Построение первоначального опорного плана. Подготовка опорного плана

Предположим, что каноническая задача ЛП имеет не совсем специальный вид, а к примеру, правые части уравнений системы ограничений могут быть отрицательны.
Этот случай возникает при решении задачи о рационе . Канонический вид задачи выглядит так:

F = 20х 1 + 20х 2 + 10х 3 → min.

Запишем задачу в симплекс-таблицу (табл. 1).

Таблица 1

Базисное решение, соответствующее базису {x 4 , x 5 , x 6 } и равное (0; 0; 0; -33; 23; -12), не является допустимым ввиду отрицательности х 4 < 0, x 5 < 0, x 6 < 0.

Сформулируем правило нахождения допустимого опорного плана .
Если в столбце свободных членов есть отрицательные элементы, выберите из них наибольший по модулю, а в его строке - любой отрицательный. Взяв этот элемент в качестве разрешающего пересчитайте таблицу по прежним правилам 2-5 .
Если в полученной таблице все элементы столбца свободных членов стали положительны либо 0, то данное базисное решение можно взять в качестве первоначального опорного плана. . Если в столбце свободных членов не все элементы неотрицательны, то еще раз воспользоваться этим правилом.
Проведем этот шаг для задачи о рационе. В качестве разрешающей строки табл. 1 нужно выбрать первую. А разрешающим элементом выберем, к примеру, элемент -4.

Таблица 2

базисные

свободные

Заметим, что переменная х 1 вошла в базис вместо х 4 , все вычисления осуществлялись по правилу 2-5. В правом столбце еще остался отрицательный элемент, воспользуемся правилом еще раз. Строка переменной х 6 - разрешающая, а в качестве разрешающего элемента возьмем, к примеру, 3 / 2 , здесь есть некоторая возможность выбора.

Таблица 2

базисные

свободные

Полученный базисный план х * = (х 1 , х 2 , х 3, х 4 , х 5 , х 6) = (7, 0, 5/2, 0, 1/2, 0) является допустимым и, к тому же, оказывается оптимальным, т.к. в индексной строке нет отрицательных элементов. Оптимальное значение целевой функции равно F* = 165. Действительно,
F = 20х 1 + 20х 2 + 10х 3 = 20 · 7 + 0 + 10· = 140 + 25 = 165.

В этой задаче не пришлось улучшать найденный первоначальный опорный план, т.к. он оказался оптимальным. Иначе, мы должны были вернуться к III этапу.

Решение задачи о плане симплекс-методом

Задача. Предприятие располагает тремя видами сырья и намеревается выпускать четыре вида продукции. Коэффициенты в таблице 3.12 указывают затраты соответствующего вида сырья на единицу определенного вида продукции, а также прибыль от реализации единицы продукции и общие запасы ресурсов. Задача: найти оптимальный план производства продукции, при котором будет обеспечена максимальная прибыль.

Таблица 3

Составим математическую модель. Пусть х 1 , х 2 , х 3 , х 4 - количество продукции I, II, III, IV вида соответственно в плане. Тогда количество используемого сырья и его запасы выразятся в неравенствах:

F = 3x 1 + 5x 2 + 4x 3 + 5x 4 → max.

Целевая функция выражает собой общую суммарную прибыль, полученную от реализации всей плановой продукции, а каждое из неравенств выражает затраты определенного вида продукции. Понятно, что затраты не должны превышать запасов сырья.

Приведем задачу к канонической форме и к специальному виду, введя дополнительные переменные х 5 , х 6 , х 7 в каждое из неравенств.
Очевидно, что, если первого ресурса необходимо для производства плановой продукции 5х 1 + 0,4х 2 + 2х 3 + 0,5х 4 , то х 5 обозначает просто излишки первого ресурса как разность между имеющимся запасом и требуемым для производства. Аналогично х 6 и х 7 . Итак, дополнительные перемены задачи ЛП обозначают излишки сырья, времени, других ресурсов, остающихся в производстве данного оптимального плана.

Запишем задачу в таблицу 4, предварительно выписав ее каноническую форму:

I этап . Это задача специального вида, базис составляют переменные { х 5 , х 6 , х 7 }, правые части уравнений неотрицательны, план х = (0, 0, 0, 0, 400, 300, 100) - опорный. Он соответствует симплекс-таблице.

Таблица 4

базисные

свободные

II этап . Проверим план на оптимальность. Так как в индексной F -строке есть отрицательные элементы, то план неоптимален, переходим к III этапу.

III этап . Улучшение опорного плана. Выберем в качестве разрешающего столбца четвертый, но могли бы выбрать и второй, т.к. в обоих (-5). Остановившись на четвертом, выберем в качестве разрешающего элемента 1, т.к. именно на нем достигается минимум соотношений . С разрешающим элементом 1 проводим преобразование таблицы по правилам 2-5 (табл. 5).

