Проверка значимости уравнения регрессии. Оценка значимости уравнения множественной регрессии

Для коэффициентов регрессионного уравнения проверка их уровня значимости осуществляется по t -критерию Стьюдента и по критерию F Фишера. Ниже мы рассмотрим оценку достоверности показателей регрессии только для линейных уравнений (12.1) и (12.2).

Y=a 0 + a 1 X (12.1)

Х= b 0 + b 1 Y (12.2)

Для это типа уравнений оценивают по t -критерию Стьюдента только величины коэффициентов а b 1с использованием вычисления величины Тф по следующим формулам:

Где r yx коэффициент корреляции, а величину а 1можно вычислить по формулам 12.5 или 12.7.

Формула (12.27) используется для вычисления величины Тф, а 1уравнения регрессии Y по X.

Величину b 1можно вычислить по формулам (12.6) или (12.8).

Формула (12.29) используется для вычисления величины Тф, которая позволяет оценить уровень значимости коэффициента b 1уравнения регрессии X по Y

Пример. Оценим уровень значимости коэффициентов регрессии а b 1уравнений (12.17), и (12.18), полученных при решении задачи 12.1. Воспользуемся для этого формулами (12.27), (12.28), (12.29) и (12.30).

Напомним вид полученных уравнений регрессии:

Y х = 3 + 0,06 X (12.17)

X y = 9+ 1 Y (12.19)

Величина а 1в уравнении (12.17) равна 0,06. Поэтому для расчета по формуле (12.27) нужно подсчитать величину Sb y х. Согласно условию задачи величина п = 8. Коэффициент корреляции также уже был подсчитан нами по формуле 12.9: r xy = √ 0,06 0,997 = 0,244 .

Осталось вычислить величины Σ (у ι - y ) 2 и Σ (х ι –x ) 2 , которые у нас не подсчитаны. Лучше всего эти расчеты проделать в таблице 12.2:

Таблица 12.2

№ испыту­емых п/п х ι у i х ι –x (х ι –x ) 2 у ι - y (у ι - y ) 2
-4,75 22,56 - 1,75 3,06
-4,75 22,56 -0,75 0,56
-2,75 7,56 0,25 0,06
-2,75 7,56 1,25 15,62
1,25 1,56 1,25 15,62
3,25 10,56 0,25 0,06
5,25 27,56 -0,75 0,56
5,25 27,56 0,25 0,06
Суммы 127,48 35,6
Средние 12,75 3,75

Подставляем полученные значения в формулу (12.28), получаем:

Теперь рассчитаем величину Тф по формуле (12.27):

Величина Тф проверяется на уровень значимости по таблице 16 Приложения 1 для t- критерия Стьюдента. Число степеней свободы в этом случае будет равно 8-2 = 6, поэтому критические значения равны соответственно для Р ≤ 0,05 t кр = 2,45 и для Р≤ 0,01 t кр =3,71. В принятой форме записи это выглядит так:

Строим «ось значимости»:

Полученная величина Тф Н о о том, что величина коэффициента регрессии уравнения (12.17) неотличима от нуля. Иными словами, полученное уравнение регрессии неадекватно исходным экспериментальным данным.



Рассчитаем теперь уровень значимости коэффициента b 1. Для этого необходимо вычислить величину Sb xy по формуле (12.30), для которой уже расчитаны все необходимые величины:

Теперь рассчитаем величину Тф по формуле (12.27):

Мы можем сразу построить «ось значимости», поскольку все предварительные операции были проделаны выше:

Полученная величина Тф попала в зону незначимости, следовательно мы должны принять гипотезу H о о том, что величина коэффициента регрессии уравнения (12.19) неотличима от нуля. Иными словами, полученное уравнение регрессии неадекватно исходным экспериментальным данным.

Нелинейная регрессия

Полученный в предыдущем разделе результат несколько обескураживает: мы получили, что оба уравнения регрессии (12.15) и (12.17) неадекватны экспериментальным данным. Последнее произошло потому, что оба эти уравнения характеризуют линейную связь между признаками, а мы в разделе 11.9 показали, что между переменными X и Y имеется значимая криволинейная зависимость. Иными словами, между переменными Х и Y в этой задаче необходимо искать не линейные, а криволинейные связи. Проделаем это с использованием пакета «Стадия 6.0» (разработка А.П. Кулаичева, регистрационный номер 1205).

Задача 12.2 . Психолог хочет подобрать регрессионную модель, адекватную экспериментальным данным, полученным в задаче 11.9.

Решение. Эта задача решается простым перебором моделей криволинейной регрессии предлагаемых в статистическом пакете Стадия. Пакет организован таким образом, что в электронную таблицу, которая является исходной для дальнейшей работы, заносятся экспериментальные данные в виде первого столбца для переменной X и второго столбца для переменной Y. Затем в основном меню выбирается раздел Статистики, в нем подраздел - регрессионный анализ, в этом подразделе вновь подраздел - криволинейная регрессия. В последнем меню даны формулы (модели) различных видов криволинейной регрессии, согласно которым можно вычислять соответствующие регрессионные коэффициенты и сразу же проверять их на значимость. Ниже рассмотрим только несколько примеров работы с готовыми моделями (формулами) криволинейной регрессии.



1. Первая модель - экспонента . Ее формула такова:

При расчете с помощью статпакета получаем а 0 = 1 и а 1 = 0,022.

Расчет уровня значимости для а, дал величину Р = 0,535. Очевидно, что полученная величина незначима. Следовательно, данная регрессионная модель неадекватна экспериментальным данным.

2. Вторая модель - степенная . Ее формула такова:

При подсчете а о = - 5,29, а, = 7,02 и а 1 = 0,0987.

Уровень значимости для а 1 - Р = 7,02 и для а 2 - Р = 0,991. Очевидно, что ни один из коэффициентов не значим.

3. Третья модель - полином . Ее формула такова:

Y = а 0 + а 1 X + а 2 X 2 + а 3 X 3

При подсчете а 0 = - 29,8, а 1 = 7,28, а 2 = - 0,488 и а 3 = 0,0103. Уровень значимости для а, - Р = 0,143, для а 2 - Р = 0,2 и для а, - Р= 0,272

Вывод - данная модель неадекватна экспериментальным данным.

4. Четвертая модель - парабола .

