранее фиксированные моменты времени, тогда как в промежутки между этими моментами система сохраняет свое состояние. Во втором случае переход системы из состояния в состояние может происходить в любой случайный момент времени.

На практике процессы с непрерывным временем встречаются значительно чаще, поскольку переходы системы из одного состояния в другое обычно происходят не в какие-то фиксированные моменты времени, а в любые случайные моменты времени.

Для описания процессов с непрерывным временем используется модель в виде так называемой марковской цепи с дискретными состояниями системы, или непрерывной марковской цепью.


Глава II . Уравнения описывающие системы массового обслуживания

2.1 Уравнения Колмогорова

Рассмотрим математическое описание марковского случайного процесса с дискретными состояниями системы S o , S l , S 2 (см. рис. 6.2.1) и непрерывным временем. Полагаем, что все переходы системы массового обслуживания из состояния S i в состояние Sjпроисходят под воздействием простейших потоков событий с интенсивностями λ ij , а обратный переход под воздействием другого потока λ ij ,. Введем обозначение p i как вероятность того, что в момент времени t система находится в состоянии S i . Для любого момента времени tсправедливо записать нормировочное условие-сумма вероятностей всех состояний равна 1:

Σp i (t)=p 0 (t)+ p 1 (t)+ p 2 (t)=1

Проведем анализ системы в момент времени t, задав малое приращение времени Δt, и найдем вероятность р 1 (t+ Δt) того, что система в момент времени (t+ Δt) будет находиться в состоянии S 1 которое достигается разными вариантами:

а) система в момент t с вероятностью p 1 (t) находилась в состоянии S 1 и за малое приращение времени Δt так и не перешла в другое соседнее состояние - ни в S 0 , ни bS 2 . Вывести систему из состояния S 1 можно суммарным простейшим потоком c интенсивностью (λ 10 +λ 12), поскольку суперпозиция простейших потоков также является простейшим потоком. На этом основании вероятность выхода из состояния S 1 за малый промежуток времени Δtприближенно равна (λ 10 +λ 12)* Δt. Тогда вероятность невыхода из этого состояния равна .Bсоответствии с этим вероятность того, что система останется в состоянии Siна основании теоремы умножения вероятностей, равна:

p 1 (t) ;

б)система находилась в соседнем состоянии S o и за малое время Δt перешла в состояние S o Переход системы происходит под воздействием потока λ 01 с вероятностью, приближенно равной λ 01 Δt

Вероятность того, что система будет находиться в состоянии S 1 , в этом варианте равна p o (t)λ 01 Δt;

в) система находилась в состоянии S 2 и за время Δt перешла в состояние S 1 под воздействием потока интенсивностью λ 21 с вероятностью, приближенно равной λ 21 Δt. Вероятность того, что система будет находиться в состоянии S 1 , равна p 2 (t) λ 21 Δt.

Применяя теорему сложения вероятностей для этих вариантов, получим выражение:

p 2 (t+Δt)= p 1 (t) + p o (t)λ 01 Δt+p 2 (t) λ 21 Δt ,

которое можно записать иначе:

p 2 (t+Δt)-p 1 (t)/ Δt= p o (t)λ 01 + p 2 (t) λ 21 - p 1 (t) (λ 10 +λ 12) .

Переходя к пределу при Δt-> 0, приближенные равенства перейдут в точные, и тогда получим производную первого порядка

dp 2 /dt= p 0 λ 01 +p 2 λ 21 -p 1 (λ 10 +λ 12) ,

что является дифференциальным уравнением.

Проводя рассуждения аналогичным образом для всех других состояний системы, получим систему дифференциальных уравнений, которые называются уравнениями А.Н. Колмогорова:

dp 0 /dt= p 1 λ 10 ,

dp 1 /dt= p 0 λ 01 +p 2 λ 21 -p 1 (λ 10 +λ 12) ,

dp 2 /dt= p 1 λ 12 +p 2 λ 21 .

Для составления уравнений Колмогорова существуют общие правила.

Уравнения Колмогорова позволяют вычислить все вероятности состояний СМО S i в функции времени p i (t). В теории случайных процессов показано, что если число состояний системы конечно, а из каждого из них можно перейти в любое другое состояние, то существуют предельные (финальные) вероятности состояний, которые показывают на среднюю относительную величину времени пребывания системы, в этом состоянии. Если предельная вероятность состояния S 0 – равна p 0 = 0,2, то, следовательно, в среднем 20% времени, или 1/5 рабочего времени, система находится в состоянии S o . Например, при отсутствии заявок на обслуживание к = 0, р 0 = 0,2,; следовательно, в среднем 2 ч в день система находится в состоянии S o и простаивает, если продолжительность рабочего дня составляет 10 ч.

Поскольку предельные вероятности системы постоянны, то заменив в уравнениях Колмогорова соответствующие производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим СМО. Такую систему уравнений составляют по размеченному графу состояний СМО по следующим правилам: слева от знака равенства в уравнении стоит предельная вероятность р i рассматриваемого состояния Siумноженная на суммарную интенсивность всех потоков, выводящих (выходящие стрелки) изданного состояния S i систему, а справа от знака равенства - сумма произведений интенсивности всех потоков, входящих (входящие стрелки) в состояние Siсистему, на вероятность тех состояний, из которых эти потоки исходят. Для решения подобной системы необходимо добавить еще одно уравнение, определяющее нормировочное условие, поскольку сумма вероятностей всех состояний СМО равна 1: n

Например, для СМО, имеющей размеченный граф из трех состояний S o , S 1 , S 2 рис. 6.2.1, система уравнений Колмогорова, составленная на основе изложенного правила, имеет следующий вид:

Для состояния S o → p 0 λ 01 = p 1 λ 10

Для состояния S 1 →p 1 (λ 10 +λ 12) = p 0 λ 01 +p 2 λ 21

Для состояния S 2 → p 2 λ 21 = p 1 λ 12

p 0 +p 1 +p 2 =1

dp 4 (t)/dt=λ 34 p 3 (t) - λ 43 p 4 (t) ,

p 1 (t)+ p 2 (t)+ p 3 (t)+ p 4 (t)=1 .

К этим уравнениям надо добавить еще начальные условия. Например, если при t = 0 система S находится в состоянии S 1, то начальные условия можно записать так:

p 1 (0)=1, p 2 (0)= p 3 (0)= p 4 (0)=0 .

Переходы между состояниями СМО происходит под воздействием поступления заявок и их обслуживания. Вероятность перехода в случае, если поток событий простейший, определяется вероятностью появления события в течение времени Δt, т.е. величиной элемента вероятности перехода λ ij Δt, где λ ij - интенсивность потока событий, переводящих систему из состояния i в состояние i (по соответствующей стрелке на графе состояний).

Если все потоки событий, переводящие систему из одного состояния в другое, простейшие, то процесс, протекающий в системе, будет марковским случайным процессом, т.е. процессом без последствия. В этом случае поведение системы достаточно просто, определяется, если известны интенсивность всех этих простейших потоков событий. Например, если в системе протекает марковский случайный процесс с непрерывным временем, то, записав систему уравнений Колмогорова для вероятностей состояний и проинтегрировав эту систему при заданных начальных условиях, получим все вероятности состояний как функции времени:

p i (t), p 2 (t),…., p n (t) .

Во многих случаях на практике оказывается, что вероятности состояний как функции времени ведут себя таким образом, что существует

lim p i (t) = p i (i=1,2,…,n) ; t→∞

независимо от вида начальных условий. В этом случае говорят, что существуют предельные вероятности состояний системы при t->∞ и в системе устанавливается некоторый предельный стационарный режим. При этом система случайным образом меняет свои, состояния, но каждое из этих состояний осуществляется с некоторой постоянной вероятностью, определяемой средним временем пребывания системы в каждом из состояний.

Вычислить предельные вероятности состояния р i можно, если в системе положить все производные равными 0, поскольку в уравнениях Колмогорова при t-> ∞ зависимость от времени пропадает. Тогда система дифференциальных уравнений превращается в систему Обычных линейных алгебраических уравнений, которая совместно с нормировочным условием позволяет вычислить все предельные вероятности состояний.

2.2 Процессы «рождения – гибели»

Среди однородных марковских процессов существует класс случайных процессов, имеющих широкое применение при построении математических моделей в областях демографии, биологии, медицины (эпидемиологии), экономики, коммерческой деятельности. Это так называемые процессы «рождения - гибели», марковские процессы со стохастическими графами состояний следующего вида:

S 3
kjlS n

μ 0 μ 1 μ 3 μ 4 μ n-1

Рис. 2.1 Размеченный граф процесса «рождения - гибели»

Этот граф воспроизводит известную биологическую интерпретацию: величина λ k отображает интенсивность рождения нового представителя некоторой популяции, например, кроликов, причем текущий объем популяции равен k; величина μ является интенсивностью гибели (продажи) одного представителя этой популяции, если текущий объем популяции равен k. В частности, популяция может быть неограниченной (число n состояний марковского процесса является бесконечным, но счетным), интенсивность λ может быть равна нулю (популяция без возможности возрождения), например, при прекращении воспроизводства кроликов.