Таблица 5

Полученный план опять неоптимален, т.к. в F -строке есть отрицательный элемент -5 . этот столбец разрешающий.

В качестве разрешающего элемента выбираем 5, т.к. .

Пересчитываем еще раз таблицу. Заметим, что пересчет удобно начинать с индексной строки, т.к. если в ней все элементы неотрицательны, то план оптимален, и чтобы его выписать, достаточно пересчитать столбец свободных членов, нет необходимости вычислять "внутренность" таблицы (табл. 6).

Таблица 6

базисные

свободные

План оптимален, т.к. в индексной строке нет отрицательных элементов, выписываем его.

IV этап . Базисные переменные {x 5 , x 2 , x 4 } принимают значения из столбца свободных членов, а свободные переменные равны 0. Итак, оптимальный план х * = (0, 40, 0, 100, 334, 0, 0) и F * = 700. Действительно, F = 3х 1 + 4х 3 + 5х 2 + 5х 4 = 5 · 40 + 5 · 100 = 700. Т. е. для получения максимальной прибыли в 700 руб. предприятие должно выпускать изделия II вида в количестве 40 штук, IV - вида в количестве 100 штук, изделия I и III вида производить невыгодно. При этом сырье второго и третьего вида будет израсходовано полностью, а сырья первого вида останется 334 единицы (х 5 = 334, х 6 = 0, х 7 = 0).

Подсчитаем количество ограничений-равенств в нашей транспортной задаче. На первый взгляд их пять. Однако если сложить первые два, то получится такое же равенство, как и при сложении последних трех ограничений:

В таких случаях математики говорят, что записанные пять ограничений не являются независимыми.

Поскольку первые два ограничения в сумме означают то же самое, что и последние три, фактически ограничений, влияющих на значения переменных решения, не пять, а четыре.

Поскольку ограничения в этой задаче образуют систему уравнений относительно переменных решения, можно было бы попытаться решить эту систему, чтобы найти значения переменных. Но переменных решения в нашей задаче 6, а независимых уравнений для их решения только 4. Можно произвольно положить значение двух каких -нибудь переменных решения равными 0 (например, Хп=0 и Х]2=0), тогда остальные переменные решения могут быть однозначно определены из системы уравнений, образованной ограничениями. Получившийся план перевозок, разумеется, необязательно будет оптимальным, но он обязательно является допустимым, поскольку удовлетворяет всем ограничениям.

Такой план называется опорным. От множества других допустимых планов он отличается тем, что число ненулевых переменных решения (ненулевых перевозок) точно равно количеству независимых ограничений в транспортной задаче или, иначе, сумме числа поставщиков и потребителей минус 1.

В нашей задаче число ненулевых перевозок в опорном плане равно

2 (количество поставщиков) + 3 (количество потребителей) -1=4.

В общем случае если имеется т поставщиков и п потребителей, то количество ненулевых перевозок в опорном плане будет т + п - 1.

Если, например, т = 10, а п = 20, то количество переменных будет 200, а количество ненулевых переменных в опорном плане - только 29.

В теории линейного программирования доказывается, что оптимальный план обязательно является опорным. Иными словами, искать оптимальный план перевозок нужно только среди опорных планов. В этом и состоит основное значение опорного плана.

Разумеется, опорных планов может быть много. В нашем примере нетрудно пересчитать, что существует 15 различных способов присвоить нули двум переменным из шести (т.е. имеется 15 опорных планов). В случае когда т = 10, п = 20, число различных опорных планов будет выражаться огромным числом 7,18*1034. Таким образом, о том, чтобы перебрать все возможные опорные планы и выбрать среди них оптимальный, в общем случае транспортной задачи, разумеется, не может быть и речи. Однако возможность осуществлять поиск только среди опорных планов все равносильно упрощает задачу по сравнению с общей задачей линейного программирования.

Опорным называется такой план, в котором количество ненулевых перевозок равно сумме количеств поставщиков и потребителей минус единица.

Оптимальный план перевозок следует искать только среди множества опорных планов.

Наибольшее распространение для нахождения начальных опорных планов получили:

Метод северо- западного угла и

Метод минимального элемента.

Метод северо-западного угла используют для нахождения произвольного опорного плана ТЗ. Основную идею метода рассмотрим на конкретном примере.

Пример 1. Условия ТЗ заданы транспортной таблицей (табл. 3.1).

Таблица 3.1

Требуется найти опорное решение (построить опорный план).

Решение. Будем заполнять таблицу 3.1 перевозками постепенно, начиная с левой верхней ячейки(1.1) (северо-западного угла).Будем рассуждать при этом следующим образом.