Ее формула такова: Y= a o + a l -X 1 + а 2 Х 2

При подсчете а 0 = - 9,88, а, = 2,24 и а 1 = - 0,0839 Уровень значимости для а 1 - Р = 0,0186, для а 2 - Р = 0,0201. Оба регрессионных коэффициента оказались значимыми. Следовательно, задача решена - мы выявили форму криволинейной зависимости между успешностью решения третьего субтеста Векслера и уровнем знаний по алгебре - это зависимость параболического вида. Этот результат подтверждает вывод, полученный при решении задачи 11.9 о наличии криволинейной зависимости между переменными. Подчеркнем, что именно с помощью криволинейной регрессии был получен точный вид зависимости между изучаемыми переменными.


Глава 13 ФАКТОРНЫЙ АНАЛИЗ

Основные понятия факторного анализа

Факторный анализ - статистический метод, который используется при обработке больших массивов экспериментальных данных. Задачами факторного анализа являются: сокращение числа переменных (редукция данных) и определение структуры взаимосвязей между переменными, т.е. классификация переменных, поэтому факторный анализ используется как метод сокращения данных или как метод структурной классификации.

Важное отличие факторного анализа от всех описанных выше методов заключается в том, что его нельзя применять для обработки первичных, или, как говорят, «сырых», экспериментальных данных, т.е. полученных непосредственно при обследовании испытуемых. Материалом для факторного анализа служат корреляционные связи, а точнее - коэффициенты корреляции Пирсона, которые вычисляются между переменными (т.е. психологическими признаками), включенными в обследование. Иными словами, факторному анализу подвергают корреляционные матрицы, или, как их иначе называют, матрицы интеркорреляций. Наименования столбцов и строк в этих матрицах одинаковы, так как они представляют собой перечень переменных, включенных в анализ. По этой причине матрицы интеркорреляций всегда квадратные, т.е. число строк в них равно числу столбцов, и симметричные, т.е. на симметричных местах относительно главной диагонали стоят одни и те же коэффициенты корреляции.

Необходимо подчеркнуть, что исходная таблица данных, из которой получается корреляционная матрица, не обязательно должна быть квадратной. Например, психолог измерил три показателя интеллекта (вербальный, невербальный и общий) и школьные отметки по трем учебным предметам (литература, математика, физика) у 100 испытуемых - учащихся девятых классов. Исходная матрица данных будет иметь размер 100 × 6, а матрица интеркорреляций размер 6 × 6, поскольку в ней имеется только 6 переменных. При таком количестве переменных матрица интеркорреляций будет включать 15 коэффициентов и проанализировать ее не составит труда.

Однако представим, что произойдет, если психолог получит не 6, а 100 показателей от каждого испытуемого. В этом случае он должен будет анализировать 4950 коэффициентов корреляции. Число коэффициентов в матрице вычисляется по формуле n (n+1)/2 и в нашем случае равно соответственно (100×99)/2= 4950.

Очевидно, что провести визуальный анализ такой матрицы - задача труднореализуемая. Вместо этого психолог может выполнить математическую процедуру факторного анализа корреляционной матрицы размером 100 × 100 (100 испытуемых и 100 переменных) и таким путем получить более простой материал для интерпретации экспериментальных результатов.

Главное понятие факторного анализа - фактор. Это искусственный статистический показатель, возникающий в результате специальных преобразований таблицы коэффициентов корреляции между изучаемыми психологическими признаками, или матрицы интеркорреляций. Процедура извлечения факторов из матрицы интеркорреляций называется факторизацией матрицы. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, выделяемые в результате факторизации, как правило, неравноценны по своему значению.

Элементы факторной матрицы называются или весами»; и они представляют собой коэффициенты корреляции данного фактора со всеми показателями, использованными в исследовании. Факторная матрица очень важна, поскольку она показывает, как изучаемые показатели связаны с каждым выделенным фактором. При этом факторный вес демонстрирует меру, или тесноту, этой связи.

Поскольку каждый столбец факторной матрицы (фактор) является своего рода переменной величиной, то сами факторы также могут коррелировать между собой. Здесь возможны два случая: корреляция между факторами равна нулю, в таком случае факторы являются независимыми (ортогональными). Если корреляция между факторами больше нуля, то в таком случае факторы считаются зависимыми (облическими). Подчеркнем, что ортогональные факторы в отличие от облических дают более простые варианты взаимодействий внутри факторной матрицы.

В качестве иллюстрации ортогональных факторов часто приводят задачу Л. Терстоуна, который, взяв ряд коробок разных размеров и формы, измерил в каждой из них больше 20 различных показателей и вычислил корреляции между ними. Профакторизовав полученную матрицу интеркорреляций, он получил три фактора, корреляция между которыми была равна нулю. Этими факторами были «длина», «ширина» и «высота».

Для того чтобы лучше уловить сущность факторного анализа, разберем более подробно следующий пример.

Предположим, что психолог у случайной выборки студентов получает следующие данные:

V 1 - вес тела (в кг);

V 2 - количество посещений лекций и семинарских занятий по предмету;

V 3 - длина ноги (в см);

V 4 - количество прочитанных книг по предмету;

V 5 - длина руки (в см);

V 6 - экзаменационная оценка по предмету (V - от английского слова variable - переменная).

При анализе этих признаков не лишено оснований предположение о том, что переменные V 1 , К 3 и V 5 - будут связаны между собой, поскольку, чем больше человек, тем больше он весит и тем длиннее его конечности. Сказанное означает, что между этими переменными должны получиться статистически значимые коэффициенты корреляции, поскольку эти три переменные измеряют некоторое фундаментальное свойство индивидуумов в выборке, а именно: их размеры. Точно так же вероятно, что при вычислении корреляций между V 2 , V 4 и V 6 тоже будут получены достаточно высокие коэффициенты корреляции, поскольку посещение лекций и самостоятельные занятия будут способствовать получению более высоких оценок по изучаемому предмету.

Таким образом, из всего возможного массива коэффициентов, который получается путем перебора пар коррелируемых признаков V 1 и V 2 , V t и V 3 и т.д., предположительно выделятся два блока статистически значимых корреляций. Остальная часть корреляций - между признаками, входящими в разные блоки, вряд ли будет иметь статистически значимые коэффициенты, поскольку связи между такими признаками, как размер конечности и успеваемость по предмету, имеют, скорее всего, случайный характер. Итак, содержательный анализ 6 наших переменных показывает, что они, по сути дела, измеряют только две обобщенные характеристики, а именно: размеры тела и степень подготовленности по предмету.