Для Марковского процесса «рождения - гибели», описанного стохастическим графом, приведенным на рис. 2.1, найдем финальное распределение. Пользуясь правилами составления уравнений для конечнего числа n предельных вероятностей состояния системы S 1 , S 2 , S 3 ,… S k ,…, S n , составим соответствующие уравнения для каждого состояния:

для состояния S 0 -λ 0 p 0 =μ 0 p 1 ;

для состояния S 1 -(λ 1 +μ 0)p 1 = λ 0 p 0 +μ 1 p 2 , которое с учетом предыдущего уравнения для состояния S 0 можно преобразовать к виду λ 1 р 1 = μ 1 p 2 .

Аналогично можно составить уравнения для остальных состояний системы S 2 , S 3 ,…, S k ,…, S n . В результате получим следующую систему уравнений:

Решая эту систему уравнений, можно получить выражения, определяющие финальные состояния системы массового обслуживания:

Следует заметить, что в формулы определения финальных вероятностей состояний р 1 , р 2 , р 3 ,…, р n , входят слагаемые, являющиеся составной частью суммы выражения, определяющей р 0 . В числителях этих слагаемых находятся произведения всех интенсивностей, стоящих у стрелок графа состояний, ведущих слева на право до рассматриваемого состояния S k , а знаменатели представляют собой произведения всех интенсивностей, стоящих у стрелок, ведущих справа на лево до рассматриваемого состояния S k , т.е. μ 0 , μ 1 , μ 2 , μ 3 ,… μ k . В связи с этим запишем эти модели в более компактном виде:

к=1,n

2.3 Экономико-математическая постановка задач массового обслуживания

Правильная или наиболее удачная экономико-математическая постановка задачи в значительной степени определяет полезность рекомендаций по совершенствованию систем массового обслуживания в коммерческой деятельности.

В связи с этим необходимо тщательно проводить наблюдение за процессом в системе, поиска и выявления существенных связей, формирования проблемы, выделения цели, определения показателей и выделения экономических критериев оценки работы СМО. В этом случае в качестве наиболее общего, интегрального показателя могут выступать затраты, с одной стороны, СМО коммерческой деятельности как обслуживающей системы, а с другой – затраты заявок, которые могут иметь разную по своему физическому содержанию природу.

Повышение эффективности в любой сфере деятельности К. Маркс в конечном счете рассматривал как экономию времени и усматривал в этом один из важнейших экономических законов. Он писал, что экономия времени, равно как и планомерное распределение рабочего времени по различным отраслям производства, остается первым экономическим законом на основе коллективного производства. Этот закон проявляется во всех сферах общественной деятельности.

Для товаров, в том числе и денежных средств, поступающих в коммерческую сферу, критерий эффективности связан со временем и скоростью обращения товаров и определяет интенсивность поступления денежных средств в банк. Время и скорость обращения, являясь экономическими показателями коммерческой деятельности, характеризирует эффективность использования средств, вложенных в товарные запасы. Товарооборачиваемость отражает среднюю скорость реализации среднего товарного запаса. Показатели товарооборачиваемости и уровня запасов тесно связаны известным моделями. Таким образом, можно проследить и установить взаимосвязь этих и других показателей коммерческой деятельности с временными характеристиками.

Следовательно, эффективность работы коммерческого предприятия или организации складывается из совокупности времени выполнения отдельных операций обслуживания, в то же время для населения затраты времени включают время на дорогу, посещение магазина, столовой, кафе, ресторана, ожидание начало обслуживания, ознакомление с меню, выбор продукции, расчет и т.д. Проведенные исследования структуры затрат времени населения свидетельствует о том, что значительная его часть расходуется нерационально. Заметим, что коммерческая деятельность в конечном счете направлена на удовлетворение потребности человека. Поэтому усилия моделирования СМО должны включать анализ затрат времени по каждой элементарной операции обслуживания. С помощью соответствующих методов следует создавать модели связи показателей СМО. Это обусловливает необходимость наиболее общие и известные экономические показатели, такие как товарооборот, прибыль, издержки обращения, рентабельность и другие, увязывать в экономико-математических моделях с дополнительно возникающей группой показателей, определяемых спецификой обслуживающих систем и вносимых собственно спецификой теории массового обслуживания.

Например, особенностями показателей СМО с отказами являются: время ожидания заявок в очереди Т оч =0, поскольку по своей природе в таких системах существование очереди невозможно, то L оч =0 и, следовательно, вероятность ее образования Р оч =0. По числу заявок k определятся режим работы системы, ее состояние: при k=0 – простой каналов, при 1n – обслуживание и отказ. Показателями таких СМО являются вероятность отказа в обслуживании Р отк, вероятность обслуживания Р обс, среднее время простоя канала t пр, среднее число занятых n з и свободных каналов n св, среднее обслуживания t обс, абсолютная пропускная способность А.

Для СМО с неограниченным ожиданием характерно, что вероятность обслуживания заявки Р обс =1, поскольку длина очереди и время ожидания начала обслуживания не ограничены, т.е. формально L оч →∞ и Т оч →∞. В системах возможны следующие режимы работы: при k=0 наблюдается простой каналов обслуживания, при 1n – обслуживание и очередь. Показателями таких эффективности таких СМО являются среднее число заявок в очереди L оч, среднее число заявок в системе k, среднее время пребывания заявки в системе Т смо, абсолютная пропускная способность А.

В СМО с ожиданием с ограничением на длину очереди, если число заявок в системе k=0, то наблюдается простой каналов, при 1n+m- обслуживание, очередь и отказ в ожидании обслуживания. Показателями эффективности таких СМО являются вероятность отказа в обслуживании Р отк - вероятность обслуживания Р обс, среднее число заявок в очереди L оч, среднее число заявок в системе L смо среднее время пребывания заявки в системе Т смо, абсолютная пропускная способность А.

Таким образом, перечень характеристик систем массового обслуживания можно представить следующим образом: среднее время обслуживания – t обс; среднее время ожидания в очереди – Т оч; среднее пребывания В СМО – Т смо; средняя длина очереди - L оч; среднее число заявок в СМО- L смо; количество каналов обслуживания – n; интенсивность входного потока заявок – λ; интенсивность обслуживания – μ; интенсивность нагрузки – ρ; коэффициент нагрузки – α; относительная пропускная способность – Q; абсалютная пропускная способность – А; доля времени простоя в СМО – Р 0 ; доля обслуженных заявок – Р обс; доля потерянных заявок – Р отк, среднее число занятых каналов – n з; среднее число свободных каналов - n св; коэффициент загрузки каналов – К з; среднее время простоя каналов - t пр.

Следует заметить что, иногда достаточно использовать до десяти основных показателей, чтобы выявить слабые места и разработать рекомендации по совершенствованию СМО.

Это часто связано с решением вопросов согласованной рабоиы цепочки или совокупностей СМО.

Например, в коммерческой деятельности необходимо учитывать еще и экономические показатели СМО: общие затраты – С; издержки обращения – С ио, издержки потребления – С ип, затраты на обслуживание одной заявки – С 1 , убытки, связанные с уходом заявки, - С у1 , затраты на эксплуатацию канала – С к, затраты простоя канала – С пр, капитальные вложения – С кап, приведенные годовые затраты – С пр, текущие затраты – С тек, доход СМО в единицу времени – Д 1

В процессе постановки задач необходимо раскрыть взаимосвязи показателей СМО, которые по своей базовой принадлежности можно разделить на две группы: первая связана с издержками обращения С ио, которые определяются числом занятых обслуживанием каналов, затратами на содержание СМО, интенсивностью обслуживания, степенью загрузки каналов, эффективностью их использования, пропускной способностью СМО и др.; вторая группа показателей определяется издержками собственно заявок С ип, поступающих на обслуживание, которые образуют входящий поток, ощущают эффективность обслуживания и связаны с такими показателями, как длина очереди, время ожидания обслуживания, вероятность отказа в обслуживании, время пребывания заявки в СМО и др.

Эти группы показателей противоречивы в том смысле, что улучшение показателей одной группы, например, сокращение длины очереди или времени ожидания в очереди путем увлечения числа каналов обслуживания (официантов, поваров, грузчиков, кассиров), связано с ухудшением показателей группы, поскольку это может привести к увеличению времени простоев каналов обслуживания, затрат на их содержание и т.д. В связи с этим формализации задач обслуживания вполне естественно стремление построить СМО таким образом, чтобы установить разумный компромисс между показателями собственно заявок и полнотой использования возможностей системы. С этой целью необходимо выбрать обобщенный, интегральный показатель эффективности СМО, включающий одновременно претензии и возможности обеих групп. В качестве такого показателя может быть выбран критерий экономической эффективности, включающий как издержки обращения С ио, так и издержки заявок С ип, которые будут иметь оптимальное значение при минимуме общих затрат С. На этом осонвании целевую функцию задачи можно записать так:

С= (С ио +С ип) →min

Поскольку издержки обращения включают затраты, связанные с эксплуатацией СМО – С экс и простоем каналов обслуживания - С пр, а издержки заявок включают потери, связанные с уходом не обслуженных заявок – С нз, и с пребыванием в очереди – С оч, тогда целевую функцию можно переписать с учетом этих показателей таким образом:

С={(С пр n св +С экз n з)+С оч Р обс λ(Т оч +t обс)+С из Р отк λ}→min.