Пункт В 1 подал заявку на 18 единиц товара. Удовлетворим эту заявку за счет запаса 48, имеющегося в пункте А 1 , и запишем перевозку 18 в клетке (1.1). После этого заявка пункта В 1 удовлетворена, а в пункте А 1 осталось еще 30 единиц товара. Удовлетворим за счет них заявку пункта В 2 (27 единиц), запишем 27 единиц в клетке (1,2); оставшиеся 3 единицы пункта А 1 назначим пункту В 3 . В составе заявке пункта В 3 остались неудовлетворенными 39 единиц. Из них 30 покроем за счет пункта А 2 , чем его запас будет исчерпан, и еще 9 возьмем из пункта А 3 . Из оставшихся 18 единиц пункта А 3 12 выделим пункту В 4 ; оставшиеся 6 единиц назначим пункту В 5 , что вместе со всеми 20 единицами пункта А 4 покроет его заявку (табл. 3.2).

Таблица 3.2


На этом распределение запасов закончено. Каждый пункт назначения получил согласно своей заявке. Это выражается в том, что сумма перевозок в каждой строке равна запасу, а в столбце – заявку.

Таким образом, нами составлен план перевозок, удовлетворяющий балансовым условиям. Полученное решение является не только допустимым, но и опорным решением ТЗ.

Клетки таблицы, в которых стоят ненулевые перевозки, являются базисными, их число удовлетворяет условию r = n + m – 1 = 8. Остальные клетки -- свободные, в них стоят нулевые перевозки, их число равно (n – 1)(m – 1) = 12.Значит, составленный план -- опорный и поставленная задача построения опорного плана решена.

Но является ли этот план оптимальным? Нет, так как при его совершенно не учитывались стоимости перевозок с i j . И даже, если мы стоимость этого плана перевозок

18 10 + 27 8 + 3 5 + 30 8 + 9 10 + 12 8 + 6 7 + 20 8 = 1039

гарантировать, что этот план оптимальный еще нельзя. Ниже мы рассмотрим способы улучшения

плана с целью получения оптимального.

Пример 2. Особенности построения «вырожденного плана»

План, в котором некоторые из базисных перевозок оказываются равными нулю, называют «вырожденным»



Дана транспортная таблица (табл.3.3) Построить опорный план.

Решение. Применяя метод северо-западного угла, получим таблицу 3.3.

Опорный план составлен. Особенностью его является то, что в нем только шесть, а не восемь отличных от нуля перевозок. Значит, некоторые из базисных перевозок, которых должно быть

быть m + n -- 1 = 8, оказались равными нулю.

Отчего это произошло? При распределении запасов по пунктам назначения

в некоторых случаях остатки оказывались равными нулю и в соответствующую клетку не попадали.

Такие случаи «вырождения « могут возникать не только при составлении опорного плана, но и при его преобразовании, оптимизации.

В дальнейшем нам удобно будет всегда в транспортной таблице m + n -- 1 базисных клеток, хотя в некоторых из них, может быть, будут стоять и нулевые значения перевозок. Для этого можно ничтожно мало изменить запасы или

Таблица 3,3

Таблица 3.4

Таблица 3.5

заявки, так чтобы общий баланс не нарушился, а лишние «промежуточные» балансы уничтожались. Достаточно в нужных местах изменить запасы или заявки, например, на величину ε , а после нахождения оптимального решения положить ε = 0.

Как перейти от вырожденного плана к невырожденному можно понять на примере таблиц 3.4 и 3.5. Изменим слегка запасы в первой строке и положим их равными 20 + ε . Кроме того, в третьей строке проставим запасы 25 + ε. Чтобы «свести баланс» , в четвертой строке ставим запасы 20 -- 2 ε (табл. 3,5). Для этой таблицы строим опорный план методом северо-западного угла.

В табл. 3,5 уже содержится столько базисных переменных, сколько требуется:

m + n -- 1 = 8. В дальнейшем после оптимизации плана, можно будет положить

Метод минимального элемента позволяет построить начальный опорный план

транспортной задачи и является вариантом метода северо-западного угла, учитывающего специфику матрицы С = c i j . В отличие от метода северо-западного угла данный метод позволяет сразу получит достаточно экономичный план, сокращая количество итераций.

Смысл метода заключается в том, что элементы матрицы С нумеруют, начиная от минимального в порядке их возрастания, затем в этом же порядке заполняют матрицу Х. Другими словами сначала удовлетворяют заявки, используя самые дешевые перевозки, а затем по мере возрастания их стоимости.

Система основана на понятии приведенной стоимости ,принятом в бухучете.

Системы только лишь сравнивающие факт со сметой не в состоянии измерить, что действительно удалось сделать на затраченные средства.

Такие системы не принимают во внимание параметр времени в управлении.

Пример

Фирма, занимающаяся высокими технологиями , внедряет проект НИОКР .