К полученной матрице интеркорреляций, т.е. вычисленным попарно коэффициентам корреляций между всеми шестью переменными V 1 - V 6 , допустимо применить факторный анализ. Его можно проводить и вручную, с помощью калькулятора, однако процедура подобной статистической обработки очень трудоемка. По этой причине в настоящее время факторный анализ проводится на компьютерах, как правило, с помощью стандартных статистических пакетов. Во всех современных статистических пакетах есть программы для корреляционного и факторного анализов. Компьютерная программа по факторному анализу по существу пытается «объяснить» корреляции между переменными в терминах небольшого числа факторов (в нашем примере двух).

Предположим, что, используя компьютерную программу, мы получили матрицу интеркорреляций всех шести переменных и подвергли ее факторному анализу. В результате факторного анализа получилась таблица 13.1, которую называют «факторной матрицей», или «факторной структурной матрицей».

Таблица 13.1

Переменная Фактор 1 Фактор 2
V 1 0,91 0,01
V 2 0,20 0,96
V 3 0,94 -0,15
V 4 0,11 0,85
V 5 0,89 0,07
V 6 -0,13 0,93

По традиции факторы представляются в таблице в виде столбцов, а переменные в виде строк. Заголовки столбцов таблицы 13.1 соответствуют номерам выделенных факторов, но более точно было бы их называть «факторные нагрузки», или «веса», по фактору 1, то же самое по фактору 2. Как указывалось выше, факторные нагрузки, или веса, представляют собой корреляции между соответствующей переменной и данным фактором. Например, первое число 0,91 в первом факторе означает, что корреляция между первым фактором и переменной V 1 равна 0,91. Чем выше факторная нагрузка по абсолютной величине, тем больше ее связь с фактором.

Из таблицы 13.1 видно, что переменные V 1 V 3 и V 5 имеют большие корреляции с фактором 1 (фактически переменная 3 имеет корреляцию близкую к 1 с фактором 1). В то же время переменные V 2 , V 3 и У 5 имеют корреляции близкие к 0 с фактором 2. Подобно этому фактор 2 высоко коррелирует с переменными V 2 , V 4 и V 6 и фактически не коррелирует с переменными V 1 , V 3 и V 5

В данном примере, очевидно, что существуют две структуры корреляций, и, следовательно, вся информация таблицы 13.1 определяется двумя факторами. Теперь начинается заключительный этап работы - интерпретация полученных данных. Анализируя факторную матрицу, очень важно учитывать знаки факторных нагрузок в каждом факторе. Если в одном и том же факторе встречаются нагрузки с противоположными знаками, это означает, что между переменными, имеющими противоположные знаки, существует обратно пропорциональная зависимость.

Отметим, что при интерпретации фактора для удобства можно изменить знаки всех нагрузок по данному фактору на противоположные.

Факторная матрица показывает также, какие переменные образуют каждый фактор. Это связано, прежде всего, с уровнем значимости факторного веса. По традиции минимальный уровень значимости коэффициентов корреляции в факторном анализе берется равным 0,4 или даже 0,3 (по абсолютной величине), поскольку нет специальных таблиц, по которым можно было бы определить критические значения для уровня значимости в факторной матрице. Следовательно, самый простой способ увидеть какие переменные «принадлежат» фактору – это значит отметить те из них, которые имеют нагрузки выше, чем 0,4 (или меньше чем - 0,4). Укажем, что в компьютерных пакетах иногда уровень значимости факторного веса определяется самой программой и устанавливается на более высоком уровне, например 0,7.

Так, из таблицы 13.1, следует вывод, что фактор 1 - это сочетание переменных V 1 К 3 и V 5 (но не V 1 , K 4 и V 6 , поскольку их факторные нагрузки по модулю меньше чем 0,4). Подобно этому фактор 2 представляет собой сочетание переменных V 2 , V 4 и V 6 .

Выделенный в результате факторизации фактор представляет собой совокупность тех переменных из числа включенных в анализ, которые имеют значимые нагрузки. Нередко случается, однако, что в фактор входит только одна переменная со значимым факторным весом, а остальные имеют незначимую факторную нагрузку. В этом случае фактор будет определяться по названию единственной значимой переменной.

В сущности, фактор можно рассматривать как искусственную «единицу» группировки переменных (признаков) на основе имеющихся между ними связей. Эта единица является условной, потому что, изменив определенные условия процедуры факторизации матрицы интеркорреляций, можно получить иную факторную матрицу (структуру). В новой матрице может оказаться иным распределение переменных по факторам и их факторные нагрузки.

В связи с этим в факторном анализе существует понятие «простая структура». Простой называют структуру факторной матрицы, в которой каждая переменная имеет значимые нагрузки только по одному из факторов, а сами факторы ортогональны, т.е. не зависят друг от друга. В нашем примере два общих фактора независимы. Факторная матрица с простой структурой позволяет провести интерпретацию полученного результата и дать наименование каждому фактору. В нашем случае фактор первый - «размеры тела», фактор второй - «уровень подготовленности».

Сказанное выше не исчерпывает содержательных возможностей факторной матрицы. Из нее можно извлечь дополнительные характеристики, позволяющие более детально исследовать связи переменных и факторов. Эти характеристики называются «общность» и «собственное значение» фактора.

Однако, прежде чем представить их описание, укажем на одно принципиально важное свойство коэффициента корреляции, благодаря которому получают эти характеристики. Коэффициент корреляции, возведенный в квадрат (т.е. помноженный сам на себя), показывает, какая часть дисперсии (вариативности) признака является общей для двух переменных, или, говоря проще, насколько сильно эти переменные перекрываются. Так, например, две переменные с корреляцией 0,9 перекрываются со степенью 0,9 х 0,9 = 0,81. Это означает, что 81% дисперсии той и другой переменной являются общими, т.е. совпадают. Напомним, что факторные нагрузки в факторной матрице - это коэффициенты корреляции между факторами и переменными, поэтому, возведенная в квадрат факторная нагрузка характеризует степень общности (или перекрытия) дисперсий данной переменной и данного фактором.