В зависимости от поставленной задачи в качестве варьируемых, т.е управляемых, показателей могут быть: количество каналов обслуживания, организация каналов обслуживания (параллельно, последовательно, смешанным образом), дисциплина очереди, приоритетность обслуживания заявок, взаимопомощь между каналами и др. Часть показателей в задаче фигурирует в качестве неуправляемых, которые обычно являются исходными данными. В качестве критерия эффективности в целевой функции могут быть так же товарооборот, прибыль, или доход, например, рентабельность, тогда оптимальные значения управляемых показателей СМО находятся очевидно, уже при максимизации, как в предыдущем варианте.

В некоторых случаях следует пользоваться другим вариантом записи целевой функции:

С={С экз n з +C пр (n-n з)+C отк *Р отк *λ+С сист * n з }→min

В качестве общего критерия может быть выбран, например, уровень культуры обслуживания покупателей на предприятиях, тогда целевая функция может быть представлена следующей моделью:

К об =[(З пу *К у)+(З пв *К в)+(З пд *К д)+(З пз *К з)+(З по *К 0)+(З кт *К кт)]*К мп,

где З пу – значимость показателя устойчивости ассортимента товаров;

К у - коэффициент устойчивости ассортимента товаров;

З пв – значимость показателя внедрения прогрессивных методов продажи товаров;

К в – коэффициент внедрения прогрессивных методов продажи товаров;

З пд – значимость показателя дополнительного обслуживания;

К д - коэффициент дополнительного обслуживания;

З пз - значимость показателя завершенности покупки;

К з - коэффициент завершенности покупки;

З по - значимость показателя затрат времени на ожидание в обслуживании;

К о – показатель затрат времени на ожидание обслуживания;

З кт – значимость показателя качества труда коллектива;

К кт – коэффициент качества труда коллектива;

К мп – показатель культуры обслуживания по мнению покупателей;

Для анализа СМО можно выбирать и другие критерии оценки эффективности работы СМО. Например, в качестве такого критерия для систем с отказами можно выбирать вероятность отказа Р отк, значение которого не превышало бы заранее заданной величины. Например, требование Р отк <0,1 означает, что не менее чем в 90% случаев система должна справляться с обслуживанием потока заявок при заданной интенсивности λ. Можно ограничить среднее время пребывания заявки в очереди или в системе. В качестве показателей, подлежащих определению, могут выступать: либо число каналов n при заданной интенсивности обслуживания μ, либо интенсивность μ при заданном числе каналов.

После построения целевой функции необходимо определить условия решения задачи, найти ограничения, установить исходные значения показателей, выделить неуправляемые показатели, построить или подобрать совокупность моделей взаимосвязи всех показателей для анализируемого типа СМО, чтобы в конечном итоге найти оптимальные значения управляемых показателей, например количество поваров, официантов, кассиров, грузчиков, объемы складских помещений и др


Глава III . Модели систем массового обслуживания

3.1 Одноканальная СМО с отказами в обслуживании

Проведем анализ простой одноканальной СМО с отказами в обслуживании, на которую поступает пуассоновский поток заявок с интенсивностью λ, а обслуживание происходит под действием пуассоновского потока с интенсивностью μ.

Работу одноканальной СМО n=1 можно представить в виде размеченного графа состояний (3.1).

Переходы СМО из одного состояния S 0 в другое S 1 происходят под действием входного потока заявок с интенсивностью λ, а обратный переход – под действием потока обслуживания с интенсивностью μ.

S 0
S 1

S 0 – канал обслуживания свободен; S 1 – канал занят обслуживанием;

Рис. 3.1 Размеченный граф состояний одноканальной СМО

Запишем систему дифференциальных уравнений Колмогорова для вероятностей состояния по изложенным выше правилам:

Откуда получим дифференциальное уравнение для определения вероятности р 0 (t) состояния S 0:

Это уравнение можно решить при начальных условиях в предположении, что система в момент t=0 находилась в состоянии S 0 , тогда р 0 (0)=1, р 1 (0)=0.

В этом случае решение дифференциального уровнения позволяет определить вероятность того, что канал свободен и не занят обслуживанием:

Тогда нетрудно получить выражение для вероятности определения вероятности занятости канала:

Вероятность р 0 (t) уменьшается с течением времени и в пределе при t→∞ стремится к величине

а вероятность р 1 (t) в то же время увеличивается от 0, стремясь в пределе при t→∞ к величине

Эти пределы вероятностей могут быть получены непосредственно из уравнений Колмогорова при условии

Функции р 0 (t) и р 1 (t) определяют переходный процесс в одноканальной СМО и описывают процесс экспоненциального приближения СМО к своему предельному состоянию с постоянной времени характерной для рассматриваемой системы.

С достаточной для практики точностью можно считать, что переходный процесс в СМО заканчивается в течение времени, равно 3τ.

Вероятность р 0 (t) определяет относительную пропускную способность СМО, которая определяет долю обслуживаемых заявок по отношению к полному числу поступающих заявок, в единицу времени.

Действительно, р 0 (t) есть вероятность того, что заявка, пришедшая в момент t, будет принята к обслуживанию. Всего в единицу времени приходит в среднем λ заявок и из них обслуживается λр 0 заявок.

Тогда доля обслуживаемых заявок по отношению ко всему потоку заявок определятся величиной

В пределе при t→∞ практически уже при t>3τ значение относительной пропускной способности будет равно

Абсолютная пропускная способность, определяющая число заявок, обслуживаемых в единицу времени в пределе при t→∞, равна:

Соответственно доля заявок, получивших отказ, составляет в этих же предельных условиях:

а общее число не обслуженных заявок равно

Примерами одноканальных СМО с отказами в обслуживании являются: стол заказов в магазине, диспетчерская автотранспортного предприятия, контора склада, офис управления коммерческой фирмы, с которыми устанавливается связь по телефону.

3.2 Многоканальная СМО с отказами в обслуживании

В коммерческой деятельности примерами многоканальных СМО являются офисы коммерческих предприятий с несколькими телефонными каналами, бесплатная справочная служба по наличию в авто магазинах самых дешевых автомобилей в Москве имеет 7 телефонных номеров, а дозвониться и получить справку, как известно, очень трудно.

Следовательно, авто магазины теряют клиентов, возможность увеличить количество проданных автомобилей и выручку от продаж, товарооборот, прибыль.

Туристические фирмы по продаже путевок имеют два, три, четыре и более каналов, как, например, фирма Express-Line.

Рассмотрим многоканальную СМО с отказами в обслуживании на рис. 3.2, на вход которой поступает пуассоновский поток заявок с интенсивностью λ.


S 0
S 1
S k
S n

μ 2μkμ (k+1)μ nμ

Рис. 3.2. Размеченный граф состояний многоканальной СМО с отказами

Поток обслуживания в каждом канале имеет интенсивность μ. По числу заявок СМО определяются ее состояния S k , представленные в виде размеченного графа:

S 0 – все каналы свободны k=0,

S 1 – занят только один канал, k=1,

S 2 – заняты только два канала, k=2,

S k – заняты k каналов,

S n – заняты все n каналов, k= n.

Состояния многоканальной СМО меняются скачкообразно в случайные моменты времени. Переход из одного состояния, например S 0 в S 1 , происходит под воздействием входного потока заявок с интенсивностью λ, а обратно – под воздействием потока обслуживания заявок с интенсивностью μ. Для перехода системы из состояния S k в S k -1 безразлично, какой именно из каналов освободиться, поэтому поток событий, переводящий СМО, имеет интенсивность kμ, следовательно, поток событий, переводящий систему из S n в S n -1 , имеет интенсивность nμ. Так формулируется классическая задача Эрланга, названная по имени датского инженера – математика- основателя теории массового обслуживания.

Случайный процесс, протекающий в СМО, представляет собой частный случай процесса «рождения- гибели» и описывается системой дифференциальных уравнений Эрланга, которые позволяют получить выражения для предельных вероятностей состояния рассматриваемой системы, называемые формулами Эрланга:

.

Вычислив все вероятности состояний n – канальной СМО с отказами р 0 , р 1 , р 2 , …,р k ,…, р n , можно найти характеристики системы обслуживания.

Вероятность отказа в обслуживании определяется вероятностью того, что поступившая заявка на обслуживание найдет все n каналов занятыми, система будет находиться в состоянии S n:

k=n.

В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому

Р отк +Р обс =1

На этом основании относительная пропускная способность опредляется по формуле

Q = P обс = 1-Р отк =1-Р n

Абсолютную пропускную способность СМО можно определить по формуле

Вероятность обслуживания, или доля обслуженных заявок, определяет относительную пропускную способность СМО, которая может быть определена и по другой формуле:

Из этого выражения можно определить среднее число заявок, находящихся под обслуживанием, или, что же самое, среднее число занятых обслуживанием каналов

Коэффициент занятости каналов обслуживанием определятся отношением среднего числа занятых каналов к их общему числу

Вероятность занятости каналов обслуживанием, которая учитывает среднее время занятости t зан и простоя t пр каналов, определяется следующим образом:

Из этого выражения можно определить среднее время простоя каналов

Среднее время пребывания заявки в системе в установившемся режиме определятся формулой Литтла

Т смо = n з /λ.