В первоначальный план включено завершение проекта за 10 месяцев со стоимостью примерно в $200 000 в месяц при общей стоимости в $2 млн .

Через пять месяцев после начала работ топ-менеджмент решает оценить статус проекта. В наличии следующая информация:

  1. фактические затраты в первые пять месяцев составляют $1,3 млн ;
  2. запланированные сметные затраты на пять месяцев составляют $1 млн .

Менеджмент может прийти к выводу, что затраты превысили плановые показатели на $300 000 .Это может быть, а может и не быть правильным выводом.

Возможно, ход работ опережает график, и $300 000 - это зарплата за труд с опережением графика. А возможно, есть и превышение затрат, и отставание от графика. То есть, данные не раскрывают ситуацию полностью.

Используя тот же пример с другими исходными данными, мы опять увидим, что данные не могут дать нам адекватного вывода о состоянии проекта за 5 месяцев:

  • фактические затраты за первые пять месяцев составили $800 000 ;
  • запланированные затраты за первые пять месяцев - $1 млн .

Эти данные могут привести к выводу, что проект обходится дешевле планируемого на $200 000 .

Так ли это? Если проект отстает от графика, то $200 000 могут обозначать запланированные работы, к которым еще не приступили. Может быть, что проект и отстает от графика, и затраты превышены.

Из этих двух примеров видно, почему системы, использующие только показатели фактических и запланированных затрат, могут ввести менеджмент и заказчика в заблуждение при оценке хода и выполнения работ.

Приведенная стоимость помогает преодолеть описанные проблемы через отслеживание графиков и сметных расходов во времени.

Краткое изложение интегрированной системы стоимость/график

Тщательное выполнение пяти шагов обеспечивает целостность системы стоимость/график.

Шаги 1-3 выполняются на стадии планирования.

Шаги 4 и 5 последовательно выполняются на стадии выполнения проекта.

  1. Определите работу. Сюда входит разработка документов, содержащих следующую информацию:
    • масштаб;
    • наборы работ;
    • подразделения;
    • ресурсы;
    • сметы для каждого набора работ.
  2. Разработайте график работы и использования ресурсов.
    • распределите наборы работ по времени;
    • распределите ресурсы по операциям.
  3. Разработайте смету , распределенную по времени, с использованием наборов работ, включенных в операции.

    Кумулятивные значения этих смет станут основой и будут называться сметной стоимостью работ (BCWS ).

    Сумма должна быть равной сметным величинам для всех пакетов работ в счете издержек.

  4. На уровне наборов работы соберите все фактические затраты выполненных работ.

    Эти затраты будут называться фактической стоимостью выполненной работы (ACWP ).

    Сложите сметные величины фактически выполненных работ. Они будут называться приведенной стоимостью или сметной стоимостью выполненных работ (BCWP ).

  5. Просчитайте отклонение по расписанию (SV = BCWP - BCWS ) и отклонение по стоимости (CV = BCWP - ACWP ).

На рис. 6.3 представлена схема интегрированной системы сбора и анализа информации.


Рис. 6.3.

Разработка опорного плана проекта

Опорный план - это конкретный документ-обязательство; это запланированная стоимость и ожидаемые сроки выполнения работ, с которыми сравнивают фактическую стоимость и фактические сроки выполнения.

Расположение наборов работ по операциям в сетевом графике , как правило, указывает время начала выполнения этих наборов; оно также распределяет по времени сметы затрат, привязанных к наборам работ.

Распределенные по времени сметы добавляются по временной шкале проекта для создания опорного плана.

Кумулятивная сумма всех этих распределенных по времени смет должна равняться сумме всех пакетов работы, определенных в счете издержек.

На рис. 6.4 показаны отношения между данными, использующимися для создания опорного плана.


Рис. 6.4.

Какие затраты включены в опорный план!

Опорный план BCWS - это сумма счетов издержек, а каждый счет издержек - это сумма издержек наборов работ, входящих в этот счет.

Четыре типа затрат обычно включают в опорный план - затраты на труд и затраты на оборудование, затраты на материалы и затраты, возникающие в ходе работы над проектом (LOE ).

LOE обычно закладывают в прямые накладные расходы по проекту.

Такие операции, как административная поддержка, компьютерная поддержка, юридические операции, PR и т.д. существуют для пакета работы, сегмента проекта, продолжительности проекта и представляют собой прямые проектные накладные расходы.

Обычно отделяют затраты LOE от затрат на труд, материалы, оборудование и высчитывают для них отдельные колебания.

Возможность контролировать затраты LOE минимальна, поэтому их включают в прямые проектные накладные расходы.

Затраты LOE также можно привязать к "подвешенной" операции, покрывающей сегмент проекта. Когда затраты LOE привязаны к пакетам работ, не имеющим измеряемых показателей, их затраты вносят в смету как величину на единицу времени (например, $200/день ).