Если полученные факторы не зависят друг от друга («ортогональное» решение), по весам факторной матрицы можно определить, какая часть дисперсии является общей для переменной и фактора. Вычислить, какая часть вариативности каждой переменной совпадает с вариативностью факторов, можно простым суммированием квадратов факторных нагрузок по всем факторам. Из таблицы 13.1, например, следует, что 0,91 × 0,91 + + 0,01 × 0,01 = 0,8282, т.е. около 82% вариативности первой переменной «объясняется» двумя первыми факторами. Полученная величина называется общностью переменной, в данном случае переменной V 1

Переменные могут иметь разную степень общности с факторами. Переменная с большей общностью имеет значительную степень перекрытия (большую долю дисперсии) с одним или несколькими факторами. Низкая общность подразумевает, что все корреляции между переменными и факторами невелики. Это означает, что ни один из факторов не имеет совпадающей доли вариативности с данной переменной. Низкая общность может свидетельствовать о том, что переменная измеряет нечто качественно отличающееся от других переменных, включенных в анализ. Например, одна переменная, связанная с оценкой мотивации среди заданий, оценивающих способности, будет иметь общность с факторами способностей близкую к нулю.

Малая общность может также означать, что определенное задание испытывает на себе сильное влияние ошибки измерения или крайне сложно для испытуемого. Возможно, напротив, также, что задание настолько просто, что каждый испытуемый дает на него правильный ответ, или задание настолько нечетко по содержанию, что испытуемый не понимает суть вопроса. Таким образом, низкая общность подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо переменная измеряет другое понятие, либо переменная имеет большую ошибку измерения, либо существуют искажающие дисперсию признака различия между испытуемыми в вариантах ответа на это задание.

Наконец, с помощью такой характеристики, как собственное значение фактора, можно определить относительную значимость каждого из выделенных факторов. Для этого надо вычислить, какую часть дисперсии (вариативности) объясняет каждый фактор. Тот фактор, который объясняет 45% дисперсии (перекрытия) между переменными в исходной корреляционной матрице, очевидно, является более значимым, чем другой, который объясняет только 25% дисперсии. Эти рассуждения, однако, допустимы, если факторы ортогональны, иначе говоря, не зависят друг от друга.

Для того чтобы вычислить собственное значение фактора, нужно возвести в квадрат факторные нагрузки, и сложить их по столбцу. Используя данные таблицы 13.1 можно убедиться, что собственное значение фактора 1 составляет (0,91 × 0,91 + 0,20 × 0,20 + 0,94 × 0,94 + 0,11 × 0,11 + 0,84 × 0,84 + (- 0,13) ×

× (-0,13)) = 2,4863. Если собственное значение фактора разделить на число переменных (6 в нашем примере), то полученное число покажет, какая доля дисперсии объясняется данным фактором. В нашем случае получится 2,4863∙100%/6 = 41,4%. Иными словами, фактор 1 объясняет около 41% информации (дисперсии) в исходной корреляционной матрице. Аналогичный подсчет для второго фактора даст 41,5%. В сумме это будет составлять 82,9%.

Таким образом, два общих фактора, будучи объединены, объясняют только 82,9% дисперсии показателей исходной корреляционной матрицы. Что случилось с «оставшимися» 17,1%? Дело в том, что, рассматривая корреляции между 6 переменными, мы отмечали, что корреляции распадаются на два отдельных блока, и поэтому решили, что логично анализировать материал в понятиях двух факторов, а не 6, как и количество исходных переменных. Другими словами, число конструктов, необходимых, чтобы описать данные, уменьшилось с 6 (число переменных) до 2 (число общих факторов). В результате факторизации часть информации в исходной корреляционной матрице была принесена в жертву построению двухфакторной модели. Единственным условием, при котором информация не утрачивается, было бы рассмотрение шестифакторной модели.

После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Проверить значимость уравнения регрессии - значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включённых в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

Проверка значимости производится на основе дисперсионного анализа.

Согласно идее дисперсионного анализа, общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части - объясненную и необъясненную:

или, соответственно:

Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.

В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и уравнение должно иметь вид.

Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.

Однако на практике в правой части присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Число степеней свободы (df-degrees of freedom) - это число независимо варьируемых значений признака.

Для общей СКО требуется (n-1) независимых отклонений,

Факторная СКО имеет одну степень свободы, и

Таким образом, можем записать:

Из этого баланса определяем, что = n-2.

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: - общая дисперсия, - факторная, - остаточная.

Анализ статистической значимости коэффициентов линейной регрессии

Хотя теоретические значения коэффициентов уравнения линейной зависимости предполагаются постоянными величинами, оценки а и b этих коэффициентов, получаемые в ходе построения уравнения по данным случайной выборки, являются случайными величинами. Если ошибки регрессии имеют нормальное распределение, то оценки коэффициентов также распределены нормально и могут характеризоваться своими средними значениями и дисперсией. Поэтому анализ коэффициентов начинается с расчёта этих характеристик.

Дисперсии коэффициентов рассчитываются по формулам:

Дисперсия коэффициента регрессии:

где - остаточная дисперсия на одну степень свободы.

Дисперсия параметра:

Отсюда стандартная ошибка коэффициента регрессии определяется по формуле:

Стандартная ошибка параметра определяется по формуле:

Они служат для проверки нулевых гипотез о том, что истинное значение коэффициента регрессии b или свободного члена a равно нулю: .

Альтернативная гипотеза имеет вид: .

t - статистики имеют t - распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента при определённом уровне значимости б и степенях свободы находят критическое значение.

Если, то нулевая гипотеза должна быть отклонена, коэффициенты считаются статистически значимыми.

Если, то нулевая гипотеза не может быть отклонена. (В случае, если коэффициент b статистически незначим, уравнение должно иметь вид, и это означает, что связь между признаками отсутствует. В случае, если коэффициент а статистически незначим, рекомендуется оценить новое уравнение в виде).

Интервальные оценки коэффициентов линейного уравнения регрессии:

Доверительный интервал для а: .

Доверительный интервал для b:

Это означает, что с заданной надёжностью (где - уровень значимости) истинные значения а, b находятся в указанных интервалах.

Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Они не должны включать нуль.

Анализ статистической значимости уравнения в целом.

Распределение Фишера в регрессионном анализе

Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза о том, что все коэффициенты регрессии, за исключением свободного члена а, равны нулю и, следовательно, фактор х не оказывает влияния на результат y (или).

Величина F - критерия связана с коэффициентом детерминации. В случае множественной регрессии:

где m - число независимых переменных.

В случае парной регрессии формула F - статистики принимает вид:

При нахождении табличного значения F- критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы: - в случае множественной регрессии, - для парной регрессии.