3.3 Модель многофазной системы обслуживания туристов

В реальной жизни система обслуживания туристов выглядит значительно сложнее, поэтому необходимо детализировать постановку задачи, учитывая запросы, требования как со стороны клиентов, так и турфирмы.

Для увеличения эффективности работы турфирмы необходимо смоделировать в целом поведение потенциального клиента от начала операции до ее завершения. Структура взаимосвязи основных систем массового обслуживания фактически состоит из СМО разного вида (рис. 3.3).

Поиск Выбор Выбор Решение

референт


поиск фирмы тура по туру

Оплата Перелет Исход

Рис. 3.3 Модель многофазной системы обслуживания туристов

Проблема с позиции массового обслуживания туристов, уезжающих на отдых, заключается в определении точного места отдыха (тура), адекватного требованиям претендента, соответствующего его здоровью и финансовым возможностям и представлениям об отдыхе в целом. В этом ему могут способствовать турфирмы, поиск которых осуществляется обычно из рекламных сообщений СМО р, затем после выбора фирмы происходит получение консультаций по телефону СМО т, после удовлетворительного разговора приезд в турфирму и получение более детальных консультаций лично с референтом, затем оплата путевки и получение обслуживания от авиакомпании по перелету СМО а и в конечном счете обслуживания в отеле СМ0 0 . Дальнейшее развитие рекомендаций по улучшению работы СМО фирмы связано с изменением профессионального содержания переговоров с клиентами по телефону. Для этого необходимо углубить анализ, связанный с детализацией диалога референта с клиентами, поскольку далеко не каждый переговоры по телефону приводит к заключению договора на приобретение путевки. Проведение формализации задачи обслуживания указало на необходимость формирования полного (необходимого и достаточного) перечня характеристик и их точных значений предмета коммерческой сделки. Затем проводятся ранжирование этих характеристик, например методом парных сравнений, и расположения в диалоге по степени их значимости, например: время года (зима), месяц (январь), климат (сухой), температура воздуха (+25"С), влажность (40%), географическое место (ближе к экватору), время авиаперелета (до 5 часов), трансферт, страна (Египет), город (Хургада), море (Красное), температура воды в море (+23°С), ранг отеля (4 звезды, работающий кондиционер, гарантия наличия шампуня в номере), удаленность от моря (до 300 м), удаленность от магазинов (рядом), удаленность от дискотек и других источников шума (подальше, тишина в течение сна в отеле), питание (шведский стол - завтрак, ужин, частота изменения меню за неделю), отели (Princes, Marlin-In, Hour-Palace), экскурсии (Каир, Луксор, коралловые острова, подводное плавание), увеселительные шоу, спортивные игры, цена путевки, форма оплаты, содержание страховки, что брать с собой, что купить на месте, гарантии, штрафные санкции.

Есть еще один очень существенный показатель, выгодный для клиента, установить который предлагается самостоятельно въедливому читателю. Затем можно, используя метод опарного сравнения перечисленных характеристик х i , сформировать матрицу п х п сравнения, элементы которой заполняются последовательно по строкам по следующему правилу:

0, если характеристика менее значима,

а ij = 1, если характеристика равнозначима,

2, если характеристика доминирует.

После этого определяются значения сумм оценок по каждому показателю строки S i =∑a ij , вес каждой характеристики M i = S i /n 2 и соответственно интегральный критерий, на основе которого можно провести выбор турфирмы, тура или отеля, по формуле

F = ∑ M i * x i -» max.

С целью исключения возможных ошибок в этой процедуре вводят, например, 5-балльную шкалу оценок с градацией характеристик Б i (х i) по принципу хуже (Б i = 1 балл) - лучше (Б i = 5 баллов). Например, чем дороже тур, тем хуже, чем он дешевле, тем лучше. На этом основании целевая функция будет иметь другой вид:

F b = ∑ M i * Б i * x i -> max.

Таким образом, можно на основе применения математических методов и моделей, используя преимущества формализации, точнее и более объективно сформулировать постановку задач и значительно улучшить показатели СМО в коммерческой деятельности для достижения поставленных целей.

3.4 Одноканальная СМО с ограниченной длиной очереди

В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).

Рассмотрим простую одноканальную СМО с ограниченной очередью, в которой число мест в очереди т - фиксированная величина. Следовательно, заявка, поступившая в тот момент, когда все места в очереди заняты, не принимается к обслуживанию, не встает в очередь и.покидает систему.

Граф этой СМО представлен на рис. 3.4 и совпадает с графом рис. 2.1 описывающим процесс «рождения-гибели», с тем отличием, что при наличии только одного канала.

S m
S 3
S 2
S 1
S 0
λ λλλ... λ

μ μμμ... μ

Рис. 3.4. Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны

Состояния СМО можно представить следующим образом:

S 0 - канал обслуживания свободен,

S, - канал обслуживания занят, но очереди нет,

S 2 - канал обслуживания занят, в очереди стоит одна заявка,

S 3 - канал обслуживания занят, в очереди стоят две заявки,

S m +1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.

Для описания случайного процесса СМО можно воспользоваться изложенными ранее правилами и формулами. Напишем выражения, определяющие предельные вероятности состояний:

p 1 = ρ * ρ о

p 2 =ρ 2 * ρ 0

p k =ρ k * ρ 0

P m+1 = p m=1 * ρ 0

p 0 = -1

Выражение для р 0 можно в аанном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:

ρ= (1- ρ )

Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р 0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2). Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании. Действительно, выражение для предельной вероятности р 0 в случае т = 0 имеет вид:

p о = μ / (λ+μ)

И в случае λ = μ имеет величину р 0 = 1 / 2.

Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.

Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии S m +1 и, следовательно, все места в очереди да заняты и один канал обслуживает Поэтому вероятность отказа определяется вероятностью появлением

Состояния S m +1:

P отк = p m +1 = ρ m +1 * p 0

Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением

Q = 1- p отк = 1- ρ m+1 * p 0

абсолютная пропускная способность равна:

Среднее число заявок L оч стоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди

случайная величина кпринимает следующие только целочисленные значения:

1 - в очереди стоит одна заявка,

2 - в очереди две заявки,

т-в очереди все места заняты

Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S 2 . Закон распределения дискретной случайной величины к изображается следующим образом:

k 1 2 m
p i p 2 p 3 p m+1

Математическое ожидание этой случайной величины равно:

L оч = 1* p 2 +2* p 3 +...+ m* p m +1

В общем случае при p ≠1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:

L оч = p 2 * 1- p m * (m-m*p+1) * p 0

В частном случае при р = 1, когда все вероятности p k оказываются равными, можно воспользоваться выражением для суммы членов числового ряда

1+2+3+ m = m ( m +1)

Тогда получим формулу

L’ оч = m(m+1) * p 0 = m(m+1) (p=1).

Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла

Т оч = L оч /А (при р ≠ 1) и Т 1 оч = L’ оч /А(при р = 1).

Такой результат, когда оказывается, что Т оч ~ 1/ λ, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина L оч является функцией от λ и μ и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более mзаявок.

Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р ≠ 1) к уменьшению Т оч ростом λ, поскольку доля таких заявок с ростом λ увеличивается.

Если отказаться от ограничения на длину очереди, т.е. устремить m-> →∞, то случаи р < 1 и р ≥1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду

p k =р k *(1 - р)

При достаточно большом к вероятность p k стремится к нулю. Поэтому относительная пропускная способность будет Q= 1, а абсолютная пропускная способность станет равной А -λ Q - λ следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:

L оч =p 2 1-p

а среднее время ожидания по формуле Литтла

Т оч = L оч /А

В пределе р << 1 получаем Т оч = ρ / μт.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р ≥ 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t → ∞). Предельные вероятности состояний поэтому не могут быть определены: при Q= 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки. Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем ρ и μ, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.

В качестве одной из характеристик СМО используют среднее время Т смо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена - среднее число заявок, находящихся в очереди, равно:

L смо= m +1 ;2

Т смо= L смо; при p ≠1

Aтогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:

Т смо= m +1 при p ≠1 2μ

3.5 Одноканальная СМО с неограниченной очередью

В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).

Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью λ и интенсивностью обслуживания µ.

Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.

Размеченный граф состояний такой системы приведен на рис. 3.5

Количество возможных состояний ее бесконечно:

Канал свободен, очереди нет, ;

Канал занят обслуживанием, очереди нет, ;

Канал занят, одна заявка в очереди, ;

Канал занят , заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m→∞:


Рис. 3.5 Граф состояний одноканальной СМО с неограниченной очередью.

Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем . Такая последовательность представляет собой сумму бесконечного числа членов при . Эта сумма сходится, если прогрессия, бесконечно убывающая при , что определяет установившийся режим работы СМО, с при очередь при с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому , следовательно, относительная пропускная способность , соответственно , а абсолютная пропускная способность

Вероятность пребывания в очереди k заявок равна:

;

Среднее число заявок в очереди –

Среднее число заявок в системе –

;

Среднее время пребывания заявки в системе –

;

Среднее время пребывания заявки с системе –

.

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания , то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при .

3.6 Многоканальная СМО с ограниченной длиной очереди

Рассмотрим многоканальную СМО , на вход которой поступает пуассоновский поток заявок с интенсивностью , а интенсивность обслуживания каждого канала составляет , максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

Все каналы свободны, ;

Занят только один канал (любой), ;

Заняты только два канала (любых), ;

Заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

Заняты все каналов и одна заявка стоит в очереди,

Заняты все каналов и две заявки стоят в очереди,

Заняты все каналов и все мест в очереди,

Граф состояний n-канальной СМО с очередью, ограниченной m местами на рис.3.6

Рис. 3.6 Граф состояний n-канальной СМО с ограничением на длину очереди m

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью , тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния , когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного .

Запишем выражения для предельных вероятностей состояний:

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем :

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность –

Среднее число занятых каналов –

Среднее число простаивающих каналов –

Коэффициент занятости (использования) каналов –

Коэффициент простоя каналов –

Среднее число заявок, находящихся в очередях –

В случае если , эта формула принимает другой вид –

Среднее время ожидания в очереди определяется формулами Литтла –

Среднее время пребывания заявки в СМО, как и для одноканальной СМО, больше среднего времени ожидания в очереди на среднее время обслуживания, равное , поскольку заявка всегда обслуживается только одним каналом:

3.7 Многоканальная СМО с неограниченной очередью

Рассмотрим многоканальную СМО с ожиданием и неограниченной длиной очереди, на которую поступает поток заявок с интенсивностью и которая имеет интенсивность обслуживания каждого канала . Размеченный граф состояний представлен на рис 3.7 Он имеет бесконечное число состояний:

S - все каналы свободны, k=0;

S - занят один канал, остальные свободны, k=1;

S - заняты два канала, остальные свободны, k=2;

S - заняты все n каналов, k=n, очереди нет;

S - заняты все n каналов, одна заявка в очереди, k=n+1,

S - заняты все n каналов, r заявок в очереди, k=n+r,

Вероятности состояний получим из формул для многоканальной СМО с ограниченной очередью при переходе к пределу при m. Следует заметить, что сумма геометрической прогрессии в выражении для p расходится при уровне загрузки p/n>1, очередь будет бесконечно возрастать, а при p/n<1 ряд сходится, что определяет установившийся стационарный режим работы СМО.

Очереди нет


Рис.3.7 Размеченный граф состояний многоканальной СМО

с неограниченной очередью

для которого и определим выражения для предельных вероятностей состояний:

Поскольку отказа в обслуживании в таких системах не может быть, то характеристики пропускной способности равны:

среднее число заявок в очереди –

среднее время ожидания в очереди –

среднее число заявок в СМО –

Вероятность того, что СМО находится в состоянии , когда нет заявок и не занято ни одного канала, определяется выражением

Эта вероятность определяет среднюю долю времени простоя канала обслуживания. Вероятность занятости обслуживанием k заявок –

На этом основании можно определить вероятность, или долю времени занятости всех каналов обслуживанием

Если же все каналы уже заняты обслуживанием, то вероятность состояния определяется выражением

Вероятность оказаться в очереди равна вероятности застать все каналы уже занятыми обслуживанием

Среднее число заявок, находящихся в очереди и ожидающих обслуживания, равно:

Среднее время ожидания заявки в очереди по формуле Литтла: и в системе

среднее число занятых каналов обслуживанием:

среднее число свободных каналов:

коэффициент занятости каналов обслуживанием:

Важно заметить, что параметр характеризует степень согласования входного потока, например покупателей в магазине с интенсивностью потока обслуживания. Процесс обслуживания будет стабилен при Если же в системе будут возрастать средняя длина очереди и среднее время ожидания покупателями начала обслуживания и, следовательно, СМО будет работать неустойчиво.

3.8 Анализ системы массового обслуживания супермаркета

Одной из важных задач коммерческой деятельности является рациональная организация торгово-технологического процесса массового обслуживания, например в универсаме. В частности, определение мощности кассового узла торгового предприятия является непростой задачей. Такие экономико-организационные показатели, как нагрузка товарооборота на 1м 2 торговой площади, пропускная способность предприятия, время пребывания покупателей в магазине, а также показатели уровня технологического решения торгового зала: соотношение площадей зон самообслуживания и расчетного узла, коэффициенты установочной и выставочной площадей, во многом определяются пропускной способностью кассового узла. В этом случае пропускную способность двух зон (фаз) обслуживания: зоны самообслуживания и зоны расчетного узла (рис.4.1).

СМО СМО

Интенсивность входного потока покупателей;

Интенсивность прихода покупателей зоны самообслуживания;

Интенсивность прихода покупателей в расчетный узел;

Интенсивность потока обслуживания.

Рис.4.1. Модель двухфазной СМО торгового зала универсама

Основная функция расчетного узла состоит в обеспечении высокой пропускной способности покупателей в торговом зале и создании комфортного обслуживания покупателей. Факторы, влияющие на пропускную способность расчетного узла, можно разделить на две группы:

1) экономико-организационные факторы: система материальной ответственности в универсаме; средняя стоимость и структура одной покупки;

2) организационная структура кассового узла;

3) технико-технологические факторы: применяемые типы кассовых аппаратов и кассовых кабин; применяемая контролером-кассиром технология обслуживания покупателей; соответствие мощности кассового узла интенсивности покупательских потоков.

Из перечисленных групп факторов наибольшее влияние оказывают организационное построение кассового узла и соответствие мощности кассового узла интенсивности покупательских потоков.

Рассмотрим обе фазы системы обслуживания:

1) выбор покупателями товаров в зоне самообслуживания;

2) обслуживание покупателей в зоне расчетного узла. Входящий поток покупателей попадает в фазу самообслуживания, и покупатель самостоятельно отбирает нужные ему товарные единицы, формируя их в единую покупку. Причем время этой фазы зависит от того, как взаиморазмещены товарные зоны, какой фронт они имеют, сколько времени тратит покупатель на выбор конкретного товара, какова структура покупки и т.д.

Выходящий поток покупателей из зоны самообслуживания одновременно является входящим потоком в зону кассового узла, который последовательно включает ожидание покупателя в очереди и затем обслуживание его контролером-кассиром. Кассовый узел можно рассматривать как систему обслуживания с потерями или как систему обслуживания с ожиданием.

Однако ни первая, ни вторая рассмотренные системы не позволяют реально описать процесс обслуживания в кассовом узле универсама по следующим причинам:

в первом варианте кассовый узел, мощность которого будет рассчитана на систему с потерями, требует значительных как капитальных вложений, так и текущих затрат на содержание контролеров-кассиров;

во втором варианте кассовый узел, мощность которого будет рассчитана на систему с ожиданиями, приводит к большим затратам времени покупателей в ожидании обслуживания. При этом в часы пик зона расчетного узла «переполняется» и очередь покупателей «перетекает» в зону самообслуживания, что нарушает нормальные условия для выбора товара другими покупателями.

В связи с этим целесообразно рассматривать вторую фазу обслуживания как систему с ограниченной очереди, промежуточную между системой с ожиданием и системой с потерями. При этом предполагается, что одновременно в системе могут находиться не более L, причем L=n+m, где n-количество обслуживаемых клиентов в кассах, m-количество покупателей, стоящих в очереди, причем любая m+1- заявка покидает систему необслуженной.

Это условие позволяет, с одной стороны, ограничить площадь зоны расчетного узла с учетом максимально допустимой длины очереди, а с другой – ввести ограничение на время ожидания покупателями обслуживания в кассовом узле, т.е. учитывать издержки потребления покупателей.

Правомерность постановки задачи в таком виде подтверждается проведенными обследованиями потоков покупателей в универсамах, результаты которых приведены в табл. 4.1, анализ которых выявил тесную связь между средней длинной очереди в кассовом узле и количеством покупателей, не совершивших покупок.

Часы работы День недели
пятница суббота воскресенье

оче-редь,

количество

покупателей

без покупок

оче-редь,

количество

покупателей

без покупок

оче-редь,

количество

покупателей

без покупок

чел. % чел. % чел. %
с 9 до 10 2 38 5 5 60 5,4 7 64 4,2
с 10 до 11 3 44 5,3 5 67 5 6 62 3,7
с 11 до 12 3 54 6,5 4 60 5,8 7 121 8,8
с 12 до 13 2 43 4,9 4 63 5,5 8 156 10
с 14 до 15 2 48 5,5 6 79 6,7 7 125 6,5
с 15 до 16 3 61 7,3 6 97 6,4 5 85 7,2
с 16 до 17 4 77 7,1 8 140 9,7 5 76 6
с 17 до 18 5 91 6,8 7 92 8,4 4 83 7,2
с 18 до 19 5 130 7,3 6 88 5,9 7 132 8
с 19 до 20 6 105 7,6 6 77 6
с 20 до 21 6 58 7 5 39 4,4
Итого 749 6,5 862 6,3 904 4,5

В организации работы кассового узла универсама имеется еще одна важная особенность, которая значительно влияет на его пропускную способность: наличие экспресс-касс (одной-двух покупок). Изучение структуры потока покупателей в универсамах по типу кассового обслуживания показывает, что поток оборот составляет 12,9% (табл. 4.2).