Если, то отклоняется и делается вывод о существенности статистической связи между y и x.

Если, то вероятность уравнение регрессии считается статистически незначимым, не отклоняется.

Замечание. В парной линейной регрессии. Кроме того, поэтому. Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число.

Пусть, например, вначале была оценена множественная линейная регрессия по п наблюдениям с т объясняющими переменными, и коэффициент детерминации равен, затем последние k переменных исключены из числа объясняющих, и по тем же данным оценено уравнение, для которого коэффициент детерминации равен (, т.к. каждая дополнительная переменная объясняет часть, пусть небольшую, вариации зависимой переменной).

Для того, чтобы проверить гипотезу об одновременном равенстве нулю всех коэффициентов при исключённых переменных, рассчитывается величина

имеющая распределение Фишера с степенями свободы.

По таблицам распределения Фишера, при заданном уровне значимости, находят. И если, то нулевая гипотеза отвергается. В таком случае исключать все k переменных из уравнения некорректно.

Аналогичные рассуждения могут быть проведены и по поводу обоснованности включения в уравнение регрессии одной или нескольких k новых объясняющих переменных.

В этом случае рассчитывается F - статистика

имеющая распределение. И если она превышает критический уровень, то включение новых переменных объясняет существенную часть необъяснённой ранее дисперсии зависимой переменной (т.е. включение новых объясняющих переменных оправдано).

Замечания. 1. Включать новые переменные целесообразно по одной.

2. Для расчёта F - статистики при рассмотрении вопроса о включении объясняющих переменных в уравнение желательно рассматривать коэффициент детерминации с поправкой на число степеней свободы.

F - статистика Фишера используется также для проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений.

Пусть имеются 2 выборки, содержащие, соответственно, наблюдений. Для каждой из этих выборок оценено уравнение регрессии вида. Пусть СКО от линии регрессии (т.е.) равны для них, соответственно, .

Проверяется нулевая гипотеза: о том, что все соответствующие коэффициенты этих уравнений равны друг другу, т.е. уравнение регрессии для этих выборок одно и то же.

Пусть оценено уравнение регрессии того же вида сразу для всех наблюдений, и СКО.

Тогда рассчитывается F - статистика по формуле:

Она имеет распределение Фишера с степенями свободы. F - статистика будет близкой к нулю, если уравнение для обеих выборок одинаково, т.к. в этом случае. Т.е. если, то нулевая гипотеза принимается.

Если же, то нулевая гипотеза отвергается, и единое уравнение регрессии построить нельзя.

ТЕМА 4. СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ СВЯЗЕЙ

Уравнение регрессии - этоаналитическое представление корреляционной зависимости. Уравнение регрессии описывает гипотетическую функциональную зависимость между условным средним значением результативного признака и значением признака – фактора (факторов), т.е. основную тенденцию зависимости.

Парная корреляционная зависимость описывается уравнением парной регрессии, множественная корреляционная зависимость – уравнением множественной регрессии.

Признак-результат в уравнении регрессии – это зависимая переменная (отклик, объясняемая переменная), а признак-фактор – независимая переменная (аргумент, объясняющая переменная).

Простейшим видом уравнения регрессии является уравнение парной линейной зависимости:

где y – зависимая переменная (признак-результат); x – независимая переменная (признак-фактор); и – параметры уравнения регрессии; - ошибка оценивания.

В качестве уравнения регрессии могут быть использованы различные математические функции. Частое практическое применение находят уравнения линейной зависимости, параболы, гиперболы, степной функции и др.

Как правило, анализ начинается с оценки линейной зависимости, поскольку результаты легко поддаются содержательной интерпретации. Выбор типа уравнения связи – достаточно ответственный этап анализа. В «докомпьютерную» эпоху эта процедура была сопряжена с определенными сложностями и требовала от аналитика знания свойств математических функций. В настоящее время на базе специализированных программ можно оперативно построить множество уравнений связи и на основе формальных критериев осуществить выбор лучшей модели (однако математическая грамотность аналитика не утратила своей актуальности).

Гипотезу о типе корреляционной зависимости можно выдвинуть по результатам построения поля корреляции (см. лекцию 6). Исходя из характера расположения точек на графике (координаты точек соответствуют значениям зависимой и независимой переменных), выявляется тенденция связи между признаками (показателями). Если линия регрессии проходит через все точки поля корреляции, то эта свидетельствует о функциональной связи. В практике социально-экономических исследований такую картину наблюдать не приходится, поскольку присутствует статистическая (корреляционная) зависимость. В условиях корреляционной зависимости при нанесении линии регрессии на диаграмму рассеивания наблюдается отклонение точек поля корреляции от линии регрессии, что демонстрирует, так называемые, остатки или ошибки оценивания (см. рисунок 7.1).

Наличие ошибки уравнения связано с тем, что:

§ не все факторы, влияющие на результат, учитываются в уравнении регрессии;

§ может быть неверно выбранаформа связи - уравнение регрессии;

§ не все факторы включены в уравнение.

Построить уравнение регрессии – означает рассчитать значения его параметров. Уравнение регрессии строится на основе фактических значений анализируемых признаков. Расчет параметров, как правило, выполняется с использованием метода наименьших квадратов (МНК).

Суть МНК состоит в том, что удается получить такие значения параметров уравнения, при которых минимизируется сумма квадратов отклонений теоретических значений признака-результата (рассчитанных на основе уравнения регрессии), от фактических его значений:

,

где - фактическое значение признака-результата у i-й единицы совокупности; - значение признака-результата у i-й единицы совокупности, полученное по уравнению регрессии ().

Т.о., решается задача на экстремум, то есть необходимо найти, при каких значениях параметров, функция S достигает минимума.

Проводя дифференцирование, приравнивая частные производные нулю:



, (7.3)

, (7.4)

где - среднее произведение значений фактора и результата; - среднее значение признака - фактора; - среднее значение признака -результата; - дисперсия признака-фактора.

Параметр в уравнении регрессии характеризует угол наклона линии регрессии на графике. Этот параметр называют коэффициентом регрессии и его величина характеризует, на сколько единиц своего измерения изменится признак-результат при изменении признака-фактора на единицу своего измерения. Знак при коэффициенте регрессии отражает направленность зависимости (прямая или обратная) и совпадает со знаком коэффициента корреляции (в условиях парной зависимости).

В рамках рассматриваемого примера, в программе STATISTICA рассчитаны параметры уравнения регрессии, описывающего зависимость между уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, см. таблицу 7.1.