Дни недели Потоки покупателей Товарооборот
всего по экспресс-кассам % к дневномупотоку всего по экспресс-кассам % к дневному товарообороту
Летний период
Понедельник 11182 3856 34,5 39669,2 3128,39 7,9
Вторник 10207 1627 15,9 38526,6 1842,25 4,8
Среда 10175 2435 24 33945 2047,37 6
Четверг 10318 2202 21,3 36355,6 1778,9 4,9
Пятница 11377 2469 21,7 43250,9 5572,46 12,9
Суббота 10962 1561 14,2 39873 1307,62 3,3
Воскресенье 10894 2043 18,8 35237,6 1883,38 5,1
Зимний период
Понедельник 10269 1857 18,1 37121,6 2429,73 6,5
Вторник 10784 1665 15,4 38460,9 1950,41 5,1
Среда 11167 3729 33,4 39440,3 4912,99 12,49,4
Четверг 11521 2451 21,3 40000,7 3764,58 9,4
Пятница 11485 1878 16,4 43669,5 2900,73 6,6
Суббота 13689 2498 18,2 52336,9 4752,77 9,1
Воскресенье 13436 4471 33,3 47679,9 6051,93 12,7

Для окончательного построение математической модели процесса обслуживания с учетом перечисленных выше факторов необходимо определить функции распределения случайных величин, а также случайные процессы, описывающие входящие и выходящие потоки покупателей:

1) функцию распределения времени покупателей на выбор товаров в зоне самообслуживания;

2) функцию распределения времени работы контролера-кассира для обычных касс и экспресс-касс;

3) случайный процесс, описывающий входящий поток покупателей в первую фазу обслуживания;

4) случайный процесс, описывающий входящий поток во вторую фазу обслуживания для обычных касс и экспресс-касс.

Моделями для расчета характеристик системы массового обслуживания удобно пользоваться в том случае, если входящий поток требований в систему обслуживания является простейшим пуассоновским потоком, а время обслуживания заявок распределено по экспоненциальному закону.

Исследование потока покупателей в зоне кассового узла показало, что для него может быть принят пуассоновский поток.

Функция распределения времени обслуживания покупателей контролерами-кассирами является экспоненциальной, такое допущение не приводит к большим ошибкам.

Безусловный интерес представляет анализ характеристик обслуживания потока покупателей в кассовом узле универсама, рассчитанных для трех систем: с потерями, с ожиданием и смешанного типа.

Расчеты параметров процесса обслуживания покупателей в кассовом узле проведены для коммерческого предприятия торговой площадью S=650на основе следующих данных.

Целевая функция может быть записана в общем виде связи (критерия) выручки от реализации от характеристик СМО:

где - кассовый узел состоит из =7 касс обычного типа и =2 экспресс-касс,

Интенсивность обслуживания покупателей в зоне обычных касс – 0,823 чел./мин;

Интенсивность нагрузки кассовых аппаратов в зоне обычных касс – 6,65,

Интенсивность обслуживания покупателей в зоне экспресс-касс – 2,18 чел./мин;

Интенсивность входящего потока в зону обычных касс – 5,47 чел./мин

Интенсивность нагрузки кассовых аппаратов в зоне экспресс-касс – 1,63,

Интенсивность входящего потока в зону экспресс-касс – 3,55 чел./мин;

Для модели СМО с ограничением на длину очереди в соответствии с проектируемой зоной кассового узла максимально допустимое число покупателей, стоящих в очереди в одну кассу, принимается равным m=10 покупателей.

Следует заметить, что для получения сравнительно небольших по абсолютной величине значений вероятности потерь заявок и времени ожидания покупателей в кассовом узле необходимо соблюдать следующие условия:

В табл.6.6.3 приведены результаты характеристик качества функционирования СМО в зоне расчетного узла.

Расчеты проведены для наиболее напряженного периода времени рабочего дня с 17 до 21 часа. Именно на этот период, как показали результаты обследований, приходится около 50% однодневного потока покупателей.

Из приведенных данных в табл. 4.3 следует, что если бы для расчета была выбрана:

1) модель с отказами, то 22,6% потока покупателей, обслуживаемых обычными кассами, и соответственно 33,6% потока покупателей, обслуживаемых экспресс-кассами, должны были бы уйти без покупок;

2) модель с ожиданием, то потерь заявок в расчетном узле не должно бы быть;

Табл. 4.3 Характеристики системы массового обслуживания покупателей в зоне расчетного узла

Тип кассы Количество касс в узле Тип СМО Характеристики СМО
Среднее число занятых касс, среднее время ожидания обслуживания, Вероятность потери заявок,
Обычные кассы 7

с отказами

с ожиданием

с ограничением

Экспресс-кассы 2

с отказами

с ожиданием

с ограничением

3) модель с ограничением на длину очереди, то только 0,12% потока покупателей, обслуживаемых обычными кассами, и 1,8% потока покупателей, обслуживаемых экспресс-кассами, покинут торговый зал без покупок. Следовательно, модель с ограничением на длину очереди позволяет более точно и реально описать процесс обслуживания покупателей в зоне кассового узла.

Интерес представляет сравнительный расчет мощности кассового узла как с учетом экспресс-касс, так и без них. В табл. 4.4 приведены характеристики системы обслуживания кассового узла трех типоразмеров универсамов, рассчитанные по моделям для СМО с ограничением на длину очереди на наиболее напряженный период рабочего дня с 17 до 21 часа.

Анализ данных этой таблицы показывает, что не учет фактора «Структура потока покупателей по типу кассового обслуживания» на стадии технологического проектирования может привести к увеличению зоны расчетного узла на 22-33%, а отсюда соответственно и к уменьшению установочных и выставочных площадей торгово-технологического оборудования и товарной массы, размещаемой в торговом зале.

Проблема определения мощности кассового узла представляет собой цепочку взаимосвязанных характеристик. Так, увеличение его мощности сокращает время покупателей на ожидание обслуживания, уменьшает вероятность потери требований и, следовательно, потери товарооборота. Наряду с этим необходимо соответственно уменьшить зону самообслуживания, фронт торгово-технологического оборудования, товарную массу в торговом зале. В то же время увеличивается затраты на заработную плату контролеров-кассиров и оборудование дополнительных рабочих мест. Поэтому

№ п/п Характеристики СМО Единица измерения Обозначение Показатели, рассчитанные по типам универсамов торговой площади, кв. м
Без экспресс-касс С учетом экспресс-касс
650 1000 2000 650 1000 2000
Обычные кассы Экспресс-кассы Обычные кассы экспресс-кассы Обычные кассы экспресс-кассы
1 Количество покупателей чел. k 2310 3340 6680 1460 850 2040 1300 4080 2600
2 Интенсивность входящего потока λ 9,64 13,9 27,9 6,08 3,55 8,55 5,41 17,1 10,8
3 Интенсивность обслуживания чел./мин μ 0,823 0,823 0,823 0,823 2,18 0,823 2,18 0,823 2,18
4 Интенсивность нагрузки - ρ 11,7 16,95 33,8 6,65 1,63 10,35 2,48 20,7 4,95
5 Количество кассовых аппаратов шт. n 12 17 34 7 2 11 3 21 5
6 Общее количество касс расчетного узла шт. ∑n 12 17 34 9 14 26

необходимо проводить оптимизационные расчеты. Рассмотрим характеристики системы обслуживания в кассовом узле универсама торговой площади 650м, рассчитанные по моделям СМО с ограниченной длиной очереди для различных мощностей его кассового узла в табл. 4.5.

На основе анализа данных табл. 4.5 можно сделать вывод, что по мере увеличения количества касс время ожидания покупателей в очереди растет, а затем после определенного момента резко падает. Характер изменения графика времени ожидания покупателей понятен, если параллельно рассматривать изменение вероятности потери требования Вполне очевидно, что когда мощность кассового узла чрезмерно мала, то более 85% покупателей будут уходить необслуженными, а оставшаяся часть покупателей будет обслужена за очень короткое время. Чем больше мощность кассового узла, тем вероятность потери требований будет дожидаться своего обслуживания, а значит, и время их ожидания в очереди соответственно будет расти. После того как ожидания и вероятность потерь будут резко уменьшаться.

Для универсама торговой площадью 650 этот предел для зоны обычных касс лежит между 6 и 7 кассовыми аппаратами. При 7 кассовых аппаратах соответственно среднее время ожидания – 2,66 мин, а вероятность потери заявок очень мала – 0,1%. Таким образом, которая позволит получить минимальные совокупные затраты на массовое обслуживание покупателей.