Таблица 7.1 - Расчет и оценка параметров уравнения, описывающего зависимостьмежду уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, 2013 г.

В графе "В" таблицы содержатся значения параметров уравнения парной регрессии, следовательно, можно записать: = 13406,89 + 22,82 x.Данное уравнение описывает тенденцию связи между анализируемыми характеристиками. Параметр - это коэффициент регрессии. В данном случае он равен 22,82 и характеризует следующее: при увеличении ВРП на душу населения на 1 тыс.рублей среднедушевые денежные доходы в среднем возрастают (на что указывает знак "+") на 22,28 руб.

Параметр уравнения регрессии в социально-экономических исследованиях, как правило, содержательно не интерпретируется. Формально он отражает величину признака - результата при условии, что признак - фактор равен нулю. Параметр характеризует расположение линии регрессии на графике, см. рисунок 7.1.

Рисунок 7.1 - Поле корреляции и линия регрессии, отражающие зависимость уровня среднедушевых денежных доходов населения в регионах России и величины ВРП на душу населения

Значение параметра соответствует точке пересечения линии регрессии с осью Y, при X=0.

Построение уравнения регрессии сопровождается оценкой статистической значимости уравнения в целом и его параметров. Необходимость таких процедур связана с ограниченным объемом данных, что может препятствовать действию закона больших чисел и, следовательно, выявлению истинной тенденции во взаимосвязи анализируемых показателей. Кроме того, любую исследуемую совокупность можно рассматривать как выборку из генеральной совокупности, а характеристики, полученные в ходе анализа, как оценку генеральных параметров.

Оценка статистической значимости параметров и уравнения в целом – это обоснование возможности использования построенной модели связи для принятия управленческих решений и прогнозирования (моделирования).

Статистическая значимость уравнения регрессии в целом оценивается с использованием F-критерия Фишера , который представляет собой отношение факторной и остаточных дисперсий, рассчитанных на одну степень свободы:

где - факторная дисперсия признака - результата; k – число степеней свободы факторной дисперсии (число факторов в уравнении регрессии); - среднее значение зависимой переменной; - теоретическое (полученной по уравнению регрессии) значение зависимой переменной у i – й единицы совокупности; - остаточная дисперсии признака - результата; n – объем совокупности; n-k-1 – число степеней свободы остаточной дисперсии.

Величина F-критерия Фишера, согласно формуле, характеризует соотношение между факторной и остаточной дисперсиями зависимой переменной, демонстрируя, по существу, во сколько раз величина объясненной части вариации превышает необъясненную.

F-критерий Фишера табулирован, входом в таблицу является число степеней свободы факторной и остаточной дисперсий. Сравнение расчетного значения критерия с табличным (критическим) позволяет ответить на вопрос: статистически значима ли та часть вариации признака-результата, которую удается объяснить факторами, включенными в уравнение данного вида. Если , то уравнение регрессии признается статистически значимым и, соответственно, статистически значим и коэффициент детерминации. В противном случае (), уравнение – статистически незначимо, т.е. вариация учтенных в уравнении факторов не объясняет статистически значимой части вариации признака-результата, либо не верно выбрано уравнение связи.

Оценка статистической значимости параметров уравнения осуществляется на основе t-статистики , которая рассчитывается как отношение модуля параметров уравнения регрессии к их стандартным ошибкам ():

, где ; (7.6)

, где ; (7.7)

где - стандартные отклонения признака - фактора и признака - результата; - коэффициент детерминации.

В специализированных статистических программах расчет параметров всегда сопровождается расчетом значений их стандартных (среднеквадратических) ошибок и t-статистики (см. таблицу 7.1). Расчетное значение t-статистики сравнивается с табличным, если объем изучаемой совокупности менее 30 единиц (безусловно малая выборка), следует обратиться к таблице t- распределения Стьюдента, если объем совокупности большой, следует воспользоваться таблицей нормального распределения (интеграла вероятностей Лапласа). Параметр уравнения признается статистически значимым, если.

Оценка параметров на основе t-статистики, по существу, является проверкой нулевой гипотезы о равенстве генеральных параметров нулю (H 0: =0; H 0: =0;), то есть о статистически не значимой величине параметров уравнения регрессии. Уровень значимости гипотезы, как правило, принимается: = 0,05. Если расчетный уровень значимости меньше 0,05 , то нулевая гипотеза отвергается и принимается альтернативная - о статистической значимости параметра.

Продолжим рассмотрение примера. В таблице 7.1 в графе «B» приведены значения параметров, в графе Std.Err.ofB - величины стандартных ошибок параметров (), в графе t(77 – число степеней свободы) рассчитаны значения t - статистики с учетом числа степеней свободы. Для оценки статистической значимости параметров расчетные значения t - статистик необходимо сравнить с табличным значением. Заданному уровню значимости (0,05) в таблице нормального распределения соответствует t = 1,96. Поскольку 18,02, 10,84, т.е. , следует признать статистическую значимость полученных значений параметров, т.е. эти значения сформированы под влиянием не случайных факторов и отражают тенденцию связи между анализируемыми показателями.

Для оценки статистической значимости уравнения в целом обратимся к значению F-критерия Фишера (см. таблицу 7.1). Расчетное значение F-критерия = 117,51, табличное значение критерия, исходя из соответствующего числа степеней свободы (для факторной дисперсии d.f. =1, для остаточной дисперсииd.f. =77), равно 4,00 (см. приложение.....). Таким образом, , следовательно, уравнение регрессии в целом статистически значимо. В такой ситуации можно говорить и о статистической значимости величины коэффициента детерминации, т.е. вариация среднедушевых доходов населения в регионах России на 60 процентов может быть объяснена вариацией объемов валового регионального продукта на душу населения.

Проводя оценку статистической значимости уравнения регрессии и его параметров, можем получить различное сочетание результатов.

· Уравнение по F-критерию статистически значимо и все параметры уравнения по t-статистике тоже статистически значимы. Данное уравнение может быть использовано как для принятия управленческих решений (на какие факторы следует воздействовать, чтобы получить желаемый результат), так и для прогнозирования поведения признака-результата при тех или иных значениях факторов.

· По F-критерию уравнение статистически значимо, но незначимы параметры (параметр) уравнения. Уравнение может быть использовано для принятия управленческих решений (касающихся тех факторов, по которым получено подтверждение статистической значимости их влияния), но уравнение не может быть использовано для прогнозирования.