Тип кассового обслуживания Количество кассовых аппаратов в узле n, шт. Характеристики системы обслуживания Средняя выручка за 1 ч. руб. Средняя потеря выручки за 1 ч. руб Число покупателей в зоне расчетного узла Площадь зоны расчетного узла, Sy, м Удель ный вес площади зоны узла 650/ Sy
Среднее время ожидания, Т,мин Вероятность потери заявок
Зоны Обычных касс
Зоны экспресс-касс

Заключение

На основе анализа данных табл. 4.5 можно сделать вывод, что по мере увеличения количество касс время ожидания покупателей в очереди растет. А затем после определенного момента резко падает. Характер изменения графика времени ожидания покупателей понятен, если параллельно рассматривать изменение вероятности потери требований Вполне очевидно, что когда мощность кассового узла чрезмерно мала, то более 85% покупателей будут уходить необслуженными, а оставшаяся часть покупателей будет обслужена за очень короткое время. Чем больше мощность кассового узла. Тем вероятность потери требований будет уменьшаться и соответственно тем большее число покупателей будет дожидаться своего обслуживания, а значит, и время их ожидания в очереди соответственно будет расти. После того как расчетный узел превысит оптимальный мощность, время ожидания и вероятность потерь будут резко уменьшаться.

Для универсама торговой площадью 650 кв. метров этот предел для зоны обычных касс лежит между 6-8 кассовыми аппаратами. При 7 кассовых аппаратах соответственно среднее время ожидания- 2,66 мин, а вероятность потери заявок очень мало - 0,1 % . Таким образом, задача состоит в выборе такой мощности кассового узла, которая позволит получит минимальные совокупные затраты на массовое обслуживание покупателей.

В связи с этим следующим этапом решения поставленной задачи является оптимизация мощности кассового узла на базе применения моделей СМО разных типов с учетом совокупных затрат и перечисленных выше факторов.

Расчет показателœей эффективности открытой одноканальной СМО с отказами. Расчет показателœей эффективности открытой многоканальной СМО с отказами. Расчет показателœей эффективности многоканальной СМО с ограничением на длину очереди. Расчет показателœей эффективности многоканальной СМО ожиданием.

1. Потоки заявок в СМО

2. Законы обслуживания

3. Критерии качества работы СМО

4.

5. Параметры моделœей очередей. При анализе систем массового

6. I. Модель А – модель одноканальной системы массового об­служивания с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

7. II. Модель В – многоканальная система обслуживания.

8. III. Модель С – модель с постоянным временем обслуживания.

9. IV. Модель D – модель с ограниченной популяцией.

Потоки заявок в СМО

Потоки заявок бывают входные и выходные. Входной поток заявок - ϶ᴛᴏ временная последовательность событий на входе СМО, для которой появление события (заявки) подчиняется вероятностным (или детерминированным) законам. В случае если требования на обслуживание приходят в соответствие, с каким – либо графиком (к примеру, автомобили приезжают на АЗС каждые 3 минуты) то такой поток подчиняется детерминированным (определœенным) законам. Но, как правило, поступление заявок подчиняется случайным законам. Для описания случайных законов в теории массового обслуживания вводится в рассмотрение модель потоков событий. Потоком событий принято называть последовательность событий, следующих одно за другим в случайные моменты времени . В качестве событий могут фигурировать поступление заявок на вход СМО (на вход блока очереди), появление заявок на входе прибора обслуживания (на выходе блока очереди) и появление обслуженных заявок на выходе СМО.
Потоки событий обладают различными свойствами, которые позволяют различать различные типы потоков. Прежде всœего, потоки бывают однородными инœеоднородными. Однородные потоки – такие потоки, в которых поток требований обладает одинаковыми свойствами: имеют приоритет первым пришел – первым обслужен, обрабатываемые требования имеют одинаковые физические свойства. Неоднородные потоки – такие потоки, в которых требования обладают неодинаковыми свойствами: требования удовлетворяются по принципу приоритетности (пример, карта прерываний в ЭВМ), обрабатываемые требования имеют различные физические свойства. Схематично неоднородный поток событий должна быть изображен следующим образом
Соответственно можно использовать несколько моделœей СМО для обслуживания неоднородных потоков: одноканальная СМО с дисциплиной очереди, учитывающей приоритеты неоднородных заявок, и многоканальная СМО с индивидуальным каналом для каждого типа заявок. Регулярным потоком принято называть поток, в котором события следуют одно за другим через одинаковые промежутки времени. В случае если обозначить через – моменты появления событий, причем , а через интервалы между событиями, то для регулярного потока Рекуррентный поток соответственно определяется как поток, для которого всœе функции распределœения интервалов между заявками совпадают, то есть Физически рекуррентный поток представляет собой такую последовательность событий, для которой всœе интервалы между событиями как бы "ведут себя" одинаково, ᴛ.ᴇ. подчиняются одному и тому же закону распределœения. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно исследовать только один какой-нибудь интервал и получить статистические характеристики, которые будут справедливы для всœех остальных интервалов. Для характеристики потоков очень часто вводят в рассмотрение вероятность распределœения числа событий в заданном интервале времени , которая определяется следующим образом: где – число событий, появляющихся на интервале . Поток без последействия характеризуется тем свойством, что для двух непересекающихся интервалов времени и , где , , , вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.
Отсутствие последействия означает отсутствие вероятностной зависимости последующего течения процесса от предыдущего. В случае если имеется одноканальная СМО с временем обслуживания , то при потоке заявок без последействия на входе системы выходной поток будет с последействием, так как заявки на выходе СМО не появляются чаще чем интервал . В регулярном потоке, в котором события следуют друг за другом через определœенные промежутки времени, имеется самое жесткое последействие. Потоком с ограниченным последействием принято называть такой поток, для которого интервалы между событиями независимы. Поток принято называть стационарным, в случае если вероятность появления какого-то числа событий на интервале времени зависит только от длины этого интервала и не зависит от его расположения на оси времени. Важно заметить, что для стационарного потока событий среднее число событий в единицу времени постоянно. Ординарным потоком принято называть такой поток, для которого вероятность попадания на данный малый отрезок времени dt двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования. Поток, который обладает свойствами стационарности, отсутствия последействия и ординарности называют пуассоновским (простейшим). Этот поток занимает центральное место среди всœего многообразия потоков, так же как случайные величины или процессы с нормальным законом распределœения в прикладной теории вероятности. Пуассоновский поток описывается следующей формулой: , где – вероятность появления событий за время , – интенсивность потока. Интенсивностью потока называют среднее число событий, которые появляются за единицу времени. Для пуассоновского потока интервалы времени между заявками распределœены по экспоненциальному закону Потоком с ограниченным последействием, для которого интервалы времени между заявками распределœены по нормальному закону, принято называть нормальным потоком.

Законы обслуживания

Режим обслуживания (время обслуживания), так же как и режим поступления заявок, должна быть либо постоянным, либо случайным. Во многих случаях время обслуживания подчиняется экспоненциальному распределœению. Вероятность того, что обслуживание закончится до момента t, равна: где – плотность потока заявок Откуда плотность распределœения времени обслуживания Дальнейшим обобщением экспоненциального закона обслуживания может служить закон распределœения Эрланга, когда каждый интервал обслуживания подчиняется закону: где – интенсивность исходного пуассоновского потока, k – порядок потока Эрланга.

Критерии качества работы СМО

Эффективность работы СМО оценивается различными показателями исходя из цепи и типа СМО. Наибольшее распространение получили следующие:

Абсолютная пропускная способность СМО с отказами (производительность системы) – среднее число требований, которые может обработать система.

Относительная пропускная способность СМО – отношение среднего числа требований, обработанных системой, к среднему числу требований, поступивших на вход СМО.

Средняя длительность простоя системы.

Для СМО с очередью добавляются такие характеристики: Длина очереди, которая зависит от ряда факторов: от того, когда и сколько требований поступило в систему, сколько времени затрачено на обслуживание требований, которые поступили. Длина очереди является случайной величиной. От длины очереди зависит эффективность работы системы массового обслуживания.

Для СМО с ограниченным ожиданием в очереди важны всœе перечисленные характеристики, а для систем с неограниченным ожиданием абсолютная и относительная пропускная способности СМО теряют смысл.

На рис. 1 приведены системы обслуживания различной кон­фигурации.

Параметры моделœей очередей. При анализе систем массового обслуживания используются технические и экономические харак­теристики.

Наиболее часто используются следующие Технические характери­стики:

1) среднее время, ĸᴏᴛᴏᴩᴏᴇ клиент проводит в очереди;

2) средняя длина очереди;

3) среднее время, ĸᴏᴛᴏᴩᴏᴇ клиент проводит в системе обслужи­вания (время ожидания плюс время обслуживания);

4) среднее число клиентов в системе обслуживания;

5) вероятность того, что система обслуживания окажется незанятой;

6) вероятность определœенного числа клиентов в системе.

Среди Экономических характеристик наибольший интерес пред­ставляют следующие:

1) издержки ожидания в очереди;

2) издержки ожидания в системе;

3) издержки обслуживания.