· Уравнение по F-критерию статистически незначимо. Уравнение не может быть использовано. Следует продолжить поиск значимых признаков-факторов или аналитической формы связи аргумента и отклика.

Если подтверждена статистическая значимость уравнения и его параметров, то может быть реализован, так называемый, точечный прогноз, т.е. получена оценка значения признака-результата (y) при тех или иных значениях фактора (x).

Совершенно очевидно, что прогнозное значение зависимой переменной, рассчитанное на основе уравнения связи, не будет совпадать с фактическим ее значением ().Графически эта ситуация подтверждается тем, что не все точки поля корреляции лежат на линии регрессии,лишь при функциональной связи линия регрессии пройдет через все точки диаграммы рассеивания. Наличие расхождений между фактическими и теоретическими значениями зависимой переменной связано, прежде всего, с самой сутью корреляционной зависимости:одновременно на результат воздействует множество факторов, из которых только часть может быть учтена в конкретном уравнении связи. Кроме того, может быть неверно выбрана форма связи результата и фактора (тип уравнения регрессии). В связи с этим возникает вопрос, насколько информативно построенное уравнение связи. На этот вопрос отвечают два показателя: коэффициент детерминации (о нем уже говорилось выше) и стандартная ошибка оценивания.

Разность между фактическими и теоретическими значениями зависимой переменной называют отклонениями или ошибками, или остатками . На основе этих величин рассчитывается остаточная дисперсия. Квадратный корень из остаточной дисперсии и является среднеквадратической (стандартной) ошибкой оценивания:

= (7.8)

Стандартная ошибка уравнения измеряется в тех же единицах, что и прогнозируемый показатель. Если ошибки уравнения подчиняются нормальному распределению (при больших объемах данных), то 95 процентов значений должны находиться от линии регрессии на расстоянии, не превышающем 2S (исходя из свойства нормального распределения - правила трех сигм). Величина стандартной ошибки оценивания используется при расчете доверительных интервалов при прогнозировании значения признака - результата для конкретной единицы совокупности.

В практических исследованиях часто возникает необходимость в прогнозе среднего значения признака - результата при том или ином значении признака - фактора. В этом случае в расчете доверительного интервала для среднего значения зависимой переменной()

учитывается величина средней ошибки:

(7.9)

Использование разных величин ошибок объясняется тем, что изменчивость уровней показателей у конкретных единиц совокупности гораздо выше, чем изменчивость среднего значения, следовательно, ошибка прогноза среднего значения меньше.

Доверительный интервал прогноза среднего значения зависимой переменной:

, (7.10)

где - предельная ошибка оценки (см. теорию выборки); t – коэффициент доверия, значение которого находится в соответствующей таблице, исходя из принятого исследователем уровня вероятности (числа степеней свободы) (см. теорию выборки).

Доверительный интервал для прогнозируемого значения признака-результата может быть рассчитан и с учетом поправки на смещение (сдвиг) линии регрессии. Величина поправочного коэффициента определяется:

(7.11)

где - значение признака-фактора, исходя из которого, прогнозируется значение признака-результата.

Отсюда следует, что чем больше значение отличается от среднего значения признака-фактора, тем больше величина корректирующего коэффициента, тем больше ошибка прогноза. С учетом данного коэффициента доверительный интервал прогноза будет рассчитываться:

На точность прогноза на основе уравнения регрессии могут влиять разные причины. Прежде всего, следует учитывать, что оценка качества уравнения и его параметров проводится, исходя из предположения о нормальном распределении случайных остатков. Нарушение этого допущения может быть связано с наличием резко отличающихся значений в данных, с неравномерной вариацией, с наличием нелинейной зависимости. В этом случае качество прогноза снижается. Второй момент, о котором следует помнить, - значения факторов, учитываемые при прогнозировании результата, не должны выходить за пределы размаха вариации данных, на основе которых построено уравнение.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

С помощью МНК можно получить лишь оценки параметров уравнения регрессии. Чтобы проверить, значимы ли параметры (т.е. значимо ли они отличаются от нуля в истинном уравнении регрессии) используют статистические ме­тоды проверки гипотез. В качестве основной гипотезы вы­двигают гипотезу о незначимом отличии от нуля параметра регрессии или коэффициента корреляции. Альтернативной гипотезой, при этом является гипотеза обратная, т.е. о неравенстве нулю параметра или коэффициента корреляции. Для проверки гипотезы используется t- критерий Стьюдента.

Найденное по данным наблюдений значение t- критерия (его еще называют наблюдаемым или фактиче­ским) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (ко­торые обычно приводятся в конце учебников и практикумов по статистике или эконометрике). Табличное значение оп­ределяется в зависимости от уровня значимости и числа степеней свободы, которое в случае линейной парной рег­рессии равно , n -число наблюдений.

Если фактическое значение t -критерия больше таб­личного (по модулю), то считают, что с вероятностью параметр регрессии (ко­эффициент корреляции) значимо отличается от нуля.

Если фактическое значение t -критерия меньше таб­личного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр регрессии (коэффициент корреля­ции) незначимо отличается от нуля при уровне значимости .

Фактические значения t -критерия определяются по формулам:

,

,

где .

Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции используют критерий:

где r - оценка коэффициента корреляции, полученная по наблюдаемым данным.

Прогноз ожидаемого значения результативного признака Y по линейному парному уравнению регрессии.

Пусть требуется оценить прогнозное значение призна­ка-результата для заданного значения признака-фактора . Прогнозируемое значение признака-результата с дове­рительной вероятностью равной принадлежит интервалу прогноза:

,

где - точечный прогноз;

t - коэффициент доверия, определяемый по таблицам распределения Стьюдента в зависимости от уровня значимости α и числа степеней свободы ;

Средняя ошибка прогноза.

Точечный прогноз рассчитывается по линейному уравнению регрессии, как:

.

Средняя ошибка прогноза определяется по формуле:

.

Пример 1.

На основе данных, приведенных в Приложении и соответствующих варианту 100, требуется:



1. Построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (Х), другой - результативного . Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.

3. Оценить статистическую значимость параметров регрессии и коэффициента корреляции с уровнем значимости 0,05.

4. Выполнить прогноз ожидаемого значения признака-результата Yпри прогнозном значении признака-фактора X, составляющим 105% от среднего уровня X. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.