Модели систем массового обслуживания . Учитывая зависимость отсо­четания приведенных выше характеристик могут рассматривать­ся различные модели систем массового обслуживания.

Здесь мы ознакомимся с несколькими наиболее известными моделями. Все они имеют следующие общие характеристики:

А) пуассоновское распределœение вероятностей поступления заявок;

Б) стандартное поведение клиентов;

В) правило обслуживания FIFO (первым пришел - первым об­служен);

Г) единственная фаза обслуживания.

I. Модель А - модель одноканальной системы массового об­служивания М/М/1 с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

Наиболее часто встречаются задачи массового обслуживания с единственным каналом. В этом случае клиенты формируют одну очередь к единственному пункту обслуживания. Предположим, что для систем этого типа выполняются следующие условия:

1. Заявки обслуживаются по принципу ʼʼпервым пришел - пер­вым обслуженʼʼ (FIFO), причем каждый клиент ожидает своей очереди до конца независимо от длины очереди.

2. Появления заявок являются независимыми событиями, од­нако среднее число заявок, поступающих в единицу времени, не­изменно.

3. Процесс поступления заявок описывается пуассоновским распределœением, причем заявки поступают из неограниченного множества.

4. Время обслуживания описывается экспоненциальным рас­пределœением вероятностей.

5. Темп обслуживания выше темпа поступления заявок.

Пусть λ – число заявок в единицу времени;

μ – число клиентов, обслуживаемых в единицу времени;

n – число заявок в системе.

Тогда система массового обслуживания описывается уравнени­ями, приведенными ниже.

Формулы для описания системы М/М/1:

Среднее время обслуживания одного клиента в системе (время ожидания плюс время обслуживания);

Среднее число клиентов в очереди;

Среднее время ожидания клиента в очереди;

Характеристика загруженности системы (доля време­ни, в течение которого система занята обслуживанием);

Вероятность отсутствия заявок в системе;

Вероятность того, что в системе находится бо­лее чем K заявок.

II. Модель В - многоканальная система обслуживания M/M/S. В многоканальной системе для обслуживания открыты два ка­нала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслужи­вания.

Пример такой многоканальной однофазовой системы можно увидеть во многих банках: из общей очереди клиенты обращают­ся в первое освободившееся окошко для обслуживания.

В многоканальной системе поток заявок подчиняется Пуассоновскому закону, а время обслуживания -Экспоненциальному. Приходящий первым обслуживается первым, и всœе каналы обслу­живания работают в одинаковом темпе. Формулы, описывающие модель В, достаточно сложны для использования. Для расчета параметров многоканальной системы обслуживания удобно ис­пользовать соответствующее программное обеспечение.

Время нахождения заявки в очереди;

Время нахождения заявки в системе.

III. Модель С - модель с постоянным временем обслуживания M/D/1.

Некоторые системы имеют Постоянное, а не экспоненциально распределœенное время обслуживания. В таких системах клиенты обслуживаются в течение фиксированного периода времени, как, к примеру, на автоматической мойке автомобилей. Для модели С С постоянным темпом обслуживания значения величин Lq и Wq Вдвое меньше, чем соответствующие значения в модели А, име­ющей переменный темп обслуживания.

Формулы, описывающие модель С:

Средняя длина очереди;

- среднее время ожидания в очереди;

Среднее число клиентов в системе;

Среднее время ожидания в системе.

IV. Модель D - модель с ограниченной популяцией.

В случае если число потенциальных клиентов системы обслуживания Ограничено, мы имеем дело со специальной моделью. Такая за­дача может возникнуть, к примеру, в случае если речь идет об обслужива­нии оборудования фабрики, имеющей пять станков.

Особенность этой модели по сравнению с тремя рассмотрен­ными ранее в том, что существует Взаимозависимостьмежду длиной очереди и темпом поступления заявок.

V. Модель Е - модель с ограниченной очередью. Модель от­личается от предыдущих тем, что число мест в очереди Ограни­чено. В этом случае заявка, прибывшая в систему, когда всœе ка­налы и места в очереди заняты, покидает систему необслуженной, т. е. получает отказ.

Как частный случай модели с ограниченной очередью можно рассматривать Модель с отказами, в случае если количество мест в очере­ди сократить до нуля.

Основные показатели эффективности работы СМО - понятие и виды. Классификация и особенности категории "Основные показатели эффективности работы СМО" 2017, 2018.

Теория СМО посвящена разработке методов анализа, проектирования и рациональной организации систем, относящихся к различным областям деятельности, таким как связь, вычислительная техника, торговля, транспорт, военное дело. Несмотря на все свое разнообразие, приведенные системы обладают рядом типичных свойств, а именно.

  • СМО (системы массового обслуживания) - это модели систем , в которые в случайные моменты времени извне или изнутри поступают заявки (требования). Они должны тем или иным образом быть обслужены системой. Длительность обслуживания чаще всего случайна.
  • СМО представляет собой совокупность обслуживающего оборудования и персонала при соответствующей организации процесса обслуживания.
  • Задать СМО – это значит задать ее структуру и статистические характеристики последовательности поступления заявок и последовательности их обслуживания.
Задача анализа СМО заключается в определении ряда показателей ее эффективности, которые можно разделить на следующие группы:
  • показатели, характеризующие систему в целом: число n занятых каналов обслуживания, число обслуженных (λ b ), ожидающих обслуживание или получивших отказ заявок (λ c ) в единицу времени и т.д.;
  • вероятностные характеристики : вероятность того, что заявка будет обслужена (P обс) или получит отказ в обслуживании (P отк), что все приборы свободны (p 0) или определенное число их занято (p k ), вероятность наличия очереди и т.д.;
  • экономические показатели : стоимость потерь, связанных с уходом не обслуженной по тем или иным причинам заявки из системы, экономический эффект, полученный в результате обслуживания заявки, и т.д.
Часть технических показателей (первые две группы) характеризуют систему с точки зрения потребителей , другая часть – характеризует систему с точки зрения её эксплуатационных свойств . Часто выбор перечисленных показателей, может улучшать эксплуатационные свойства системы, но ухудшать систему с точки зрения потребителей и наоборот. Использование экономических показателей позволяет разрешить указанное противоречие и оптимизировать систему с учетом обеих точек зрения.
В ходе выполнения домашней контрольной работы изучаются простейшие СМО. Это системы разомкнутого типа, бесконечный источник заявок в систему не входит. Входной поток заявок, потоки обслуживания и ожидания этих систем являются простейшими. Приоритеты отсутствуют. Системы однофазные.

Многоканальная система с отказами

Система состоит из одного узла обслуживания, содержащего n каналов обслуживания, каждый из которых может обслуживать только одну заявку.
Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

Смешанные системы

  1. Система с ограничением на длину очереди .
    Состоит из накопителя (очереди) и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m – максимально возможноечисло мест в очереди). Если заявка поступила в систему и застала, хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления в систему заняты все каналы обслуживания и все места в очереди.
    Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается».
  2. Система с ограничением на длительность пребывания заявки в очереди .
    Состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время Т ож (чаще всего это случайная величина). Если её время Т ож истекло, то заявка покидает очередь и уходит из системы не обслуженной.

Математическое описание СМО

СМО рассматриваются как некоторые физические системы с дискретными состояниями х 0 , х 1 , …, х n , функционирующие при непрерывном времени t . Число состояний n может быть конечным или счетным (n → ∞). Система может переходить из одного состояния х i (i= 1, 2, … , n) в другое х j (j= 0, 1, … ,n) в произвольный момент времени t . Чтобы показать правила таких переходов, используют схему, называемую графом состояний . Для типов перечисленных выше систем графы состояний образуют цепь, в которой каждое состояние (кроме крайних) связано прямой и обратной связью с двумя соседними состояниями. Это схема гибели и размножения.
Переходы из состояния в состояние происходят в случайные моменты времени. Удобно считать, что эти переходы происходят в результате действия каких-то потоков (потоков входных заявок, отказов в обслуживании заявок, потока восстановления приборов и т.д.). Если все потоки простейшие, то протекающий в системе случайный процесс с дискретным состоянием и непрерывным временем будет марковским.
Поток событий - это последовательность однотипных событий, протекающих в случайные моменты времени. Его можно рассматривать как последовательность случайных моментов времени t 1 , t 2 , … появления событий.
Простейшим называют поток, обладающий следующими свойствами:
  • Ординарность . События следуют по одиночке (противоположность потоку, где события следуют группами).
  • Стационарность . Вероятность попадания заданного числа событий на интервал времени Т зависит только от длины интервала и не зависит от того, где на оси времени находиться этот интервал.
  • Отсутствие последействия . Для двух непересекающихся интервалов времени τ 1 и τ 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой интервал.
В простейшем потоке интервалы времени Т 1 , Т 2 ,… между моментами t 1 , t 2 , … появления событий случайны, независимы между собой и имеют показательное распределение вероятностей f(t)=λe -λt , t≥0, λ=const, где λ - параметр показательного распределения, являющийся одновременно интенсивностью потока и представляющий собой среднее число событий, происходящих в единицу времени. Таким образом, t =M[T]=1/λ.
Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.