Решение:

В качестве признака-фактора в данном случае выберем курсовую цену акций, так как от прибыльности акций зависит величина начисленных дивидендов. Таким образом, результативным будет признак дивиденды, начисленные по результатам деятельности .

Для облегчения расчетов построим расчетную таблицу, которая заполняется по ходу решения задачи. (Таблица 1)

Для наглядности зависимости Yот X представим графически. (Рисунок 2)

Таблица 1 - Расчетная таблица


1. Построим уравнение регрессии вида: .

Для этого необходимо определить параметры уравнения и .

Определим ,

где - среднее из значений , возведенных в квадрат;

Среднее значение в квадрате.

Определим параметр а 0 :

Получим уравнение регрессии следующего вида:

Параметр показывает, сколько составили бы дивиденды, начисленные по результатам деятельности при отсутствии влияния со стороны курсовой цены акций. На основе параметра можно сделать вывод, что при изменении курсовой цены акций на 1 руб. произойдет изменение дивидендов в ту же сторону на 0,01 млн. руб.



2. Рассчитаем линейный коэффициент парной корреляции и коэффициент детерминации.

Линейный коэффициент парной корреляции определим по формуле:

,

Определим и :

Коэффициент корреляции, равный 0,708, позволяет судить о тесной связи между результативным и факторным признаками .

Коэффициент детерминации равен квадрату линейного коэффициента корреляции:

Коэффициент детерминации показывает, что на вариации начисленных дивидендов зависит от вариации курсовой цены акций, и на - от остальных неучтенных в модели факторов.

3. Оценим значимость параметров уравнения регрессии и линейного коэффициента корреляции по t- критерию Стьюдента. Необходимо сравнить расчетные значения t- критерия для каждого параметра и сравнить его с табличным.

Для расчета фактических значений t -критерия определим :

Парная регрессия представляет собой регрессию между двумя переменными

-у и х, т.е. модель вида + Е

Где у - результативный признак,т.е зависимая переменная; х - признак-фактор.

Линейная регрессия сводится к нахождению уравнения вида или

Уравнение вида позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х.

Построение линейной регрессии сводится к оценке ее пара­метров а и в.

Оценки параметров линейной регрессии могут быть найдены разными методами.

1.

2.

Параметр b называется коэффициентом регрессии . Его вели­чина показывает

среднее изменение результата с изменением фактора на одну единицу.

Формально а - значение у при х = 0. Если признак-фактор

не имеет и не может иметь нулевого значения, то вышеуказанная

трактовка свободного члена, а не имеет смысла. Параметр, а может

не иметь экономического содержания. Попытки экономически

интерпретировать параметр, а могут привести к абсурду, особенно при а < 0.

Интерпретировать можно лишь знак при параметре а. Если а > 0,

то относительное изменение результата происходит медленнее, чем изменение

проверка качества найденных параметров и всей модели в целом:

-Оценка значимости коэффициента регрессии (b) и коэффициента корреляции

-Оценка значимости всего уравнения регрессии. Коэффициент детерминации

Уравнение регрессии всегда дополняется показателем тесноты связи. При

использовании линейной регрессии в качестве такого показателя выступает

линейный коэффициент корреляции r xy . Существуют разные

модификации формулы линейного коэф­фициента корреляции.

Линейный коэффициент корреляции находится и границах: -1≤.r xy

≤ 1. При этом чем ближе r к 0 тем слабее корреляция и наоборот чем

ближе r к 1 или -1, тем сильнее корреляция, т.е. зависимость х и у близка к

линейной. Если r в точности =1или -1 все точки лежат на одной прямой.

Если коэф. регрессии b>0 то 0 ≤.r xy ≤ 1 и

наоборот при b<0 -1≤.r xy ≤0. Коэф.

корреляции отражает степени линейной зависимости м/у величинами при наличии

ярко выраженной зависимости др. вида.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного

коэффициента корреляции

Называемый коэффициентом детерминации. Коэффициент детермина­ции

характеризует долю дисперсии результативного признака y, объясняемую

регрессией. Соответствующая величина

характеризует долю дисперсии у, вызванную влиянием остальных не учтенных

в модели факторов.

МНК позволяет получить такие оценки параметров а и b, которых

сумма квадратов отклонений фактических значений ре­зультативного признака

(у) от расчетных (теоретических)

ми­нимальна:

Иными словами, из

всего множества линий линия регрессии на графике выбирается так, чтобы сумма

квадратов расстояний по вертикали между точками и этой линией была бы

минималь­ной.

Решается система нормальных уравнений

ОЦЕНКА СУЩЕСТВЕННОСТИ ПАРАМЕТРОВ ЛИНЕЙНОЙ РЕГРЕССИИ.

Оценка значимости уравнения регрессии в целом дается с по­мощью F-критерия

Фишера. При этом выдвигается нулевая ги­потеза, что коэффициент регрессии равен

нулю, т. е. b = 0, и следовательно, фактор х не оказывает

влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии.

Центральное место в нем занимает разложе­ние общей суммы квадратов отклонений

переменной у от средне го значения у на две части -

«объясненную» и «необъясненную»:

Общая сумма квадратов отклонений

Сумма квадратов

отклонения объясненная регрессией

Остаточная сумма квадратов отклонения.

Любая сумма квадратов отклонений связана с числом степе­ней свободы, т.

е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности nис числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло­нений из п возможных требуется для

образования данной суммы квадратов.

Дисперсия на одну степень свободы D.

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива, то факторная и остаточная дисперсии не

отличаются друг от друга. Для Н 0 необходимо опровержение, чтобы

факторная дисперсия превышала остаточную в несколько раз. Английским

статистиком Снедекором раз­работаны таблицы критических значений F-отношений

при разных уровнях существенности нулевой гипотезы и различном числе степеней

свободы. Табличное значение F-критерия - это максимальная величина отношения

дисперсий, которая может иметь место при случайном их расхождении для данного

уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения

признается достоверным, если о больше табличного. В этом случае нулевая

гипотеза об отсутствии связи признаков отклоняется и делается вывод о

существенности этой связи: F факт > F табл Н 0

отклоняется.

Если же величина окажется меньше табличной F факт ‹, F табл

То вероятность нулевой гипотезы выше заданного уровня и она не может быть

отклонена без серьезного риска сделать неправильный вывод о наличии связи. В

этом случае уравнение регрессии считается статистически незначимым. Н о

не отклоняется.


Похожая информация.